• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel computer-assisted approach to quick prediction and optimization of gradient separation for online enrichment-reversed phase liquid chromatography tandem system

    2023-10-14 03:02:54ShuyingHnYilinSongXinyiJingJunqinQioAnKngHishnDengDongZhuRuiLiuHongzhenLin
    Chinese Chemical Letters 2023年9期

    Shuying Hn, Yilin Song, Xinyi Jing, Junqin Qio, An Kng, Hishn Deng,Dong Zhu, Rui Liu,?, Hongzhen Lin,??

    a College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

    b State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China

    c Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, China

    Keywords:LC×LC tandem system Separation prediction Gradient elution Peak shape Separation optimization algorithm

    ABSTRACT An algorithm capable of predicting and optimizing the gradient separation of LC×LC system was developed in this paper.Two groups of structural analogues, five ginsenosides as well as eight bisphenols,which were difficult to discriminate in routine analysis, were used to verify the effectiveness of the proposed algorithm in fast separation optimization.Average errors of retention times below 1% were found in the retention prediction for all types of gradient programs, implying that the theory could lead to high quality in prediction of the retention times under gradients elution.Meanwhile, 84% of relative average deviations (RADs) between the predicted peak width and the measured ones were less than 20%.The larger deviation occurred at the time when the peak appeared while the gradient of the mobile phase changed, which led the deviations increased to 20%-42%.In all, method development and optimization for LC×LC tandem system was realized by the homemade user-friendly software.The present protocol may turn on great opportunities for the convenient method development in analysis of trace structural analogues in environmental, food and biological samples.

    Gradient elution in high performance liquid chromatography(HPLC) is a commonly used technique based on programmed separation modes, with which the separation and peak detection capabilities can be considerably enhanced.Among these modes the most powerful is solvent gradient elution, where the composition of the mobile phase programmed changes during the run by mixing two or more components.In general, the solvent gradient elution exploits completely its potentialities only if we can make prediction of the retention time (tR) on the basis of the properties of the solute and the gradient profile.The fundamental equation fortRprediction under the solvent gradient elution is (Eq.1):

    wherek?is the retention factor of a solute with organic modifier composition in mobile phase at?, andt0is the column holdup time.This equation was first proposed by Snyderet al.[1],and subsequently amended to its strict derivations by Levie [2,3].Later, Nikitas and co-workers developed theory of the multimode gradient elution in LC [4-7].In multimode gradient elution, two or more separation variables involving mobile-phase composition,flow rate and/or temperature were used for predictingtR[8].

    However, accurate prediction oftRdoes not mean that the prediction for separation of analytes has been successfully realized on LC, because the resolution of the pairs is not only related to the difference intR, but also to the peak shape,e.g., peak widths[9].Several models have been developed for predicting peak shape for LC [10-15].A recursion method for the prediction of bandwidth in a gradient elution was reported by Liang and Liu [10].Jinet al.developed a method for predicting the elution bandwidths of four purine compounds based on linear solvent strength (LSS)model [11].Pai proposed a parcel matrix model [12], which improved Glueckauf’s dynamic mode [13], Fritz and Scott’s statistic model [14] and de Levie’s linear worksheet models [2,3], leading to a more realistic simulation to the peak shape.

    Above-mentioned theories and models have been widely applied to reduce the number of experiments needed to optimization process, and several commercial software packages have been available for predicting separation, among which DryLab [15],PREOPT-W [16], OSIRIS [17], MICHROM [18] and ChromSword[19] were most commonly used.However, the majority of them were carried out only for one-dimensional LC.There were only a few reports concerning the multi-dimensional LC (multi-D LC) system [20-22], and these retention models involving gradient elution usually resulted in an equation difficult to integrate due to the higher number of experimental variables that should be taken into account.Moreover, the models would be much more complicated provided that both gradient elution and peak shape are considered simultaneously.Up to now, the universal way to seek a good compromise between sufficient separation and lowest possible expense is experimental (“trial-and-error”) optimization where the analyst manually varies method parameters until the resulting separation is acceptable.Therefore, one of the factors which may contribute to the further growth of the tandem LC system, especially the online-enrichment LC system for analyzing trace structural analogues in environmental, food and biological samples is the possibility of finding the operating conditions for an optimal separation in easy and reliable ways.

    Here, we presented a new approach incorporating the prediction of retention time and peak shape that allows for optimizing separation of structural analogues in tandem LC system.The proposed strategy was supported by different models and algorithms capable of describing the chromatographic behavior of solutes upon various changes in the separation factors such as the mobile phase contents and flow rates, and validated by optimizing the separation of bisphenols (BPs) and ginsenosides, which were difficult to separate in environmental and food analysis as well[23,24].An optimization software package has also been developed for simplifying the use of this strategy.

    In the theoretical derivation, we first divided the separation prediction in single LC system into the following steps: for prediction oftRand for prediction of half-peak width (W1/2).On this basis, we further deduced the separation prediction for tandem LC system and obtained the prediction formulas oftR(Eq.S31 in Supporting information) andW1/2(Eq.S32 in Supporting information)of substances in tandem LC system.

    The flowchart shown in Fig.1 and the annotation of algorithm listed in Table S1 (Supporting information) indicated the algorithmic procedure for the proposed prediction strategy.The predictedtRandW1/2were introduced for fast confirmation of the appropriate gradient elution program, with which the desirable separation for all the analytes according to user-defined minimum resolution(RUD_min) and maximum resolution (RUD_max) could be achieved in the shortest run time.Overall, the optimal time schedule and relevant chromatogram would be displayed by imputing the experimental retention timetR_exp, the half-peak widthW1/2_expand the peak areaAexpof each analyte at 3~5 different isocratic?, as well asRUD_min,RUD_max, holdup time (t0) and dwell time (td) of HPLC system.

    The theoretical derivation and experiments in this paper are detailed in the Theoretical Section and the Experimental Section of Supporting information, respectively.The fitting parameters in Eqs.S4 and S11 (Supporting information) for eight BPs and five ginsenosides were shown in Table S2 (Supporting information) whentdwas 1.1 min, as well ast0was 2.7 min for 250 mm column and 1.4 min for 150 mm column at a constant flow rate of 0.9 mL/min with MeOH-H2O as the mobile phase.If ACN-H2O was used as mobile phase,t0was 1.1 min in 150 mm column at a constant flow rate of 1.5 mL/min.

    As shown in Table S2, thea”,b,c’in Eq.S4 andA,Bin Eq.S11 for BPs was acquired under 0.90, 0.80, 0.70 and 0.65 fractions of MeOH in 250 mm column, as well as 0.55, 0.60, 0.65 and 0.70 fractions of MeOH in 150 mm column withR2> 0.908 andF>30.52 (P< 0.05), showing the satisfactory fitting results.Meanwhile, the retention descriptors of ginsenosides were acquired under 0.17, 0.20, 0.23, 0.27 and 0.3 fractions of ACN for R1, Rg1 and Re, as well as 0.3, 0.33, 0.36 and 0.4 fractions of ACN for Rb1 and Rd withR2ranged from 0.996 to 1.000 withP< 0.05,which also indicated the good linearity and significant statistics in the fitting process.Note that if organic modifier ratio went out of the?-gradients range listed in Table S2, the RTs of ginsenosides would be either too long or too short, implying that the retention behaviors of ginsenosides are sensitive to the ratio of ACN and ginsenosides are difficult to be separated only relying on experience.

    The accuracy of the proposed strategy was based on both the reliability of separating prediction for one-dimensional chromatographic system and the reasonability of connecting two onedimensional systems, which were investigated in two steps as follows.

    Firstly, five one-dimensional chromatographic conditions listed in Table S3 (Supporting information) were tested to verify the reliability of proposed strategy with two kinds of analogues, BPs and ginsenosides, and chromatograms of the predicted and experimental results are shown in Fig.2.Fig.2a included three experiments where?MeOHfor BPA, BPC, BPZ, BPP and TMBPA in 150 mm column changed from 0.60 to 0.75 with different interval time at constant flow rate of 0.9 mL/min: BS-Lab1 cost 300 s, BS-Lab2 took 12 s and BS-Lab3 jumped rapidly in 0.06 s.The high consistency between the predicted and experimental chromatograms under all the three gradient programs indicated that the algorithm was robust under different gradient slopes of MeOH.Interestingly, the chromatograms of BS-Lab2 and BS-Lab3 were similar,which was the indirect proof of a relatively fixed gradient delay in gradient elution caused bytdas stated by Nikitas [25].It inspired us that when it comes to the BS-Lab 4, where the?ACNfor BPA, BPB, BPAF, BPAP, BPC, BPZ, BPPM, TMBPA in 250 mm column continuously varied withintd, the set mobile phase gradient should be corrected by addingtdwithtito compensate the influence of the delay on actual?-gradient change.Actually, after correcting?-gradient, the maximum RADs of predicted and experimental retention times reduced from 4.5% (Fig.2b) to 0.55%(Fig.2c) by delaying the changing time of mobile phase.Another type of compounds were gradient-sensitive ginsenosides.According to Pharmacopoeia of the People’s Republic of China (2015 edition) [26], HPLC method (GS-Lab) where?MeOHpumped at the rate of 1.5 mL/min for R1, Rg1, Re, Rb1 and Rd in 150 mm column was applied to further confirm the reliability of the proposed strategy.As shown in Fig.2d, the RADs between experimental and predictive values ranged from 0.2% to 1%.Herein, the proposed strategy can accurately predict the retention times and peak shapes for various compounds under different mobile phases and flow rates in one-dimensional chromatographic system with the RAD within 1%.

    To evaluate the effect of the strategy on the online enrichment coupled with HPLC separation system, as well as to test the influence of three processes of this system (enrichment, backwash and separation processes) on prediction accuracy, three experiment programs according to the method reported in our previous work[27] (BD-Lab0 in Table S3) with some modifications were applied by employing BPs as the modeling compounds:

    (1) The enrichment mobile phase ratio changed from 5% to 25%with fixed separation and backwash process (BD-Lab2 in Table S3).

    Fig.1.The algorithmic architecture for optimizing the chromatographic separation in the online enrichment-LC tandem system.

    Fig.2.Comparison of the predicted and experimental chromatograms of one-dimensional chromatographic system.(a) Gradient programs of BS-Lab1, BS-Lab1 and BS-Lab3;(b, c) Gradient program of BS-Lab4; (d) Gradient program of GS-Lab.Peak identification: a1 and 1.BPA; 2.BPB; 3.BPAF; 4.BPAP; a2 and 5.BPC; a3 and 6.BPZ; a4 and 7.BPP; a5 and 8.TMBPA; d1.R1; d2.Rg1; d3.Re; d4.Rb1; d5.Rd.

    (2) The backwash time was extended to 4 min while the enrichment and analysis processes remained unchanged (BD-Lab3 in Table S3).

    (3) The mobile phase of separation changed while keeping the enrichment and backwash progress unchanged (BD-Lab4 in Table S3).

    By comparing the experimental and predicted data collected from these three programs in Table S4 (Supporting information), it was observed that the RADs between experimental and predicted retention times were 0.01%-1.06%, indicating the accuracy of the online enrichment prediction model for retention time under different enrichment program.However, when it comes to the accuracy of half-peak widths, 84% RADs between the predicted halfpeak widths and the measured values were less than 20%, while the rest were between 20% and 42%, which caused the RAD of resolution varied from 1.44% to 42.95%.The larger deviation occurred at the time when the peak appeared meanwhile the gradient of the mobile phase changed.The prediction of chromatographic peak width in two-dimensional LC was not as accurate as in one-dimensional LC system, which may be due to the more complex factors related to two-dimensional liquid hydrodynamics,which reminded us that the principle of peak width is much more complicated and is worth exploring further.

    After verifying the feasibility of the prediction strategy, a software package for separation optimization was developed in our lab to output hypothetical optimal conditions and corresponding chromatograms to give highest resolution in shortest run time, which was then confirmed by practical experiments.

    The hypothetical optimal separation conditions for BPs using MeOH as the mobile phase in tandem system was recorded as BDPre listed in Table S3.The experimental and predicted retention times as well as half-peak widths on the basis of the hypothetical optimal gradient elution program are listed in Table S5 (Supporting information).The results in Table S5 indicated that the satisfactory separation of BPs mixtures could be obtained in a minimum run time, ~17.29 min, which was shorter than the method of BD-Lab1 developed in our previous work [27] (the analysis time of which was 20.36 min).In other words, the optimization software package provided a protocol that all substances can be effectively separated(all resolutions> 1.2) in 15 s with comparable results to experimental ones.

    In addition, the software package was employed to predict the separation conditions of gradient-sensitive ginsenosides in single column HPLC system (GS-Pre) and in two-dimensional HPLC system (GD-Pre), respectively.As shown in Tables S3 and S5, both of the predicted programs allowed baseline separation of 5 ginsenosides within 30 min, which was much shorter than the proposal mentioned in the Chinese Pharmacopoeia (~100 min) with more convenient chromatographic separation conditions [26].

    So far, only the commercial prediction software used for onedimensional LC can be available.Thus, the prediction results for single column were compared between the commercial ACD/LC and the homemade algorithm.The results listed in Table S6 (Supporting information) indicated that the predicted retention times of BS-Lab1, 2, 3 and GS-Lab using both software were similar, but the algorithm we developed was significantly better than ACD/LC in predicting retention times of BS-Lab4 due to the drastic change in the mobile phase was corrected in our algorithm.In terms of peak widths, the RADs between the predicted and experimental results were within 16% except BPZ and BPC, no matter it was coming from ACD/LC or our algorithm, which may be attributed to the narrow peak width magnified the deviation.

    In conclusion, a new approach incorporating the prediction of retention time and peak shape that allows for optimizing separation of structural analogues in LC tandem system was proposed and validated.The method has been applied to the prediction and optimization of the separation among two groups of structural analogues, bisphenols and ginsenosides, respectively, by an optimization software package developed for simplifying the use of the strategy established in this work.The proposed strategy was efficient and eco-friendly to simultaneous analysis and monitoring structural analogues due to its high throughput, low solvent consumption and reduction of manual labor.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Nos.82174090, 22176085, 21874065, 21577057), Natural Science Foundation for Colleges of Jiangsu (No.21KJA360007),Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Qinglan Project and Jiangsu “333”Project.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108139.

    欧美xxⅹ黑人| 丝袜美足系列| 一区二区av电影网| 国产精品 国内视频| 老汉色av国产亚洲站长工具| 精品视频人人做人人爽| 黄色 视频免费看| 9热在线视频观看99| 国产成+人综合+亚洲专区| 美女中出高潮动态图| 午夜激情av网站| 我要看黄色一级片免费的| 国产成人a∨麻豆精品| 国产精品欧美亚洲77777| 亚洲精品乱久久久久久| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区精品| 国产福利在线免费观看视频| 国产精品av久久久久免费| 啦啦啦 在线观看视频| 蜜桃在线观看..| 亚洲第一av免费看| 精品人妻一区二区三区麻豆| 国产亚洲av高清不卡| 国产精品久久久久成人av| 免费在线观看日本一区| 成人三级做爰电影| 69精品国产乱码久久久| 亚洲国产精品一区二区三区在线| 五月开心婷婷网| 国产欧美日韩精品亚洲av| 亚洲精品美女久久av网站| www.999成人在线观看| 他把我摸到了高潮在线观看 | 免费av中文字幕在线| 十分钟在线观看高清视频www| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡人人看| 亚洲人成电影观看| 亚洲人成77777在线视频| 日韩三级视频一区二区三区| www.999成人在线观看| 99国产精品免费福利视频| 午夜福利一区二区在线看| 国产淫语在线视频| videos熟女内射| 日日摸夜夜添夜夜添小说| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 啦啦啦视频在线资源免费观看| 久久九九热精品免费| 精品免费久久久久久久清纯 | 中文字幕av电影在线播放| 亚洲欧美日韩高清在线视频 | 午夜免费鲁丝| 精品高清国产在线一区| 国产在视频线精品| 在线 av 中文字幕| 国产精品免费视频内射| 又紧又爽又黄一区二区| 97人妻天天添夜夜摸| 久久人人爽人人片av| 亚洲一区中文字幕在线| 久久久久网色| 亚洲va日本ⅴa欧美va伊人久久 | 日本91视频免费播放| 日韩中文字幕欧美一区二区| 国产视频一区二区在线看| 欧美 日韩 精品 国产| 亚洲 国产 在线| 老熟女久久久| 韩国精品一区二区三区| 在线观看人妻少妇| 日韩视频在线欧美| 久久亚洲精品不卡| 中文欧美无线码| 青春草视频在线免费观看| 韩国精品一区二区三区| 精品亚洲成国产av| 午夜影院在线不卡| 少妇被粗大的猛进出69影院| 亚洲第一青青草原| 男女床上黄色一级片免费看| 亚洲av日韩精品久久久久久密| 91成年电影在线观看| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 啦啦啦啦在线视频资源| 一边摸一边抽搐一进一出视频| 色老头精品视频在线观看| 国产精品一区二区精品视频观看| 国产精品99久久99久久久不卡| 美女国产高潮福利片在线看| 亚洲欧美日韩另类电影网站| 欧美成人午夜精品| 91精品伊人久久大香线蕉| 青春草亚洲视频在线观看| 丝袜人妻中文字幕| 久久精品成人免费网站| 久久久久久免费高清国产稀缺| 中文字幕精品免费在线观看视频| 亚洲精品久久午夜乱码| 中国国产av一级| 大码成人一级视频| 亚洲伊人久久精品综合| 操美女的视频在线观看| 久久精品久久久久久噜噜老黄| 精品国产乱码久久久久久男人| 亚洲精品美女久久久久99蜜臀| 精品人妻一区二区三区麻豆| 97在线人人人人妻| 水蜜桃什么品种好| 王馨瑶露胸无遮挡在线观看| 亚洲情色 制服丝袜| 国产男女内射视频| 欧美精品一区二区免费开放| 国产xxxxx性猛交| xxxhd国产人妻xxx| √禁漫天堂资源中文www| 黄片播放在线免费| 国产一区二区三区在线臀色熟女 | 视频在线观看一区二区三区| 国产一区二区三区综合在线观看| 午夜福利乱码中文字幕| 亚洲五月色婷婷综合| 欧美少妇被猛烈插入视频| 中文字幕人妻熟女乱码| 久久久久久久久久久久大奶| 亚洲精品美女久久av网站| 久久精品熟女亚洲av麻豆精品| 一区二区三区乱码不卡18| 国产精品熟女久久久久浪| 又黄又粗又硬又大视频| 欧美大码av| 国产精品秋霞免费鲁丝片| 欧美日韩一级在线毛片| 亚洲欧美成人综合另类久久久| 99国产精品一区二区蜜桃av | 欧美变态另类bdsm刘玥| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av香蕉五月 | 99久久国产精品久久久| 欧美日韩成人在线一区二区| 最近最新免费中文字幕在线| 国产男人的电影天堂91| 大码成人一级视频| 久久久久视频综合| 久久国产精品人妻蜜桃| 最新在线观看一区二区三区| 法律面前人人平等表现在哪些方面 | 久久久国产精品麻豆| 午夜福利乱码中文字幕| 啦啦啦免费观看视频1| av天堂在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩福利视频一区二区| 午夜福利免费观看在线| 午夜免费观看性视频| 十八禁网站网址无遮挡| 十八禁网站免费在线| 国产真人三级小视频在线观看| 欧美在线黄色| 午夜影院在线不卡| 国产精品国产av在线观看| av视频免费观看在线观看| 欧美av亚洲av综合av国产av| 久久人人爽人人片av| 一边摸一边抽搐一进一出视频| 美女福利国产在线| 曰老女人黄片| 老熟妇乱子伦视频在线观看 | 啦啦啦中文免费视频观看日本| 高清av免费在线| 日本wwww免费看| 欧美大码av| 成人18禁高潮啪啪吃奶动态图| √禁漫天堂资源中文www| 精品久久蜜臀av无| 精品国产一区二区久久| 国产男女内射视频| av又黄又爽大尺度在线免费看| 亚洲精品国产一区二区精华液| 亚洲精品国产一区二区精华液| 亚洲精品国产一区二区精华液| 2018国产大陆天天弄谢| 性少妇av在线| 搡老乐熟女国产| 中文字幕高清在线视频| 中文字幕高清在线视频| 欧美成人午夜精品| 欧美日韩国产mv在线观看视频| 久久 成人 亚洲| 欧美日韩国产mv在线观看视频| 国产视频一区二区在线看| 王馨瑶露胸无遮挡在线观看| 欧美乱码精品一区二区三区| 十分钟在线观看高清视频www| 日本av免费视频播放| 亚洲天堂av无毛| 人成视频在线观看免费观看| 视频区图区小说| 波多野结衣一区麻豆| 桃红色精品国产亚洲av| 男女之事视频高清在线观看| 国产精品自产拍在线观看55亚洲 | 老汉色∧v一级毛片| 五月天丁香电影| 一二三四在线观看免费中文在| 国产日韩欧美视频二区| 亚洲专区国产一区二区| 国产亚洲精品第一综合不卡| 97在线人人人人妻| 久久久国产欧美日韩av| av天堂在线播放| tube8黄色片| 日本91视频免费播放| 国产在线视频一区二区| 日韩熟女老妇一区二区性免费视频| 天天添夜夜摸| 美女大奶头黄色视频| 一级,二级,三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 三级毛片av免费| 欧美一级毛片孕妇| 正在播放国产对白刺激| 免费不卡黄色视频| 欧美少妇被猛烈插入视频| 欧美日韩一级在线毛片| 欧美日韩亚洲国产一区二区在线观看 | 咕卡用的链子| 国产高清国产精品国产三级| 国产亚洲午夜精品一区二区久久| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 91精品国产国语对白视频| 咕卡用的链子| 亚洲va日本ⅴa欧美va伊人久久 | 热99国产精品久久久久久7| 王馨瑶露胸无遮挡在线观看| 青春草亚洲视频在线观看| www.熟女人妻精品国产| 国产免费一区二区三区四区乱码| 王馨瑶露胸无遮挡在线观看| 国产精品熟女久久久久浪| 亚洲专区国产一区二区| 国产一级毛片在线| 久久亚洲国产成人精品v| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区三 | 午夜免费观看性视频| 亚洲伊人色综图| 国产精品二区激情视频| 在线天堂中文资源库| 成在线人永久免费视频| 久久精品国产亚洲av高清一级| 成人免费观看视频高清| 亚洲精品久久成人aⅴ小说| 在线精品无人区一区二区三| 日韩视频一区二区在线观看| 99精国产麻豆久久婷婷| 亚洲一码二码三码区别大吗| 一本色道久久久久久精品综合| 777米奇影视久久| 少妇人妻久久综合中文| 国产日韩一区二区三区精品不卡| 亚洲国产欧美网| 一边摸一边做爽爽视频免费| 亚洲精品国产区一区二| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 青春草视频在线免费观看| 在线观看一区二区三区激情| 免费高清在线观看日韩| 国产亚洲精品久久久久5区| 免费高清在线观看视频在线观看| 日本wwww免费看| 久久青草综合色| 无限看片的www在线观看| 亚洲精品成人av观看孕妇| 侵犯人妻中文字幕一二三四区| 亚洲av片天天在线观看| 欧美激情久久久久久爽电影 | 精品国产超薄肉色丝袜足j| 黄网站色视频无遮挡免费观看| 久久精品熟女亚洲av麻豆精品| 日韩精品免费视频一区二区三区| 高清视频免费观看一区二区| 国产三级黄色录像| 国产福利在线免费观看视频| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 欧美黑人欧美精品刺激| 亚洲人成77777在线视频| 天天操日日干夜夜撸| 国产亚洲欧美精品永久| 欧美大码av| 99久久99久久久精品蜜桃| av不卡在线播放| 老熟妇乱子伦视频在线观看 | 80岁老熟妇乱子伦牲交| 青春草视频在线免费观看| 男女床上黄色一级片免费看| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频 | 久久久精品区二区三区| 99国产极品粉嫩在线观看| 国产又爽黄色视频| 高清视频免费观看一区二区| 男女免费视频国产| 成人手机av| 亚洲精品乱久久久久久| 国产免费视频播放在线视频| 亚洲全国av大片| 成人av一区二区三区在线看 | 久久精品熟女亚洲av麻豆精品| 一区福利在线观看| 美女高潮到喷水免费观看| 极品人妻少妇av视频| 午夜激情久久久久久久| 一级毛片精品| 一边摸一边做爽爽视频免费| 国产深夜福利视频在线观看| 精品一区二区三卡| 久久国产精品大桥未久av| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看 | 亚洲精品国产区一区二| 成年av动漫网址| 久久人妻福利社区极品人妻图片| 免费高清在线观看视频在线观看| av又黄又爽大尺度在线免费看| 欧美性长视频在线观看| 一级毛片精品| 一级黄色大片毛片| 精品乱码久久久久久99久播| 性色av乱码一区二区三区2| 一进一出抽搐动态| 日韩中文字幕视频在线看片| 久久人人爽av亚洲精品天堂| 又紧又爽又黄一区二区| 91成人精品电影| 在线精品无人区一区二区三| 免费看十八禁软件| 亚洲国产av新网站| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠躁躁| 黄片小视频在线播放| 美女脱内裤让男人舔精品视频| 婷婷丁香在线五月| 日日摸夜夜添夜夜添小说| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻熟女毛片av久久网站| videosex国产| 国产成人免费观看mmmm| 黄片播放在线免费| 午夜激情av网站| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 操出白浆在线播放| 久久国产精品人妻蜜桃| 亚洲国产精品成人久久小说| 女人被躁到高潮嗷嗷叫费观| 宅男免费午夜| 国产成人精品久久二区二区91| 午夜精品久久久久久毛片777| 欧美日韩国产mv在线观看视频| 亚洲精品成人av观看孕妇| 少妇 在线观看| 亚洲综合色网址| 男女免费视频国产| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 成人国产一区最新在线观看| 少妇粗大呻吟视频| 1024香蕉在线观看| 色94色欧美一区二区| 成年人黄色毛片网站| 中文字幕av电影在线播放| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区四区第35| 久久中文字幕一级| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| www.自偷自拍.com| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 人人澡人人妻人| 亚洲欧美一区二区三区久久| 精品少妇一区二区三区视频日本电影| kizo精华| 伊人亚洲综合成人网| 大片电影免费在线观看免费| 久久综合国产亚洲精品| 热99国产精品久久久久久7| 久久久久精品人妻al黑| 桃红色精品国产亚洲av| 久久影院123| av天堂在线播放| av有码第一页| 天天操日日干夜夜撸| 夜夜夜夜夜久久久久| 午夜成年电影在线免费观看| 婷婷成人精品国产| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区欧美精品| 精品久久久久久电影网| 久久精品亚洲熟妇少妇任你| 老熟妇仑乱视频hdxx| 国产一区二区三区综合在线观看| 天天操日日干夜夜撸| 日韩一卡2卡3卡4卡2021年| 欧美久久黑人一区二区| av在线app专区| 十八禁网站网址无遮挡| 亚洲五月婷婷丁香| 别揉我奶头~嗯~啊~动态视频 | 国产黄频视频在线观看| 午夜91福利影院| 老熟女久久久| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 9191精品国产免费久久| 丝袜在线中文字幕| 国产真人三级小视频在线观看| 美女脱内裤让男人舔精品视频| 午夜成年电影在线免费观看| 久久久精品区二区三区| 三上悠亚av全集在线观看| 丝袜美腿诱惑在线| 久久免费观看电影| 国产免费福利视频在线观看| 亚洲精品久久成人aⅴ小说| av网站免费在线观看视频| 日日夜夜操网爽| 一本综合久久免费| 91成人精品电影| av有码第一页| 免费久久久久久久精品成人欧美视频| 丝袜美足系列| 另类精品久久| 国产成人精品久久二区二区91| 久久久精品94久久精品| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 波多野结衣av一区二区av| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 国产1区2区3区精品| 美女国产高潮福利片在线看| 亚洲成人免费av在线播放| 性色av乱码一区二区三区2| 国产成人免费观看mmmm| 性色av一级| 精品人妻熟女毛片av久久网站| 久久九九热精品免费| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网 | 18在线观看网站| 午夜成年电影在线免费观看| 国产在线一区二区三区精| 国产91精品成人一区二区三区 | 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 国产区一区二久久| 不卡av一区二区三区| 久久精品熟女亚洲av麻豆精品| 午夜福利在线观看吧| 无限看片的www在线观看| 国产成人系列免费观看| 国产三级黄色录像| 99香蕉大伊视频| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 亚洲成av片中文字幕在线观看| 免费看十八禁软件| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 日韩,欧美,国产一区二区三区| 免费av中文字幕在线| 另类精品久久| 成人免费观看视频高清| 日韩大片免费观看网站| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 亚洲国产欧美在线一区| 成年av动漫网址| av有码第一页| 免费观看a级毛片全部| 亚洲欧美一区二区三区久久| av有码第一页| 国产成人一区二区三区免费视频网站| 国产精品久久久久成人av| 国产欧美亚洲国产| 各种免费的搞黄视频| 久热爱精品视频在线9| 午夜福利一区二区在线看| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 男女午夜视频在线观看| 黄色视频,在线免费观看| 丰满迷人的少妇在线观看| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 国产av国产精品国产| 免费少妇av软件| av网站免费在线观看视频| 国产精品一区二区免费欧美 | 午夜影院在线不卡| 亚洲中文av在线| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 欧美变态另类bdsm刘玥| 别揉我奶头~嗯~啊~动态视频 | 无遮挡黄片免费观看| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 中文字幕制服av| 美女高潮喷水抽搐中文字幕| 亚洲色图 男人天堂 中文字幕| 老司机午夜福利在线观看视频 | 大型av网站在线播放| 欧美一级毛片孕妇| 午夜激情av网站| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| 18禁观看日本| 性色av乱码一区二区三区2| 国产精品免费大片| 丝袜喷水一区| 青草久久国产| 成人影院久久| 日韩欧美一区二区三区在线观看 | 人妻一区二区av| 久久九九热精品免费| 丰满少妇做爰视频| 天天影视国产精品| 91麻豆av在线| 久久久精品区二区三区| 久久av网站| 国产熟女午夜一区二区三区| 超碰成人久久| 久久狼人影院| 麻豆国产av国片精品| 久久久精品区二区三区| 国产欧美亚洲国产| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三区在线| 亚洲三区欧美一区| 99精国产麻豆久久婷婷| 欧美另类一区| av免费在线观看网站| 一二三四社区在线视频社区8| 中国国产av一级| tube8黄色片| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 三上悠亚av全集在线观看| 多毛熟女@视频| 午夜精品久久久久久毛片777| 亚洲av电影在线观看一区二区三区| 久久久久久久国产电影| 狠狠狠狠99中文字幕| 亚洲精品第二区| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 91精品三级在线观看| 午夜免费鲁丝| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 午夜免费成人在线视频| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 一进一出抽搐动态| 亚洲欧美日韩另类电影网站| 最近最新免费中文字幕在线| 搡老乐熟女国产| 免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站| 妹子高潮喷水视频| 久久久国产精品麻豆| 日本av手机在线免费观看| 精品人妻1区二区| 18在线观看网站| 国产精品国产三级国产专区5o| 黄频高清免费视频| av在线播放精品| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 久久免费观看电影| 一级a爱视频在线免费观看| 日韩欧美免费精品| 一级毛片电影观看| 亚洲,欧美精品.| 老司机午夜福利在线观看视频 | 亚洲第一av免费看| 中文字幕色久视频| 亚洲熟女毛片儿| 男女边摸边吃奶| 欧美日韩黄片免|