• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    午夜精品在线福利| 高清毛片免费观看视频网站| 久久6这里有精品| 99国产综合亚洲精品| 18禁裸乳无遮挡免费网站照片| 免费人成视频x8x8入口观看| 午夜福利视频1000在线观看| 精品无人区乱码1区二区| 国产综合懂色| 国产精品一区二区三区四区免费观看 | 欧美另类亚洲清纯唯美| 淫妇啪啪啪对白视频| 久久国产精品人妻蜜桃| 99视频精品全部免费 在线| 国产三级在线视频| 露出奶头的视频| 国产亚洲av嫩草精品影院| 国产精品久久久久久久久免 | 国产色爽女视频免费观看| 少妇熟女aⅴ在线视频| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 蜜桃久久精品国产亚洲av| 国产熟女xx| 国产免费一级a男人的天堂| 午夜福利欧美成人| 国产国拍精品亚洲av在线观看 | 桃色一区二区三区在线观看| 性色avwww在线观看| 久久久久久久精品吃奶| 精品久久久久久久末码| 国模一区二区三区四区视频| 99久久无色码亚洲精品果冻| 嫩草影院入口| 一二三四社区在线视频社区8| 国产主播在线观看一区二区| 九九久久精品国产亚洲av麻豆| av中文乱码字幕在线| 国产亚洲精品久久久久久毛片| 成人永久免费在线观看视频| 在线十欧美十亚洲十日本专区| 伊人久久精品亚洲午夜| 岛国在线观看网站| 久久国产精品影院| 国产精品98久久久久久宅男小说| 国产毛片a区久久久久| 成人高潮视频无遮挡免费网站| 在线十欧美十亚洲十日本专区| 日韩精品中文字幕看吧| 在线观看免费视频日本深夜| 天堂网av新在线| 一区二区三区国产精品乱码| 日本与韩国留学比较| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 色精品久久人妻99蜜桃| 亚洲不卡免费看| 国产探花极品一区二区| 美女免费视频网站| 琪琪午夜伦伦电影理论片6080| 免费电影在线观看免费观看| 亚洲欧美日韩高清专用| netflix在线观看网站| 国产三级中文精品| 色综合站精品国产| 又爽又黄无遮挡网站| 好看av亚洲va欧美ⅴa在| 人人妻,人人澡人人爽秒播| 久久久国产精品麻豆| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 国产野战对白在线观看| 天美传媒精品一区二区| 日韩欧美在线二视频| 免费无遮挡裸体视频| 最新中文字幕久久久久| 美女cb高潮喷水在线观看| 久久人妻av系列| 成人特级黄色片久久久久久久| 免费电影在线观看免费观看| av女优亚洲男人天堂| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 高清毛片免费观看视频网站| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 日韩欧美三级三区| 国产成人aa在线观看| 午夜日韩欧美国产| 亚洲成人中文字幕在线播放| 免费看十八禁软件| 麻豆一二三区av精品| 日韩欧美国产一区二区入口| 深爱激情五月婷婷| 国内久久婷婷六月综合欲色啪| av天堂中文字幕网| 亚洲av免费在线观看| 欧美色视频一区免费| 麻豆一二三区av精品| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 成年女人毛片免费观看观看9| 亚洲欧美日韩东京热| avwww免费| 国模一区二区三区四区视频| 99热这里只有是精品50| 国产精品综合久久久久久久免费| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 白带黄色成豆腐渣| 国产三级黄色录像| 国产日本99.免费观看| 9191精品国产免费久久| www日本黄色视频网| 久久久久久久精品吃奶| 国产 一区 欧美 日韩| 动漫黄色视频在线观看| 色综合站精品国产| 久久久国产成人精品二区| www日本在线高清视频| 搡女人真爽免费视频火全软件 | 91在线观看av| 美女免费视频网站| 国产精品久久视频播放| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 日本a在线网址| 亚洲精品乱码久久久v下载方式 | 国产69精品久久久久777片| 久久久久国产精品人妻aⅴ院| 99久久精品热视频| 国产成人aa在线观看| 成人永久免费在线观看视频| 99热只有精品国产| 国产视频内射| 网址你懂的国产日韩在线| 88av欧美| 狂野欧美激情性xxxx| 波野结衣二区三区在线 | 亚洲精品乱码久久久v下载方式 | 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 国产成人福利小说| 99热这里只有精品一区| 日韩欧美 国产精品| 90打野战视频偷拍视频| 亚洲av不卡在线观看| 又紧又爽又黄一区二区| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 天堂动漫精品| 在线看三级毛片| 手机成人av网站| 美女黄网站色视频| aaaaa片日本免费| 精品福利观看| 淫秽高清视频在线观看| 最新美女视频免费是黄的| 国产高潮美女av| 黄色视频,在线免费观看| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在 | or卡值多少钱| 黄色丝袜av网址大全| 两个人的视频大全免费| 丝袜美腿在线中文| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 亚洲人成电影免费在线| 亚洲第一电影网av| 婷婷亚洲欧美| 国产一区在线观看成人免费| 国产国拍精品亚洲av在线观看 | 成人午夜高清在线视频| 日韩有码中文字幕| 亚洲国产中文字幕在线视频| 黑人欧美特级aaaaaa片| 国产精品乱码一区二三区的特点| 欧美又色又爽又黄视频| 在线观看一区二区三区| 欧美性感艳星| 最近在线观看免费完整版| 欧美中文综合在线视频| 国产激情偷乱视频一区二区| 免费av不卡在线播放| 美女大奶头视频| 超碰av人人做人人爽久久 | 免费看光身美女| 男人舔女人下体高潮全视频| 午夜激情欧美在线| 久久精品91蜜桃| 舔av片在线| 国产av一区在线观看免费| 好男人电影高清在线观看| 欧美在线一区亚洲| 中文资源天堂在线| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 国内精品美女久久久久久| 日韩欧美免费精品| 99久久精品一区二区三区| 国产不卡一卡二| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 一二三四社区在线视频社区8| 国产精品久久久久久久久免 | 露出奶头的视频| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 国产淫片久久久久久久久 | 亚洲电影在线观看av| 日韩欧美免费精品| 国产成人av激情在线播放| 五月伊人婷婷丁香| 国产美女午夜福利| 亚洲中文字幕日韩| 国产精品 国内视频| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 久久久久精品国产欧美久久久| 婷婷精品国产亚洲av在线| 国产精品 国内视频| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 精品久久久久久久久久免费视频| 丁香欧美五月| 桃色一区二区三区在线观看| 精品一区二区三区人妻视频| 免费搜索国产男女视频| 国产探花极品一区二区| 最近视频中文字幕2019在线8| 国产高清videossex| 国产三级在线视频| 无人区码免费观看不卡| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 国产麻豆成人av免费视频| 一级黄色大片毛片| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| www国产在线视频色| 午夜福利高清视频| 日韩高清综合在线| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 一区福利在线观看| 91麻豆av在线| 国产三级在线视频| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲一级av第二区| 嫩草影院入口| 国产伦一二天堂av在线观看| 一个人免费在线观看的高清视频| av专区在线播放| 色综合亚洲欧美另类图片| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 欧美日韩精品网址| 国产高清有码在线观看视频| 欧美乱色亚洲激情| 99国产综合亚洲精品| 可以在线观看毛片的网站| 香蕉av资源在线| 亚洲精品456在线播放app | 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看| 91在线观看av| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 色在线成人网| 亚洲国产色片| 老汉色∧v一级毛片| 亚洲精品久久国产高清桃花| 精品福利观看| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 国产精品三级大全| 看免费av毛片| 国产私拍福利视频在线观看| 色尼玛亚洲综合影院| 久久国产乱子伦精品免费另类| 国产美女午夜福利| 日韩免费av在线播放| 亚洲五月婷婷丁香| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 白带黄色成豆腐渣| 啪啪无遮挡十八禁网站| 欧美日韩精品网址| 国产精品 国内视频| 天天一区二区日本电影三级| 91在线精品国自产拍蜜月 | 久久亚洲真实| 亚洲av二区三区四区| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片 | 欧美+亚洲+日韩+国产| 男人和女人高潮做爰伦理| 又紧又爽又黄一区二区| 俺也久久电影网| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月 | 嫁个100分男人电影在线观看| 手机成人av网站| 国产高清有码在线观看视频| 日韩精品中文字幕看吧| 啪啪无遮挡十八禁网站| 欧美最新免费一区二区三区 | 久久久国产成人免费| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 欧美精品啪啪一区二区三区| 搡女人真爽免费视频火全软件 | 国产高清视频在线播放一区| a级毛片a级免费在线| 国产高清videossex| 精品人妻偷拍中文字幕| 亚洲av熟女| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| xxxwww97欧美| 国产伦一二天堂av在线观看| 国产伦精品一区二区三区视频9 | 国产精品永久免费网站| 精品人妻偷拍中文字幕| 免费看十八禁软件| 熟妇人妻久久中文字幕3abv| 亚洲片人在线观看| 毛片女人毛片| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩 | 国产精品永久免费网站| 国产高潮美女av| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 久久久久久人人人人人| 90打野战视频偷拍视频| 精品欧美国产一区二区三| 国产精品野战在线观看| 国产精品久久久久久久电影 | 久久国产精品人妻蜜桃| 免费人成在线观看视频色| 少妇人妻一区二区三区视频| 免费电影在线观看免费观看| 成人特级av手机在线观看| 国产av麻豆久久久久久久| 哪里可以看免费的av片| 亚洲av中文字字幕乱码综合| 乱人视频在线观看| 99国产精品一区二区三区| 51午夜福利影视在线观看| 亚洲最大成人中文| 嫩草影院入口| 一区二区三区激情视频| 久久午夜亚洲精品久久| 午夜福利高清视频| 国产日本99.免费观看| 女人高潮潮喷娇喘18禁视频| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 少妇的丰满在线观看| 成人三级黄色视频| 亚洲男人的天堂狠狠| 国产伦精品一区二区三区视频9 | av欧美777| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 欧美日韩亚洲国产一区二区在线观看| 久久久成人免费电影| 久久久久精品国产欧美久久久| 91麻豆精品激情在线观看国产| 真实男女啪啪啪动态图| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 亚洲av一区综合| 少妇熟女aⅴ在线视频| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 99久久久亚洲精品蜜臀av| 女警被强在线播放| 无遮挡黄片免费观看| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 国产亚洲欧美在线一区二区| 在线观看舔阴道视频| 国产精品女同一区二区软件 | 免费av观看视频| 久久久精品欧美日韩精品| 特级一级黄色大片| 欧美黑人巨大hd| 午夜两性在线视频| 操出白浆在线播放| 2021天堂中文幕一二区在线观| 亚洲精品456在线播放app | 最好的美女福利视频网| 成人亚洲精品av一区二区| www.色视频.com| 久久久久久久亚洲中文字幕 | 在线观看免费午夜福利视频| 国产野战对白在线观看| 亚洲不卡免费看| avwww免费| 亚洲精品456在线播放app | 小说图片视频综合网站| 色吧在线观看| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 国产精品永久免费网站| 99久久精品国产亚洲精品| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 美女高潮的动态| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| 丰满乱子伦码专区| 成人永久免费在线观看视频| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产av国片精品| 国产三级中文精品| 国产精品久久久久久久久免 | 亚洲精品色激情综合| 真人做人爱边吃奶动态| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 在线观看免费午夜福利视频| 国产成人系列免费观看| 最新美女视频免费是黄的| 国产一区二区激情短视频| 欧美乱色亚洲激情| 免费看十八禁软件| 久久精品人妻少妇| 中出人妻视频一区二区| 宅男免费午夜| 午夜免费男女啪啪视频观看 | 亚洲 欧美 日韩 在线 免费| 国产中年淑女户外野战色| 欧美在线黄色| 国产综合懂色| 露出奶头的视频| 国产毛片a区久久久久| 日韩高清综合在线| 伊人久久大香线蕉亚洲五| 久久久国产成人精品二区| 国产蜜桃级精品一区二区三区| 国产探花在线观看一区二区| 叶爱在线成人免费视频播放| av福利片在线观看| 成人性生交大片免费视频hd| 亚洲欧美日韩无卡精品| 九色国产91popny在线| 综合色av麻豆| 一个人看的www免费观看视频| 好男人在线观看高清免费视频| 男女午夜视频在线观看| 亚洲第一电影网av| 久久久久久久午夜电影| 国产精品国产高清国产av| 日韩高清综合在线| 午夜福利在线在线| 亚洲av不卡在线观看| av国产免费在线观看| 性欧美人与动物交配| 免费看a级黄色片| 国产视频内射| 日韩欧美精品v在线| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| av国产免费在线观看| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 人妻久久中文字幕网| 中文字幕人成人乱码亚洲影| 亚洲久久久久久中文字幕| 日本 av在线| 日本三级黄在线观看| 黄色女人牲交| 九色国产91popny在线| 岛国视频午夜一区免费看| 久久久精品大字幕| 有码 亚洲区| 小蜜桃在线观看免费完整版高清| 中文字幕熟女人妻在线| 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 男插女下体视频免费在线播放| 午夜福利在线观看免费完整高清在 | 波多野结衣高清无吗| 欧美成人免费av一区二区三区| 免费高清视频大片| 色老头精品视频在线观看| 真人一进一出gif抽搐免费| 美女大奶头视频| 人妻丰满熟妇av一区二区三区| 18禁美女被吸乳视频| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 19禁男女啪啪无遮挡网站| 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 国产精品日韩av在线免费观看| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 成人无遮挡网站| 日本黄色视频三级网站网址| tocl精华| 在线观看av片永久免费下载| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 最好的美女福利视频网| 色视频www国产| 亚洲精品日韩av片在线观看 | 亚洲天堂国产精品一区在线| 高清日韩中文字幕在线| 国产色爽女视频免费观看| 亚洲精品美女久久久久99蜜臀| 国产av麻豆久久久久久久| 天天添夜夜摸| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| av国产免费在线观看| 欧美国产日韩亚洲一区| 亚洲,欧美精品.| 免费一级毛片在线播放高清视频| or卡值多少钱| 亚洲欧美日韩东京热| 中亚洲国语对白在线视频| 国产午夜福利久久久久久| 无人区码免费观看不卡| 美女大奶头视频| 高清在线国产一区| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 久久久久九九精品影院| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| 亚洲国产精品成人综合色| 97碰自拍视频| 国产高清三级在线| 女人十人毛片免费观看3o分钟| 91字幕亚洲| 观看免费一级毛片| 亚洲七黄色美女视频| 久久久久久人人人人人| 久久久久精品国产欧美久久久| 免费观看人在逋| 午夜福利高清视频| 一本精品99久久精品77| 午夜亚洲福利在线播放| 日韩免费av在线播放| 欧美大码av| 成人午夜高清在线视频| 神马国产精品三级电影在线观看| 制服人妻中文乱码| 精品免费久久久久久久清纯| 亚洲专区中文字幕在线| 国产aⅴ精品一区二区三区波| 国产高清有码在线观看视频| 日韩精品青青久久久久久| 亚洲人成网站高清观看| 国产精品久久久久久人妻精品电影| 午夜免费成人在线视频| 免费在线观看日本一区| 成人无遮挡网站| 一级a爱片免费观看的视频| 亚洲中文日韩欧美视频| 亚洲最大成人手机在线| 久久这里只有精品中国| 中文资源天堂在线|