• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    噜噜噜噜噜久久久久久91| 国产高清视频在线观看网站| 国产高清有码在线观看视频| 日本成人三级电影网站| 日本欧美国产在线视频| 直男gayav资源| 我要搜黄色片| 一进一出抽搐动态| av国产免费在线观看| 国产在线精品亚洲第一网站| 亚洲aⅴ乱码一区二区在线播放| av中文乱码字幕在线| 国产精品野战在线观看| 高清毛片免费观看视频网站| 久久久欧美国产精品| 性插视频无遮挡在线免费观看| 国产精品,欧美在线| 91av网一区二区| 日韩国内少妇激情av| 亚洲一区高清亚洲精品| 18禁在线播放成人免费| 91av网一区二区| 欧美日韩综合久久久久久| 99久久成人亚洲精品观看| 搞女人的毛片| 蜜桃亚洲精品一区二区三区| 69av精品久久久久久| 99久久精品热视频| 亚洲成人久久性| 欧美日本视频| 日本一二三区视频观看| 男人舔女人下体高潮全视频| 亚洲中文字幕日韩| 久久久久久久久中文| 直男gayav资源| 久久久久性生活片| 99久久无色码亚洲精品果冻| 少妇的逼好多水| av国产免费在线观看| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 搡女人真爽免费视频火全软件 | 欧美高清性xxxxhd video| 日本爱情动作片www.在线观看 | 精品一区二区三区视频在线| 超碰av人人做人人爽久久| 国国产精品蜜臀av免费| 在线观看美女被高潮喷水网站| 国产av在哪里看| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 免费无遮挡裸体视频| 美女被艹到高潮喷水动态| 成人鲁丝片一二三区免费| 国产成人a∨麻豆精品| 亚洲图色成人| 亚洲av美国av| 97人妻精品一区二区三区麻豆| 成人特级黄色片久久久久久久| 色5月婷婷丁香| 熟女人妻精品中文字幕| 91久久精品国产一区二区三区| 男人舔女人下体高潮全视频| 国产成人精品久久久久久| 久久久欧美国产精品| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 国产不卡一卡二| 波野结衣二区三区在线| 亚洲在线观看片| 晚上一个人看的免费电影| 亚洲欧美清纯卡通| 变态另类丝袜制服| 99久久久亚洲精品蜜臀av| 看免费成人av毛片| 日韩欧美在线乱码| 国产 一区 欧美 日韩| 夜夜夜夜夜久久久久| 禁无遮挡网站| 国产淫片久久久久久久久| 成人午夜高清在线视频| 有码 亚洲区| 久久中文看片网| 日韩中字成人| 99国产精品一区二区蜜桃av| 天堂影院成人在线观看| 最近的中文字幕免费完整| 在线观看午夜福利视频| 久久韩国三级中文字幕| 免费观看人在逋| 搡老妇女老女人老熟妇| 日韩av在线大香蕉| 我要看日韩黄色一级片| 99热只有精品国产| 少妇丰满av| 亚洲精品在线观看二区| 国产精品久久久久久久电影| 国产大屁股一区二区在线视频| 禁无遮挡网站| 岛国在线免费视频观看| 国产精品日韩av在线免费观看| 亚洲av.av天堂| 日本-黄色视频高清免费观看| 亚洲性久久影院| 麻豆成人午夜福利视频| 最近在线观看免费完整版| 性色avwww在线观看| 欧美三级亚洲精品| 午夜视频国产福利| 欧洲精品卡2卡3卡4卡5卡区| 一级黄片播放器| 久久久国产成人免费| 亚洲va在线va天堂va国产| 一个人免费在线观看电影| 美女黄网站色视频| 亚洲熟妇熟女久久| 国产色爽女视频免费观看| 可以在线观看的亚洲视频| 岛国在线免费视频观看| 美女xxoo啪啪120秒动态图| 91久久精品国产一区二区三区| 亚洲av免费在线观看| 亚洲精品日韩av片在线观看| 老熟妇仑乱视频hdxx| 人妻夜夜爽99麻豆av| 欧美绝顶高潮抽搐喷水| 欧美国产日韩亚洲一区| 久久精品夜夜夜夜夜久久蜜豆| 在线天堂最新版资源| 人人妻人人看人人澡| 免费人成在线观看视频色| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品免费久久| 3wmmmm亚洲av在线观看| 日韩成人av中文字幕在线观看 | 亚洲成av人片在线播放无| 中出人妻视频一区二区| 99热全是精品| 毛片一级片免费看久久久久| а√天堂www在线а√下载| 女生性感内裤真人,穿戴方法视频| 久久中文看片网| 我的女老师完整版在线观看| 久久精品久久久久久噜噜老黄 | 午夜老司机福利剧场| or卡值多少钱| 久久久久久大精品| 亚洲内射少妇av| 免费看光身美女| 欧美高清成人免费视频www| 国产av一区在线观看免费| 99热这里只有是精品在线观看| 男插女下体视频免费在线播放| 男插女下体视频免费在线播放| 天天躁日日操中文字幕| 男女视频在线观看网站免费| 国产黄色小视频在线观看| 午夜亚洲福利在线播放| 亚洲七黄色美女视频| 欧美成人a在线观看| 久久午夜福利片| 一区二区三区免费毛片| 国产成人a∨麻豆精品| 久久九九热精品免费| 内射极品少妇av片p| 国产私拍福利视频在线观看| 一区福利在线观看| 男人舔女人下体高潮全视频| 搡女人真爽免费视频火全软件 | 欧美性猛交╳xxx乱大交人| 最近视频中文字幕2019在线8| 噜噜噜噜噜久久久久久91| 偷拍熟女少妇极品色| 六月丁香七月| 亚洲va在线va天堂va国产| 国模一区二区三区四区视频| 97热精品久久久久久| 久久99热这里只有精品18| 成人特级黄色片久久久久久久| 免费av不卡在线播放| 三级国产精品欧美在线观看| 国产女主播在线喷水免费视频网站 | 热99在线观看视频| 99视频精品全部免费 在线| 免费观看在线日韩| 九九在线视频观看精品| 日韩欧美 国产精品| 成人亚洲欧美一区二区av| 国语自产精品视频在线第100页| 99热精品在线国产| 日本在线视频免费播放| 一级av片app| 久久久久性生活片| 国产视频内射| 亚洲欧美精品综合久久99| 日本在线视频免费播放| av黄色大香蕉| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 国产一区二区三区av在线 | 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 国产毛片a区久久久久| 成年女人看的毛片在线观看| av.在线天堂| 91在线观看av| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜 | 午夜激情欧美在线| 欧美成人精品欧美一级黄| 日本爱情动作片www.在线观看 | 亚洲在线自拍视频| 成人欧美大片| 久久精品国产亚洲av天美| 狠狠狠狠99中文字幕| 卡戴珊不雅视频在线播放| 性插视频无遮挡在线免费观看| 亚洲高清免费不卡视频| 毛片女人毛片| 欧美xxxx性猛交bbbb| 久久久久久久亚洲中文字幕| 能在线免费观看的黄片| 在线看三级毛片| 亚洲美女搞黄在线观看 | h日本视频在线播放| 一级av片app| 午夜a级毛片| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 国产精品综合久久久久久久免费| 寂寞人妻少妇视频99o| 久久人人精品亚洲av| 搡女人真爽免费视频火全软件 | 欧美一区二区亚洲| 欧美zozozo另类| 18禁在线无遮挡免费观看视频 | 综合色av麻豆| 久久久成人免费电影| 我要搜黄色片| 国产中年淑女户外野战色| 亚洲最大成人手机在线| 精品一区二区三区视频在线| 欧美丝袜亚洲另类| 亚洲精品456在线播放app| 久久草成人影院| 久久99热6这里只有精品| 午夜免费激情av| 欧美日韩精品成人综合77777| 亚洲激情五月婷婷啪啪| 亚洲成人精品中文字幕电影| 九九久久精品国产亚洲av麻豆| 国产一区二区激情短视频| 最后的刺客免费高清国语| 国产真实乱freesex| 欧美成人精品欧美一级黄| 国内精品久久久久精免费| 伊人久久精品亚洲午夜| 亚洲电影在线观看av| 97碰自拍视频| 五月伊人婷婷丁香| 国产乱人视频| 久久国产乱子免费精品| 亚洲激情五月婷婷啪啪| 3wmmmm亚洲av在线观看| 露出奶头的视频| 一本久久中文字幕| 久久精品国产99精品国产亚洲性色| 国产色婷婷99| 大香蕉久久网| 男女啪啪激烈高潮av片| 国产成人91sexporn| 免费看美女性在线毛片视频| 亚洲人成网站在线播| 国产av不卡久久| 综合色丁香网| 美女cb高潮喷水在线观看| 99热这里只有是精品在线观看| 十八禁国产超污无遮挡网站| 亚洲性久久影院| 亚洲一区二区三区色噜噜| 看非洲黑人一级黄片| АⅤ资源中文在线天堂| 性插视频无遮挡在线免费观看| 校园人妻丝袜中文字幕| 日韩精品青青久久久久久| 国产伦精品一区二区三区视频9| 亚洲精品国产成人久久av| 女人十人毛片免费观看3o分钟| 国产欧美日韩一区二区精品| 成人鲁丝片一二三区免费| 免费黄网站久久成人精品| 波多野结衣巨乳人妻| 少妇高潮的动态图| 男女啪啪激烈高潮av片| 色吧在线观看| 少妇裸体淫交视频免费看高清| 精品欧美国产一区二区三| 欧美成人精品欧美一级黄| 人妻丰满熟妇av一区二区三区| 午夜亚洲福利在线播放| 国产高清有码在线观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲性久久影院| 色哟哟哟哟哟哟| 男女下面进入的视频免费午夜| 91久久精品国产一区二区三区| 亚洲天堂国产精品一区在线| 国国产精品蜜臀av免费| 91久久精品国产一区二区成人| 国产69精品久久久久777片| 六月丁香七月| 精品无人区乱码1区二区| 久久精品国产鲁丝片午夜精品| 欧美最黄视频在线播放免费| 免费av不卡在线播放| 少妇丰满av| 嫩草影院新地址| 人妻少妇偷人精品九色| 日日摸夜夜添夜夜添小说| 国产亚洲精品综合一区在线观看| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 日韩大尺度精品在线看网址| 插逼视频在线观看| 黄片wwwwww| 偷拍熟女少妇极品色| 久久久国产成人精品二区| 99热这里只有是精品50| 成年版毛片免费区| 亚洲成人中文字幕在线播放| 国产黄色小视频在线观看| 国产视频内射| 亚洲欧美日韩高清在线视频| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 国产亚洲91精品色在线| 最近在线观看免费完整版| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 网址你懂的国产日韩在线| 国产精品久久久久久亚洲av鲁大| 床上黄色一级片| 99在线视频只有这里精品首页| 久久久久久久久久久丰满| 国产精品人妻久久久久久| 我的老师免费观看完整版| 91av网一区二区| 偷拍熟女少妇极品色| 韩国av在线不卡| 日本撒尿小便嘘嘘汇集6| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| av国产免费在线观看| 最近视频中文字幕2019在线8| 久久人人爽人人片av| 成人综合一区亚洲| 高清午夜精品一区二区三区 | 亚洲欧美日韩东京热| 日韩人妻高清精品专区| 变态另类丝袜制服| 一进一出抽搐动态| 高清毛片免费看| 午夜激情欧美在线| 99热精品在线国产| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 国产真实乱freesex| 日日摸夜夜添夜夜添小说| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 精品无人区乱码1区二区| 看黄色毛片网站| 亚洲美女黄片视频| 18禁在线播放成人免费| 中出人妻视频一区二区| 国产白丝娇喘喷水9色精品| 日韩中字成人| 两个人视频免费观看高清| 精品久久久久久成人av| 人人妻人人澡人人爽人人夜夜 | 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 久久欧美精品欧美久久欧美| 欧美性猛交黑人性爽| 国产美女午夜福利| 午夜免费男女啪啪视频观看 | 亚洲国产色片| 国产伦精品一区二区三区四那| 大型黄色视频在线免费观看| a级毛片a级免费在线| 亚洲国产精品成人久久小说 | 亚洲精品456在线播放app| 在线免费观看不下载黄p国产| 欧美日本视频| 国产一区二区在线观看日韩| 国产精品久久久久久av不卡| 中文在线观看免费www的网站| 极品教师在线视频| 联通29元200g的流量卡| 日韩人妻高清精品专区| a级毛片a级免费在线| 欧美色欧美亚洲另类二区| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 国产成人freesex在线 | 热99re8久久精品国产| 内射极品少妇av片p| 少妇被粗大猛烈的视频| videossex国产| 大又大粗又爽又黄少妇毛片口| 男女啪啪激烈高潮av片| av在线天堂中文字幕| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 亚州av有码| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 婷婷六月久久综合丁香| 亚洲婷婷狠狠爱综合网| 国内精品久久久久精免费| 精品午夜福利在线看| 激情 狠狠 欧美| 国产亚洲欧美98| 成年版毛片免费区| 国产亚洲91精品色在线| 欧美色欧美亚洲另类二区| 亚洲性久久影院| 久久精品国产自在天天线| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 国产综合懂色| 国产av在哪里看| av卡一久久| 最近最新中文字幕大全电影3| 大型黄色视频在线免费观看| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 寂寞人妻少妇视频99o| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 国产极品精品免费视频能看的| 有码 亚洲区| 晚上一个人看的免费电影| 免费观看在线日韩| 欧美激情在线99| 伦精品一区二区三区| 国产精华一区二区三区| 在线观看午夜福利视频| 午夜视频国产福利| 欧美日韩在线观看h| 久久久久九九精品影院| 赤兔流量卡办理| 午夜a级毛片| 成人av在线播放网站| h日本视频在线播放| 免费高清在线观看视频在线观看| 纵有疾风起免费观看全集完整版| 国产亚洲欧美精品永久| 人妻少妇偷人精品九色| 亚洲欧美日韩另类电影网站| 国内揄拍国产精品人妻在线| 波野结衣二区三区在线| 一级毛片 在线播放| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 国产成人免费观看mmmm| 最近手机中文字幕大全| 午夜福利,免费看| 亚洲伊人久久精品综合| 国产成人aa在线观看| 国产精品99久久久久久久久| 国产成人91sexporn| 韩国av在线不卡| 在线看a的网站| 美女xxoo啪啪120秒动态图| 黑人巨大精品欧美一区二区蜜桃 | 三上悠亚av全集在线观看 | 午夜激情久久久久久久| 丝袜脚勾引网站| 亚洲无线观看免费| 亚洲欧美成人综合另类久久久| 久久久久网色| 成年人免费黄色播放视频 | 国产精品欧美亚洲77777| 性色av一级| 久久久久久久久久久免费av| 一区二区av电影网| 高清欧美精品videossex| 日韩成人伦理影院| 十分钟在线观看高清视频www | 99久久人妻综合| 午夜老司机福利剧场| 狂野欧美激情性xxxx在线观看| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 熟妇人妻不卡中文字幕| 少妇人妻一区二区三区视频| 三级国产精品片| 欧美日韩综合久久久久久| 一级毛片电影观看| 亚洲精品中文字幕在线视频 | 永久网站在线| 青春草亚洲视频在线观看| 日本黄色片子视频| 九九在线视频观看精品| 人人澡人人妻人| tube8黄色片| 婷婷色综合大香蕉| 久久久久精品性色| 岛国毛片在线播放| 九色成人免费人妻av| 91精品国产九色| 免费观看av网站的网址| 18禁在线播放成人免费| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 亚洲av免费高清在线观看| 99国产精品免费福利视频| 少妇的逼好多水| 中文字幕亚洲精品专区| 汤姆久久久久久久影院中文字幕| 最后的刺客免费高清国语| 国产在线男女| 成人国产av品久久久| 亚洲伊人久久精品综合| 国产精品熟女久久久久浪| www.av在线官网国产| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 少妇人妻一区二区三区视频| 51国产日韩欧美| 九九在线视频观看精品| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 91精品国产国语对白视频| 精品视频人人做人人爽| 少妇人妻久久综合中文| 国产无遮挡羞羞视频在线观看| 男的添女的下面高潮视频| 午夜福利影视在线免费观看| 伦精品一区二区三区| 久久ye,这里只有精品| 免费少妇av软件| 国产成人91sexporn| 免费看日本二区| av福利片在线| 久久精品夜色国产| 大话2 男鬼变身卡| 精品国产国语对白av| 国产成人精品福利久久| av天堂久久9| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 亚洲精品一区蜜桃| 这个男人来自地球电影免费观看 | av线在线观看网站| 久久久国产欧美日韩av| 精品亚洲成a人片在线观看| 久久av网站| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 日本av免费视频播放| 国产 精品1| 成人毛片60女人毛片免费| 亚洲四区av| 最近中文字幕2019免费版| 男男h啪啪无遮挡| 国产欧美亚洲国产| 一级二级三级毛片免费看| 一级毛片aaaaaa免费看小| 中国三级夫妇交换| 乱码一卡2卡4卡精品| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| 69精品国产乱码久久久| 超碰97精品在线观看| 国产 一区精品| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 在线天堂最新版资源| 春色校园在线视频观看| 最近中文字幕2019免费版| 亚洲精品国产av成人精品| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 最近中文字幕2019免费版| av卡一久久| av福利片在线观看| 男男h啪啪无遮挡| 国产欧美亚洲国产| av卡一久久| 色网站视频免费| 最后的刺客免费高清国语| 欧美区成人在线视频| 性色avwww在线观看| 欧美性感艳星| 欧美精品国产亚洲|