• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    国产伦精品一区二区三区四那| 久久人人爽人人爽人人片va| 免费观看av网站的网址| 三级经典国产精品| 亚洲经典国产精华液单| 亚洲国产精品一区二区三区在线| 在线观看免费日韩欧美大片 | 国产精品久久久久久精品古装| 国产精品伦人一区二区| 精品人妻一区二区三区麻豆| 中文字幕久久专区| 亚洲无线观看免费| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 只有这里有精品99| 各种免费的搞黄视频| 国产精品欧美亚洲77777| 久久人人爽人人爽人人片va| 卡戴珊不雅视频在线播放| 亚洲国产最新在线播放| 免费在线观看成人毛片| 久久精品国产亚洲网站| 精品亚洲成国产av| 国产91av在线免费观看| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 老司机影院毛片| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 一本色道久久久久久精品综合| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 亚洲欧美日韩另类电影网站| 国产成人午夜福利电影在线观看| 亚洲av中文av极速乱| 一级a做视频免费观看| 热99国产精品久久久久久7| 又爽又黄a免费视频| 久久久国产精品麻豆| 亚洲精品aⅴ在线观看| 男女免费视频国产| av福利片在线| 免费久久久久久久精品成人欧美视频 | av天堂中文字幕网| 亚洲精品久久久久久婷婷小说| 最近中文字幕2019免费版| 人妻夜夜爽99麻豆av| 国产极品天堂在线| 最近最新中文字幕免费大全7| 视频区图区小说| 五月玫瑰六月丁香| 亚洲情色 制服丝袜| 国产成人免费无遮挡视频| 亚洲四区av| a级毛色黄片| 国产在线一区二区三区精| 夜夜爽夜夜爽视频| 国产欧美亚洲国产| 人妻夜夜爽99麻豆av| 日本午夜av视频| av免费在线看不卡| 久久人人爽av亚洲精品天堂| 精品卡一卡二卡四卡免费| 中文乱码字字幕精品一区二区三区| videossex国产| 久久精品夜色国产| 亚洲丝袜综合中文字幕| 国产男女超爽视频在线观看| 亚洲一区二区三区欧美精品| 国产一区亚洲一区在线观看| 日本爱情动作片www.在线观看| videossex国产| 51国产日韩欧美| 国产美女午夜福利| 欧美一级a爱片免费观看看| 久久久久久久久久成人| a级毛片在线看网站| 五月伊人婷婷丁香| 久久久精品94久久精品| 18禁在线无遮挡免费观看视频| 水蜜桃什么品种好| 亚洲国产精品国产精品| 91精品一卡2卡3卡4卡| 亚洲成人av在线免费| 伊人亚洲综合成人网| 欧美bdsm另类| 成人18禁高潮啪啪吃奶动态图 | 永久免费av网站大全| 日日啪夜夜撸| 少妇人妻久久综合中文| 欧美精品一区二区大全| 亚洲av.av天堂| 寂寞人妻少妇视频99o| 日韩成人伦理影院| 精品一品国产午夜福利视频| 韩国高清视频一区二区三区| 啦啦啦中文免费视频观看日本| 91久久精品国产一区二区三区| 啦啦啦在线观看免费高清www| www.色视频.com| 99热国产这里只有精品6| 日本-黄色视频高清免费观看| 色94色欧美一区二区| 十八禁网站网址无遮挡 | 亚洲国产欧美日韩在线播放 | 人妻少妇偷人精品九色| 欧美精品高潮呻吟av久久| 熟女av电影| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 亚洲怡红院男人天堂| 伦理电影免费视频| 一二三四中文在线观看免费高清| 啦啦啦啦在线视频资源| 赤兔流量卡办理| 黑丝袜美女国产一区| 国产成人精品无人区| 久久国产乱子免费精品| 少妇裸体淫交视频免费看高清| 美女内射精品一级片tv| 久久久久网色| 欧美精品高潮呻吟av久久| 亚洲在久久综合| av福利片在线| 99久国产av精品国产电影| 成年女人在线观看亚洲视频| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片 | 99热这里只有是精品在线观看| 在线精品无人区一区二区三| 丰满人妻一区二区三区视频av| 色婷婷久久久亚洲欧美| 亚洲在久久综合| 99久久精品热视频| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验| 久久久久久久久大av| av不卡在线播放| 99久久精品一区二区三区| 免费人妻精品一区二区三区视频| 99久久综合免费| 又黄又爽又刺激的免费视频.| 男女啪啪激烈高潮av片| 男男h啪啪无遮挡| 国产色爽女视频免费观看| 交换朋友夫妻互换小说| 久久97久久精品| 97在线人人人人妻| 日日啪夜夜撸| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 香蕉精品网在线| 久久久国产精品麻豆| 亚州av有码| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 九色成人免费人妻av| 青春草国产在线视频| 国产成人精品福利久久| 国产亚洲91精品色在线| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 有码 亚洲区| 妹子高潮喷水视频| 国产免费福利视频在线观看| 中国国产av一级| 国产欧美日韩一区二区三区在线 | 丰满人妻一区二区三区视频av| 免费黄色在线免费观看| 黑丝袜美女国产一区| 一级a做视频免费观看| 国产精品久久久久久精品古装| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 精品久久久久久电影网| 人人妻人人看人人澡| 五月开心婷婷网| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图 | 中文字幕人妻丝袜制服| 欧美bdsm另类| 精品少妇久久久久久888优播| 免费黄色在线免费观看| 精品久久久噜噜| 插逼视频在线观看| 成人国产麻豆网| 久久97久久精品| 极品教师在线视频| 亚洲性久久影院| 熟女电影av网| 国产成人91sexporn| 在线观看免费高清a一片| 狂野欧美激情性bbbbbb| 伦精品一区二区三区| 视频区图区小说| 国产高清国产精品国产三级| 久久久久久久久久人人人人人人| 亚洲成色77777| 久久久久精品久久久久真实原创| 亚洲内射少妇av| 好男人视频免费观看在线| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 亚洲国产精品999| 国产亚洲5aaaaa淫片| 97在线视频观看| 国产老妇伦熟女老妇高清| 成人美女网站在线观看视频| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 色视频在线一区二区三区| 青春草国产在线视频| 久久av网站| 婷婷色麻豆天堂久久| 免费久久久久久久精品成人欧美视频 | 久久这里有精品视频免费| 亚洲天堂av无毛| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看 | 亚洲av成人精品一二三区| av女优亚洲男人天堂| 国产在线视频一区二区| 丰满乱子伦码专区| 少妇精品久久久久久久| 只有这里有精品99| 亚洲人与动物交配视频| av.在线天堂| 欧美日韩视频高清一区二区三区二| 国产亚洲av片在线观看秒播厂| 日日啪夜夜撸| 久久久久网色| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 在线播放无遮挡| 日日撸夜夜添| 高清毛片免费看| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 极品教师在线视频| 边亲边吃奶的免费视频| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 久久综合国产亚洲精品| 日韩精品免费视频一区二区三区 | 91久久精品电影网| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 国产一区二区三区综合在线观看 | 国产午夜精品一二区理论片| 国产黄色免费在线视频| 久久综合国产亚洲精品| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 精品人妻一区二区三区麻豆| 免费观看av网站的网址| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 午夜福利影视在线免费观看| 日韩熟女老妇一区二区性免费视频| 男女边吃奶边做爰视频| 国产成人精品一,二区| 精品久久久久久久久亚洲| 国产中年淑女户外野战色| 免费观看在线日韩| 国产成人免费无遮挡视频| 国产精品不卡视频一区二区| 有码 亚洲区| 乱码一卡2卡4卡精品| 91aial.com中文字幕在线观看| 在现免费观看毛片| 高清午夜精品一区二区三区| 嫩草影院入口| 黄色一级大片看看| 人人妻人人添人人爽欧美一区卜| 尾随美女入室| 男女国产视频网站| 蜜桃久久精品国产亚洲av| 男女免费视频国产| 3wmmmm亚洲av在线观看| 久久国产精品大桥未久av | 精品少妇内射三级| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级| 18禁动态无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 一边亲一边摸免费视频| 免费看日本二区| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 国产熟女午夜一区二区三区 | 国产精品久久久久久精品电影小说| 国产精品不卡视频一区二区| 日本-黄色视频高清免费观看| 午夜影院在线不卡| .国产精品久久| 极品人妻少妇av视频| 热99国产精品久久久久久7| 日韩一区二区视频免费看| freevideosex欧美| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 久久午夜福利片| 国产淫语在线视频| 黄片无遮挡物在线观看| 嫩草影院入口| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 成年人免费黄色播放视频 | 韩国av在线不卡| 国产女主播在线喷水免费视频网站| 99九九在线精品视频 | 国产片特级美女逼逼视频| 国产精品久久久久久久电影| 春色校园在线视频观看| 国产成人精品久久久久久| av国产久精品久网站免费入址| 伊人久久精品亚洲午夜| 嫩草影院新地址| 高清视频免费观看一区二区| av一本久久久久| 精品一区二区三卡| 精品久久国产蜜桃| 99久久精品一区二区三区| 大片电影免费在线观看免费| 青春草视频在线免费观看| 国产精品人妻久久久影院| 又爽又黄a免费视频| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 丝瓜视频免费看黄片| 久久久久精品久久久久真实原创| 成年av动漫网址| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 一区在线观看完整版| 亚洲成人一二三区av| 街头女战士在线观看网站| 青春草国产在线视频| 日日啪夜夜撸| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 国内少妇人妻偷人精品xxx网站| 国产高清国产精品国产三级| 高清在线视频一区二区三区| 日本午夜av视频| 亚洲国产欧美日韩在线播放 | 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 日韩欧美一区视频在线观看 | 丝袜喷水一区| 国产精品无大码| 久久久久精品性色| 人人妻人人澡人人爽人人夜夜| 噜噜噜噜噜久久久久久91| av黄色大香蕉| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 亚洲欧美精品专区久久| 三级国产精品片| freevideosex欧美| 男人狂女人下面高潮的视频| 国产欧美日韩综合在线一区二区 | 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 91久久精品电影网| 韩国av在线不卡| 免费人妻精品一区二区三区视频| 国产精品久久久久久久久免| 一区二区av电影网| av在线老鸭窝| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 美女福利国产在线| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 熟女电影av网| 下体分泌物呈黄色| 只有这里有精品99| av女优亚洲男人天堂| 久久女婷五月综合色啪小说| 国产精品成人在线| 日本av免费视频播放| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 免费不卡的大黄色大毛片视频在线观看| 久久久久国产精品人妻一区二区| h日本视频在线播放| 一级毛片电影观看| 免费黄网站久久成人精品| 色94色欧美一区二区| 免费av中文字幕在线| 嘟嘟电影网在线观看| 天天操日日干夜夜撸| 视频中文字幕在线观看| 精品久久久噜噜| 美女主播在线视频| 国产精品熟女久久久久浪| 精品人妻熟女毛片av久久网站| 久久久久视频综合| 晚上一个人看的免费电影| 国产永久视频网站| 亚洲综合精品二区| 国产伦在线观看视频一区| 大码成人一级视频| 99热6这里只有精品| 国产av码专区亚洲av| 一本一本综合久久| 日韩人妻高清精品专区| 久久精品久久久久久久性| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av天美| 桃花免费在线播放| 欧美精品高潮呻吟av久久| 色哟哟·www| 久久av网站| 免费观看性生交大片5| 麻豆成人av视频| 久久6这里有精品| 波野结衣二区三区在线| 国产淫片久久久久久久久| 久久久亚洲精品成人影院| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 国内精品宾馆在线| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 国产探花极品一区二区| 精品久久久精品久久久| 天天躁夜夜躁狠狠久久av| a级毛色黄片| 国产欧美日韩综合在线一区二区 | 国产精品99久久久久久久久| 日本wwww免费看| 亚洲怡红院男人天堂| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 99久久精品热视频| 日本黄色片子视频| 最近中文字幕2019免费版| 免费观看无遮挡的男女| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频 | 大片免费播放器 马上看| 尾随美女入室| 亚洲自偷自拍三级| 亚洲精品国产av蜜桃| 久久久午夜欧美精品| 人妻人人澡人人爽人人| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 欧美高清成人免费视频www| av免费在线看不卡| 在线亚洲精品国产二区图片欧美 | 在线观看av片永久免费下载| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站 | 国产高清有码在线观看视频| 97超碰精品成人国产| 中文精品一卡2卡3卡4更新| 91成人精品电影| 久久久久久伊人网av| 久久久久久久久久久丰满| 视频区图区小说| 特大巨黑吊av在线直播| 国产精品成人在线| 国产精品一二三区在线看| 在线观看av片永久免费下载| 中文乱码字字幕精品一区二区三区| 亚洲电影在线观看av| 日韩免费高清中文字幕av| 夜夜看夜夜爽夜夜摸| 欧美xxxx性猛交bbbb| 免费观看a级毛片全部| 少妇精品久久久久久久| 9色porny在线观看| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 免费观看a级毛片全部| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| 亚洲中文av在线| 99久久精品国产国产毛片| 亚洲真实伦在线观看| 国产乱人偷精品视频| 成人特级av手机在线观看| 国产精品.久久久| 亚洲国产精品成人久久小说| 精品久久久久久久久亚洲| 久久国产精品男人的天堂亚洲 | 精品久久国产蜜桃| 精品酒店卫生间| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| av在线老鸭窝| 天堂8中文在线网| 最近中文字幕2019免费版| 久久人人爽人人片av| 菩萨蛮人人尽说江南好唐韦庄| a级一级毛片免费在线观看| 啦啦啦中文免费视频观看日本| 寂寞人妻少妇视频99o| 国产精品久久久久久精品古装| 一本色道久久久久久精品综合| 久久av网站| 春色校园在线视频观看| 国产一区二区三区av在线| 午夜影院在线不卡| 一边亲一边摸免费视频| 岛国毛片在线播放| 曰老女人黄片| 亚洲欧洲国产日韩| 少妇的逼水好多| 午夜福利视频精品| 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区蜜桃 | 国产毛片在线视频| 99久久精品国产国产毛片| 国产一区二区三区av在线| 一级爰片在线观看| 人人妻人人添人人爽欧美一区卜| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 2018国产大陆天天弄谢| av有码第一页| 午夜激情福利司机影院| 99久久精品热视频| 日韩成人伦理影院| 99久国产av精品国产电影| 精华霜和精华液先用哪个| 日韩精品免费视频一区二区三区 | 日韩不卡一区二区三区视频在线| av专区在线播放| 亚洲成人手机| 亚洲精品视频女| 99久久人妻综合| 亚洲精品国产色婷婷电影| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 日韩三级伦理在线观看| 国产欧美亚洲国产| 51国产日韩欧美| 七月丁香在线播放| 一个人看视频在线观看www免费| 中文乱码字字幕精品一区二区三区| 日韩伦理黄色片| 秋霞伦理黄片| 精品少妇内射三级| 只有这里有精品99| 国产色婷婷99| 毛片一级片免费看久久久久| 国产亚洲5aaaaa淫片| 亚洲av成人精品一区久久| 精品少妇久久久久久888优播| 91久久精品电影网| 国产乱人偷精品视频| 天堂8中文在线网| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 国产高清国产精品国产三级| 免费观看在线日韩| 亚洲精品国产av蜜桃| 国产视频首页在线观看| 欧美三级亚洲精品| 中文字幕免费在线视频6| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃| 纯流量卡能插随身wifi吗| 伦理电影免费视频| 永久网站在线| 国产欧美日韩一区二区三区在线 | 久久99热6这里只有精品| 国产成人精品婷婷| 欧美最新免费一区二区三区| 天堂俺去俺来也www色官网| 久久人人爽人人爽人人片va| 波野结衣二区三区在线| 亚洲精品中文字幕在线视频 | 欧美精品高潮呻吟av久久| 中文字幕av电影在线播放| 2022亚洲国产成人精品| 国产高清三级在线| 亚洲色图综合在线观看| 久久免费观看电影| av在线app专区| 国产高清有码在线观看视频| 亚洲精品日韩在线中文字幕| 成人美女网站在线观看视频| 99久久综合免费|