• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    青春草国产在线视频| 亚洲怡红院男人天堂| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人爽人人片va| 卡戴珊不雅视频在线播放| 建设人人有责人人尽责人人享有的 | 免费观看在线日韩| eeuss影院久久| 欧美另类一区| 国产精品嫩草影院av在线观看| 99久国产av精品| 看黄色毛片网站| 身体一侧抽搐| 日韩制服骚丝袜av| 在线观看免费高清a一片| 男人狂女人下面高潮的视频| 欧美+日韩+精品| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 午夜免费激情av| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 成人性生交大片免费视频hd| 国产色婷婷99| 精品一区二区三区人妻视频| 精品午夜福利在线看| 久久6这里有精品| 男人和女人高潮做爰伦理| 亚洲高清免费不卡视频| 国语对白做爰xxxⅹ性视频网站| 色播亚洲综合网| 噜噜噜噜噜久久久久久91| 国产成人精品婷婷| 国产精品综合久久久久久久免费| 亚洲国产日韩欧美精品在线观看| 久久久久久久久中文| 亚洲三级黄色毛片| 极品少妇高潮喷水抽搐| 99热这里只有是精品50| 亚洲精品一区蜜桃| 18禁动态无遮挡网站| 又爽又黄无遮挡网站| 午夜福利成人在线免费观看| 黄色配什么色好看| 久久久久精品久久久久真实原创| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 亚洲无线观看免费| 亚洲熟女精品中文字幕| 一个人免费在线观看电影| 日本黄色片子视频| 搞女人的毛片| 亚洲欧美日韩无卡精品| 视频中文字幕在线观看| 国产69精品久久久久777片| 97超碰精品成人国产| 亚洲av中文av极速乱| 男女国产视频网站| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 亚洲av国产av综合av卡| 国产亚洲最大av| 一级黄片播放器| 国产又色又爽无遮挡免| av在线观看视频网站免费| 我要看日韩黄色一级片| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 成人特级av手机在线观看| 午夜激情福利司机影院| 欧美日本视频| 亚洲国产精品sss在线观看| av在线播放精品| 亚洲国产成人一精品久久久| av福利片在线观看| 亚州av有码| 性插视频无遮挡在线免费观看| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 婷婷六月久久综合丁香| 男女视频在线观看网站免费| 亚洲精品一区蜜桃| 亚洲性久久影院| 久久精品人妻少妇| 街头女战士在线观看网站| 国产淫语在线视频| 大陆偷拍与自拍| 国产 一区精品| av在线天堂中文字幕| 乱系列少妇在线播放| 久热久热在线精品观看| 真实男女啪啪啪动态图| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 日本一二三区视频观看| 中文字幕亚洲精品专区| 波多野结衣巨乳人妻| 22中文网久久字幕| 亚洲av男天堂| 欧美zozozo另类| 国产69精品久久久久777片| 国产又色又爽无遮挡免| 纵有疾风起免费观看全集完整版 | 国产视频首页在线观看| 精品欧美国产一区二区三| 在线 av 中文字幕| 丝袜喷水一区| 国产毛片a区久久久久| 肉色欧美久久久久久久蜜桃 | 精品一区二区三区人妻视频| 久久久久久久久久人人人人人人| 高清在线视频一区二区三区| 99re6热这里在线精品视频| 尾随美女入室| 波野结衣二区三区在线| 久久99精品国语久久久| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 自拍偷自拍亚洲精品老妇| 国产极品天堂在线| 亚洲熟妇中文字幕五十中出| 亚洲国产最新在线播放| 午夜免费激情av| 成人美女网站在线观看视频| 国产成人精品久久久久久| 亚洲av免费在线观看| 一级毛片我不卡| 亚洲一区高清亚洲精品| 小蜜桃在线观看免费完整版高清| 男的添女的下面高潮视频| 七月丁香在线播放| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 伦精品一区二区三区| 欧美日韩在线观看h| 午夜亚洲福利在线播放| 午夜激情福利司机影院| 久久久a久久爽久久v久久| 日韩国内少妇激情av| av在线蜜桃| 日本黄大片高清| 成人国产麻豆网| 欧美xxxx黑人xx丫x性爽| 国产精品蜜桃在线观看| 久久亚洲国产成人精品v| 神马国产精品三级电影在线观看| 一级片'在线观看视频| av国产久精品久网站免费入址| 亚洲av不卡在线观看| 成人高潮视频无遮挡免费网站| 亚洲乱码一区二区免费版| 亚洲国产欧美在线一区| 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| kizo精华| av在线蜜桃| 少妇的逼好多水| 高清欧美精品videossex| 国产综合懂色| 精品熟女少妇av免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 搞女人的毛片| 亚洲成人精品中文字幕电影| 色综合亚洲欧美另类图片| 欧美激情在线99| 成年av动漫网址| 国产精品1区2区在线观看.| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美腿在线中文| 韩国高清视频一区二区三区| 18+在线观看网站| 九九在线视频观看精品| 天堂√8在线中文| 欧美日韩视频高清一区二区三区二| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久v下载方式| 内地一区二区视频在线| 久久亚洲国产成人精品v| 国产探花极品一区二区| 亚洲国产精品sss在线观看| 亚洲精品久久午夜乱码| 国产国拍精品亚洲av在线观看| 男女下面进入的视频免费午夜| 亚洲av成人av| 国内精品宾馆在线| 国产成人精品一,二区| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 午夜免费激情av| 日韩视频在线欧美| 亚洲av中文字字幕乱码综合| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 最近2019中文字幕mv第一页| 91狼人影院| av国产免费在线观看| 欧美一区二区亚洲| 欧美xxxx性猛交bbbb| 精品国内亚洲2022精品成人| av黄色大香蕉| 欧美日韩综合久久久久久| 亚洲欧美日韩无卡精品| 日日干狠狠操夜夜爽| 非洲黑人性xxxx精品又粗又长| 亚洲精品一二三| 国产精品福利在线免费观看| 久久久精品94久久精品| 能在线免费看毛片的网站| 日本一本二区三区精品| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 成年免费大片在线观看| 午夜免费男女啪啪视频观看| 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区 | 久久久午夜欧美精品| 777米奇影视久久| 一本一本综合久久| 青春草视频在线免费观看| 免费av不卡在线播放| 国产男人的电影天堂91| 春色校园在线视频观看| 免费人成在线观看视频色| 一区二区三区高清视频在线| 免费观看a级毛片全部| 国产综合精华液| 国产精品蜜桃在线观看| 99视频精品全部免费 在线| 亚洲av成人av| 国产人妻一区二区三区在| 赤兔流量卡办理| 欧美精品一区二区大全| 国产成年人精品一区二区| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 亚洲av中文av极速乱| 一区二区三区四区激情视频| av黄色大香蕉| 少妇高潮的动态图| 少妇丰满av| 男女视频在线观看网站免费| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 国产亚洲最大av| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 精品午夜福利在线看| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 国产永久视频网站| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 国产成人精品久久久久久| 激情五月婷婷亚洲| 国产v大片淫在线免费观看| 最近中文字幕2019免费版| 亚洲av成人av| 国产乱来视频区| 免费大片黄手机在线观看| 国产欧美另类精品又又久久亚洲欧美| 好男人在线观看高清免费视频| av在线老鸭窝| 日本免费在线观看一区| 色哟哟·www| 2021少妇久久久久久久久久久| 啦啦啦韩国在线观看视频| 日本与韩国留学比较| av在线播放精品| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 嫩草影院新地址| 午夜久久久久精精品| 久久热精品热| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 国产永久视频网站| or卡值多少钱| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 天堂√8在线中文| 三级国产精品片| 亚洲精品一二三| 久久99热这里只有精品18| 午夜激情欧美在线| 国产黄片美女视频| 久久久久久久午夜电影| 亚洲国产成人一精品久久久| 三级男女做爰猛烈吃奶摸视频| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 成人亚洲精品一区在线观看 | 精品欧美国产一区二区三| 国产探花极品一区二区| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 亚洲av不卡在线观看| 国产免费福利视频在线观看| 观看美女的网站| 亚洲图色成人| 寂寞人妻少妇视频99o| 视频中文字幕在线观看| 中文在线观看免费www的网站| 免费av不卡在线播放| 免费不卡的大黄色大毛片视频在线观看 | 熟女人妻精品中文字幕| 国产伦一二天堂av在线观看| 人体艺术视频欧美日本| 精品国产三级普通话版| 69人妻影院| 男女视频在线观看网站免费| 好男人在线观看高清免费视频| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 免费av毛片视频| 91在线精品国自产拍蜜月| 久久久久久久亚洲中文字幕| 亚洲精品,欧美精品| 国产综合精华液| 久久精品国产亚洲网站| 看十八女毛片水多多多| 久久久国产一区二区| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| videossex国产| 亚洲性久久影院| 亚洲av免费在线观看| 干丝袜人妻中文字幕| 中文字幕制服av| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| av.在线天堂| av国产免费在线观看| 天美传媒精品一区二区| 一级av片app| 亚洲丝袜综合中文字幕| 国产av在哪里看| 男女国产视频网站| 久久久久网色| 干丝袜人妻中文字幕| 精品人妻一区二区三区麻豆| 黄色配什么色好看| 日本午夜av视频| 最近中文字幕高清免费大全6| 亚洲精品国产av蜜桃| 不卡视频在线观看欧美| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 欧美日韩视频高清一区二区三区二| 一级毛片aaaaaa免费看小| 色综合亚洲欧美另类图片| 欧美成人精品欧美一级黄| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 国产免费视频播放在线视频 | 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 国产精品日韩av在线免费观看| 成人美女网站在线观看视频| 日韩大片免费观看网站| 免费黄频网站在线观看国产| 美女国产视频在线观看| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 免费看日本二区| 日韩精品青青久久久久久| 一本一本综合久久| 国产午夜福利久久久久久| 性插视频无遮挡在线免费观看| 精品少妇黑人巨大在线播放| 青春草亚洲视频在线观看| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 简卡轻食公司| 91久久精品电影网| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 在线免费十八禁| 国产老妇女一区| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 亚洲av中文字字幕乱码综合| 国产亚洲91精品色在线| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 别揉我奶头 嗯啊视频| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 2022亚洲国产成人精品| 国产乱来视频区| 亚洲精品乱码久久久久久按摩| 午夜精品在线福利| 国产精品一区二区性色av| 性色avwww在线观看| 九草在线视频观看| 欧美激情在线99| 高清视频免费观看一区二区 | 赤兔流量卡办理| 国产黄a三级三级三级人| 亚洲在线观看片| 亚州av有码| 国产乱人偷精品视频| 精华霜和精华液先用哪个| 99热全是精品| 91午夜精品亚洲一区二区三区| 日韩亚洲欧美综合| av在线蜜桃| 高清欧美精品videossex| 免费av不卡在线播放| 天天躁日日操中文字幕| 亚洲色图av天堂| 亚洲av一区综合| 日韩在线高清观看一区二区三区| 成人特级av手机在线观看| 国产欧美日韩精品一区二区| 2018国产大陆天天弄谢| 啦啦啦韩国在线观看视频| 国产精品人妻久久久影院| 日本一本二区三区精品| 99热网站在线观看| 国产高清三级在线| 精品午夜福利在线看| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 97超视频在线观看视频| 国产成人a区在线观看| 久久久成人免费电影| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 高清欧美精品videossex| 熟妇人妻久久中文字幕3abv| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 久久99热这里只频精品6学生| 色综合色国产| 免费观看的影片在线观看| 国产永久视频网站| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| 亚洲人成网站高清观看| 嫩草影院精品99| 国产一区二区三区综合在线观看 | 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 欧美日韩国产mv在线观看视频 | av天堂中文字幕网| 亚洲乱码一区二区免费版| 亚洲精品成人av观看孕妇| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆| 一级毛片 在线播放| 又爽又黄a免费视频| 热99在线观看视频| 天堂俺去俺来也www色官网 | av国产久精品久网站免费入址| 肉色欧美久久久久久久蜜桃 | 免费人成在线观看视频色| 我要看日韩黄色一级片| 成人亚洲精品一区在线观看 | 天堂√8在线中文| 亚洲精华国产精华液的使用体验| 国产免费视频播放在线视频 | 韩国高清视频一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲在线自拍视频| 18禁在线播放成人免费| 成人亚洲欧美一区二区av| 亚洲最大成人手机在线| 日日啪夜夜爽| 国产成人精品婷婷| 欧美+日韩+精品| videossex国产| ponron亚洲| 蜜桃亚洲精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 嘟嘟电影网在线观看| 亚洲综合色惰| 久久久久久久久中文| 69av精品久久久久久| 亚洲电影在线观看av| 午夜激情福利司机影院| 亚洲欧美成人综合另类久久久| 国产成人a区在线观看| 青春草亚洲视频在线观看| 一个人看的www免费观看视频| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 成人美女网站在线观看视频| 少妇裸体淫交视频免费看高清| av福利片在线观看| 最近的中文字幕免费完整| 欧美bdsm另类| 天堂网av新在线| 国产综合精华液| 99视频精品全部免费 在线| 少妇人妻精品综合一区二区| 免费播放大片免费观看视频在线观看| 啦啦啦韩国在线观看视频| 亚洲精品久久午夜乱码| 日本黄大片高清| 18禁动态无遮挡网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人freesex在线| 男插女下体视频免费在线播放| 91午夜精品亚洲一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲熟妇中文字幕五十中出| 伊人久久精品亚洲午夜| 禁无遮挡网站| 国产 一区精品| 老女人水多毛片| 国产视频首页在线观看| 久久久久久久久久人人人人人人| 国产精品久久久久久精品电影小说 | 91狼人影院| 国语对白做爰xxxⅹ性视频网站| 亚洲精品日韩在线中文字幕| 直男gayav资源| 久久久国产一区二区| 久久鲁丝午夜福利片| 国产老妇伦熟女老妇高清| 美女大奶头视频| 国产免费又黄又爽又色| 91在线精品国自产拍蜜月| 麻豆久久精品国产亚洲av| 极品教师在线视频| 日韩av免费高清视频| 国产精品一区二区三区四区免费观看| 能在线免费观看的黄片| 国内揄拍国产精品人妻在线| 联通29元200g的流量卡| 久久97久久精品| 男的添女的下面高潮视频| 狠狠精品人妻久久久久久综合| 亚洲av福利一区| 伊人久久精品亚洲午夜| 久久久色成人| 免费观看a级毛片全部| 国产色婷婷99| 国精品久久久久久国模美| 国产高潮美女av| 国产v大片淫在线免费观看| 国产精品人妻久久久影院| 高清视频免费观看一区二区 | 中文欧美无线码| 99热这里只有是精品50| 日日干狠狠操夜夜爽| 一区二区三区高清视频在线| 亚洲精品乱码久久久v下载方式| 男女国产视频网站| 大陆偷拍与自拍| 色视频www国产| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 欧美bdsm另类| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 黄片无遮挡物在线观看| 精品一区二区三卡| 在线观看免费高清a一片| 亚洲精品乱码久久久久久按摩| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 欧美最新免费一区二区三区| 国产成人aa在线观看| 国产成人91sexporn| 久久久久免费精品人妻一区二区| 日本一二三区视频观看| 五月伊人婷婷丁香| 日韩欧美一区视频在线观看 | 欧美精品一区二区大全| 丝瓜视频免费看黄片| 国产高清国产精品国产三级 | 人人妻人人澡人人爽人人夜夜 | 欧美精品一区二区大全| 国产在线一区二区三区精| 久久综合国产亚洲精品| 日本免费在线观看一区| 极品教师在线视频| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看| 国产精品伦人一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲经典国产精华液单| 色视频www国产| 一边亲一边摸免费视频| av天堂中文字幕网| 国产单亲对白刺激| 97在线视频观看| 亚洲经典国产精华液单| 成年免费大片在线观看| 一边亲一边摸免费视频| 精品不卡国产一区二区三区| 免费看日本二区| 成人特级av手机在线观看| 亚洲国产高清在线一区二区三| 午夜福利成人在线免费观看| 日韩强制内射视频| 亚洲电影在线观看av| 精品久久久久久成人av| av在线天堂中文字幕|