• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    欧美国产日韩亚洲一区| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片 | 禁无遮挡网站| 国产男靠女视频免费网站| 国产欧美日韩精品一区二区| 国产成人影院久久av| 丰满的人妻完整版| 国产老妇女一区| 亚洲欧美精品综合久久99| 少妇裸体淫交视频免费看高清| 97碰自拍视频| 亚洲中文日韩欧美视频| 在线免费观看不下载黄p国产 | 麻豆精品久久久久久蜜桃| 99久久精品热视频| 看黄色毛片网站| 欧美成人一区二区免费高清观看| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 国产成人aa在线观看| 国产不卡一卡二| 可以在线观看毛片的网站| 欧美在线一区亚洲| 久久精品人妻少妇| 亚洲第一电影网av| 亚洲性夜色夜夜综合| 国产精品久久久久久久电影| 久久99热6这里只有精品| 91麻豆精品激情在线观看国产| 欧美高清成人免费视频www| 亚洲精华国产精华精| 久久精品人妻少妇| 国产又黄又爽又无遮挡在线| 欧美性感艳星| 在线观看免费视频日本深夜| 成人鲁丝片一二三区免费| 99久久中文字幕三级久久日本| 国产精品人妻久久久久久| 欧美zozozo另类| 永久网站在线| 欧美高清性xxxxhd video| 丰满乱子伦码专区| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 国国产精品蜜臀av免费| 麻豆成人av在线观看| 欧美3d第一页| 国产一区二区激情短视频| 在线观看66精品国产| 欧美丝袜亚洲另类 | 精品99又大又爽又粗少妇毛片 | 国产色婷婷99| 亚洲aⅴ乱码一区二区在线播放| 日本免费一区二区三区高清不卡| 国产精品久久电影中文字幕| 国产精品三级大全| 成人特级黄色片久久久久久久| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 久久人妻av系列| 欧美黑人巨大hd| 日本色播在线视频| 欧美日韩国产亚洲二区| 国产成人aa在线观看| 精品午夜福利在线看| 变态另类成人亚洲欧美熟女| 91精品国产九色| 黄色视频,在线免费观看| 国产女主播在线喷水免费视频网站 | 麻豆精品久久久久久蜜桃| 精品久久久久久久久av| 亚洲中文字幕一区二区三区有码在线看| 老司机福利观看| 我要搜黄色片| 国产三级在线视频| 在线国产一区二区在线| 乱系列少妇在线播放| 免费不卡的大黄色大毛片视频在线观看 | 91久久精品电影网| 国产综合懂色| www.www免费av| 色噜噜av男人的天堂激情| 免费看av在线观看网站| 黄色日韩在线| 国产精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 久久久久久久久久成人| 亚洲不卡免费看| 99在线视频只有这里精品首页| 国产精品精品国产色婷婷| 亚洲精品日韩av片在线观看| 黄色日韩在线| 亚洲在线自拍视频| 干丝袜人妻中文字幕| 国产成人影院久久av| 亚洲最大成人av| 香蕉av资源在线| 亚洲精品亚洲一区二区| 国产精品一区二区三区四区免费观看 | 极品教师在线免费播放| 久久99热这里只有精品18| 日韩人妻高清精品专区| 免费无遮挡裸体视频| 啦啦啦韩国在线观看视频| 国产v大片淫在线免费观看| 午夜精品在线福利| 一夜夜www| 久久人人爽人人爽人人片va| 91av网一区二区| 成人av一区二区三区在线看| 欧美激情久久久久久爽电影| 美女被艹到高潮喷水动态| 精品99又大又爽又粗少妇毛片 | 九九在线视频观看精品| 韩国av一区二区三区四区| 欧美国产日韩亚洲一区| xxxwww97欧美| 国内精品宾馆在线| а√天堂www在线а√下载| 国产精品人妻久久久影院| 美女免费视频网站| 22中文网久久字幕| av福利片在线观看| 在线观看舔阴道视频| 久久久精品大字幕| 亚洲av不卡在线观看| 国产美女午夜福利| 国产精品久久视频播放| 我要看日韩黄色一级片| 亚洲av免费在线观看| 在线观看一区二区三区| 又粗又爽又猛毛片免费看| 全区人妻精品视频| 欧美精品啪啪一区二区三区| 午夜视频国产福利| 日韩欧美国产在线观看| 亚洲欧美精品综合久久99| 国产成人av教育| 午夜福利视频1000在线观看| 亚洲七黄色美女视频| 男女边吃奶边做爰视频| 一进一出好大好爽视频| 亚洲精品成人久久久久久| 国产精品综合久久久久久久免费| 天天一区二区日本电影三级| 亚洲av中文字字幕乱码综合| 国产色爽女视频免费观看| 国产精品久久久久久久久免| 国产美女午夜福利| 毛片女人毛片| 亚洲五月天丁香| 亚洲av第一区精品v没综合| 色哟哟·www| 欧美黑人欧美精品刺激| 黄色女人牲交| 国产一区二区在线观看日韩| 神马国产精品三级电影在线观看| 久久精品91蜜桃| 欧美最新免费一区二区三区| 不卡视频在线观看欧美| 亚洲成av人片在线播放无| 精品国内亚洲2022精品成人| 国产 一区 欧美 日韩| 国产精品久久电影中文字幕| 又爽又黄无遮挡网站| 18禁黄网站禁片午夜丰满| 免费观看的影片在线观看| 性插视频无遮挡在线免费观看| 国产精品女同一区二区软件 | 又爽又黄a免费视频| 亚洲av电影不卡..在线观看| 日本黄色片子视频| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 波多野结衣高清无吗| 国产亚洲91精品色在线| 午夜福利在线观看吧| 国产精品久久久久久久久免| 国产精品人妻久久久久久| 两个人的视频大全免费| 美女黄网站色视频| 啪啪无遮挡十八禁网站| 成人鲁丝片一二三区免费| 欧美高清成人免费视频www| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 午夜激情福利司机影院| 国产精品国产高清国产av| 天堂动漫精品| 99热这里只有精品一区| 日日啪夜夜撸| 日本一二三区视频观看| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| av福利片在线观看| 欧美一区二区国产精品久久精品| 女的被弄到高潮叫床怎么办 | 久久精品国产亚洲网站| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 日韩欧美在线二视频| 国产爱豆传媒在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲男人的天堂狠狠| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 亚洲在线自拍视频| 草草在线视频免费看| 乱系列少妇在线播放| 国产毛片a区久久久久| 天堂√8在线中文| 免费看日本二区| 亚洲国产高清在线一区二区三| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片 | 免费看日本二区| 免费观看在线日韩| 久久久久久久精品吃奶| 国产精品不卡视频一区二区| 欧美黑人欧美精品刺激| 日本在线视频免费播放| 亚洲av中文av极速乱 | 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线乱码| 亚洲av.av天堂| 99热6这里只有精品| 日本成人三级电影网站| av视频在线观看入口| 联通29元200g的流量卡| 国产91精品成人一区二区三区| 很黄的视频免费| 一级黄色大片毛片| 精品免费久久久久久久清纯| 午夜日韩欧美国产| 99热网站在线观看| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 亚洲五月天丁香| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 超碰av人人做人人爽久久| 淫妇啪啪啪对白视频| 亚洲精品成人久久久久久| 国产真实乱freesex| 国产乱人伦免费视频| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 日韩中字成人| 麻豆成人午夜福利视频| av.在线天堂| 色综合站精品国产| 国产在视频线在精品| 午夜福利18| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看 | 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 久久九九热精品免费| 免费看光身美女| 成年女人永久免费观看视频| 九色国产91popny在线| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 欧美日韩国产亚洲二区| 日韩强制内射视频| 美女被艹到高潮喷水动态| 精品一区二区免费观看| 欧美极品一区二区三区四区| 精品人妻1区二区| 午夜福利视频1000在线观看| 又紧又爽又黄一区二区| 免费搜索国产男女视频| 人妻制服诱惑在线中文字幕| 日本免费a在线| 国产伦精品一区二区三区四那| 热99在线观看视频| 亚洲欧美精品综合久久99| 成人国产一区最新在线观看| 99精品久久久久人妻精品| 免费av不卡在线播放| 亚洲av一区综合| 日韩一区二区视频免费看| 最新中文字幕久久久久| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 精品欧美国产一区二区三| 国产精品98久久久久久宅男小说| а√天堂www在线а√下载| 中文字幕av在线有码专区| 亚洲av美国av| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 欧美3d第一页| 亚洲乱码一区二区免费版| 亚洲成人久久爱视频| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 特级一级黄色大片| 国产精品女同一区二区软件 | 国产黄色小视频在线观看| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 成人美女网站在线观看视频| 久久久久久久久久黄片| 中文在线观看免费www的网站| 国产一区二区在线观看日韩| 如何舔出高潮| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 国产三级中文精品| 精品人妻熟女av久视频| 一进一出抽搐gif免费好疼| 久久久久九九精品影院| 在线天堂最新版资源| 免费人成视频x8x8入口观看| 欧美激情久久久久久爽电影| av视频在线观看入口| 成人永久免费在线观看视频| 深爱激情五月婷婷| 色5月婷婷丁香| 亚洲av日韩精品久久久久久密| 真实男女啪啪啪动态图| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 国产在线男女| 淫秽高清视频在线观看| 日韩欧美在线乱码| 成年女人永久免费观看视频| 真人做人爱边吃奶动态| 精品午夜福利在线看| 少妇人妻精品综合一区二区 | 欧美日韩亚洲国产一区二区在线观看| 欧美日韩精品成人综合77777| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 中文字幕精品亚洲无线码一区| 欧美三级亚洲精品| 国产精华一区二区三区| 精品一区二区三区视频在线观看免费| 成年人黄色毛片网站| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 免费观看人在逋| 亚洲无线观看免费| 色哟哟·www| 又黄又爽又刺激的免费视频.| 黄色女人牲交| 国产大屁股一区二区在线视频| 日韩欧美一区二区三区在线观看| av黄色大香蕉| 国产精品,欧美在线| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 级片在线观看| 欧美黑人欧美精品刺激| 99热精品在线国产| 色哟哟·www| 美女被艹到高潮喷水动态| 国产精品,欧美在线| 老师上课跳d突然被开到最大视频| 久久99热这里只有精品18| 亚洲不卡免费看| 日本 av在线| 国内精品久久久久久久电影| 最好的美女福利视频网| 男人狂女人下面高潮的视频| 搡老岳熟女国产| 99久国产av精品| 美女大奶头视频| 91精品国产九色| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影不卡..在线观看| 国产蜜桃级精品一区二区三区| 久久久久久久久久久丰满 | 又爽又黄无遮挡网站| 国产精品无大码| 成年女人毛片免费观看观看9| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 他把我摸到了高潮在线观看| 亚洲在线自拍视频| 国国产精品蜜臀av免费| 中文资源天堂在线| 嫩草影院新地址| 成人高潮视频无遮挡免费网站| 69人妻影院| 婷婷亚洲欧美| 日韩欧美精品免费久久| 精品一区二区三区视频在线观看免费| 别揉我奶头~嗯~啊~动态视频| 国产女主播在线喷水免费视频网站 | 无人区码免费观看不卡| 2021天堂中文幕一二区在线观| 干丝袜人妻中文字幕| 18禁黄网站禁片免费观看直播| 中出人妻视频一区二区| 草草在线视频免费看| 精品人妻一区二区三区麻豆 | 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 色播亚洲综合网| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 97碰自拍视频| 美女高潮的动态| 国产精品福利在线免费观看| 精品99又大又爽又粗少妇毛片 | 啦啦啦观看免费观看视频高清| 国产成人福利小说| 久久久久免费精品人妻一区二区| 亚洲欧美日韩卡通动漫| 一级黄色大片毛片| 精品一区二区三区视频在线| 午夜免费成人在线视频| 色av中文字幕| 久久精品国产清高在天天线| 99热这里只有是精品50| 精品久久国产蜜桃| 在线观看舔阴道视频| 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡| 69av精品久久久久久| 在线观看66精品国产| 国内精品宾馆在线| 日韩欧美国产一区二区入口| 如何舔出高潮| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 听说在线观看完整版免费高清| 国产精品99久久久久久久久| 国产精品久久视频播放| 三级国产精品欧美在线观看| 国产日本99.免费观看| av国产免费在线观看| 亚洲第一电影网av| 变态另类丝袜制服| 欧美+日韩+精品| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 别揉我奶头~嗯~啊~动态视频| 久久久午夜欧美精品| 中出人妻视频一区二区| 91麻豆精品激情在线观看国产| 成人综合一区亚洲| 18禁在线播放成人免费| 精品福利观看| 亚洲最大成人手机在线| 午夜福利在线在线| 亚洲久久久久久中文字幕| 免费av毛片视频| 精品一区二区三区av网在线观看| 九九热线精品视视频播放| 伦精品一区二区三区| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 国产亚洲av嫩草精品影院| 悠悠久久av| 两人在一起打扑克的视频| 午夜a级毛片| 国产成人a区在线观看| 91久久精品国产一区二区三区| 久久久久免费精品人妻一区二区| 最近中文字幕高清免费大全6 | 精品久久久久久久久av| 色5月婷婷丁香| 国产精品久久久久久av不卡| 亚洲成人久久性| 麻豆精品久久久久久蜜桃| 久久精品久久久久久噜噜老黄 | 狂野欧美激情性xxxx在线观看| 欧美精品啪啪一区二区三区| 免费观看的影片在线观看| 1000部很黄的大片| 男人狂女人下面高潮的视频| 丰满的人妻完整版| 国产在线男女| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 舔av片在线| 亚洲经典国产精华液单| 国产淫片久久久久久久久| 最好的美女福利视频网| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 亚洲国产日韩欧美精品在线观看| av视频在线观看入口| 国产极品精品免费视频能看的| 麻豆精品久久久久久蜜桃| 男女做爰动态图高潮gif福利片| 大又大粗又爽又黄少妇毛片口| 亚洲av一区综合| 99视频精品全部免费 在线| 少妇人妻精品综合一区二区 | 成年版毛片免费区| 午夜爱爱视频在线播放| 色噜噜av男人的天堂激情| 日韩大尺度精品在线看网址| 亚洲av一区综合| 久久香蕉精品热| 中文字幕精品亚洲无线码一区| 日韩欧美精品v在线| 一本精品99久久精品77| 露出奶头的视频| 亚洲经典国产精华液单| 国产麻豆成人av免费视频| 日韩精品有码人妻一区| 欧美潮喷喷水| 日韩av在线大香蕉| 精品一区二区三区视频在线观看免费| 国产精品一区www在线观看 | 欧美3d第一页| 3wmmmm亚洲av在线观看| 最近最新中文字幕大全电影3| 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 麻豆精品久久久久久蜜桃| 香蕉av资源在线| 国产精品不卡视频一区二区| 日韩欧美精品免费久久| 自拍偷自拍亚洲精品老妇| 国产又黄又爽又无遮挡在线| 免费看美女性在线毛片视频| 欧美三级亚洲精品| 老司机午夜福利在线观看视频| 国产高清视频在线观看网站| 日韩,欧美,国产一区二区三区 | 亚洲真实伦在线观看| 又爽又黄a免费视频| 国产精品自产拍在线观看55亚洲| 中文亚洲av片在线观看爽| 成年免费大片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美精品啪啪一区二区三区| 久久久国产成人免费| 色噜噜av男人的天堂激情| 国产精品野战在线观看| 毛片一级片免费看久久久久 | 国产亚洲av嫩草精品影院| 日韩欧美精品v在线| 亚洲欧美日韩高清在线视频| 嫩草影院新地址| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 丰满乱子伦码专区| 国产老妇女一区| 麻豆av噜噜一区二区三区| 美女黄网站色视频| 不卡视频在线观看欧美| 国产真实乱freesex| 国产高清激情床上av| 国产精品人妻久久久久久| 高清毛片免费观看视频网站| 色在线成人网| 啦啦啦观看免费观看视频高清| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 黄色丝袜av网址大全| 偷拍熟女少妇极品色| 身体一侧抽搐| 精品99又大又爽又粗少妇毛片 | 白带黄色成豆腐渣| 一级黄片播放器| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 乱系列少妇在线播放| 他把我摸到了高潮在线观看| 91在线观看av| 久久久色成人| avwww免费| 色综合婷婷激情| 国产亚洲av嫩草精品影院| eeuss影院久久| 看黄色毛片网站| 久久国内精品自在自线图片| 精华霜和精华液先用哪个| 国产激情偷乱视频一区二区| 日韩高清综合在线| 精华霜和精华液先用哪个| 精品久久久久久久人妻蜜臀av| 国产成人影院久久av| 亚洲成人中文字幕在线播放| 真人做人爱边吃奶动态| 一本久久中文字幕| 成人三级黄色视频| 联通29元200g的流量卡| 欧美成人一区二区免费高清观看| 日韩欧美精品v在线| 国产精品野战在线观看| 久久久久九九精品影院| 黄片wwwwww| 欧美日本视频|