• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy

    2023-10-14 03:02:12ChujingYeShnZhngDongxingZhngYueShenZhnWngHunWngJunyiRenXinDongJingJinjunDuRongShngGuilingWng
    Chinese Chemical Letters 2023年9期

    Chujing Ye, Shn Zhng, Dongxing Zhng, Yue Shen, Zhn Wng, Hun Wng,Junyi Ren, Xin-Dong Jing,?, Jinjun Du, Rong Shng, Guiling Wng,?

    a Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang 110142, China

    b Department of Cell Biology, China Medical University, Shenyang 110122, China

    c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110624, China

    d Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 7398526, Japan

    Keywords:NIR dye J-aggregate CF3-BODIPY Photothermal therapy Cell apoptosis

    ABSTRACT Forming J-aggregates by organic monomer is a fascinating strategy to urge spectroscopic redshift with respect to that of the monomer.Herein, we designed 1,7-diphenyl-substituted meso-CF3-BDP monomer confirmed by X-ray crystallographic analysis.The low-barrier rotation of the -CF3 group in meso-CF3-BDP 1 significantly enhances the non-radiative efficiency, and the photothermal conversion efficiency (PCE) of the self-assembled nanoparticles (1-NPs: λabs=746 nm) by J-aggregates was 82%.1-NPs could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis under low power laser irradiation (0.2 W/cm2).This study proposes an alternate molecular design platform by J-aggregates to promote PCE through the insertion of rotating segment and trigger the cancer cells apoptosis in photothermal therapy at low power laser density.

    Cancer phototherapy refers to the utilization of photon-energy to implement the tumor ablation, mainly involving photodynamic therapy (PDT) and photothermal therapy (PTT), which had been emerged as cancer treatment approach following surgery,chemotherapy and radiotherapy.Compared with other cancer therapies, phototherapy holds great promise for precisely navigating at the lesion site for diagnostic therapy, non-tissue invasiveness, high treatment efficiency and anti-drug resistance [1-6].Strong absorption of the near-infrared (NIR) photon with high penetration of tissue, and efficient conversion to heat energy through non-radiative decay are critical factors for constructing photothermal agents(PTAs) [7-13].Compared with the molecular engineering strategy of extendingπ-πconjugated structure or inserting electrondonating/withdrawing groups, theJ-aggregate by organic monomer endowed it attractively optical properties, such as spectroscopic bathochromic shift, high photobleaching resistance, strong lightharvesting feature [14-18].J-aggregates demand slip-stacked alignment (θ< 54.7°), but currently there are few reports aboutJ-aggregates of cyanine, chlorophyll, perylenediimide, squaranine dye and borondipyrromethene (BODIPY or BDP) [19-23].Owing to the excellent spectral characters of BODIPY, such as high molar extinction coefficients, outstanding photostability and easy modification, it is urgent to conduct a thorough analysis for the crystal aggregation structure of BODIPY, and explore light-induced application, especially in the field of biomedical therapeutics [24-27].

    In contrast with PDT, PTT is not restricted by the hypoxic of the tumor microenvironment.Whereas, PTT usually undergoes the necrosis, which may impair the treatment outcomes by triggering pro-inflammatory responses and promoting tumor growth [8].By molecular design and photoexcitation condition, PTT can also be modulated to induce apoptosis rather than necrosis, which is significative since apoptosis prevented an inflammatory response.Above all, PTT is an efficient, non-invasive treatment method that overcomes hypoxia restriction and inflammation [28].The relaxed molecules in the lowest vibrational level of the excited state can undergo one or more of the three paths, that is, non-radiative transition, radiative transition (fluorescence emission) and intersystem crossing (ISC), to return to the ground state.In this regard, three pathways compete with each other, and it is pivotal to effectively inhibit the other two processes for improving non-radiative relaxation, which is conducive for PTT.In short, integrating high photothermal conversion efficiency (PCE), deep tissue penetration and excellent photostability for the ideal PTAs are vital [29-33].

    To enhance PCE, researchers constructed various structural BODIPYs, which are often involved in intramolecular charge transfer (ICT), photoinduced electron transfer (PET), rotating segments and so forth.For instance, Maet al.showed a BODIPY-based PTA,enhanced phototherapeutic performance of which is resulted from the reduction of radiation transition by ICT [34].Based on PET to quench the fluorescence, Huanget al.reported dimethylaminosubstituted aza-BODIPY with a moderate PCE (η=35%) [35].Especially, the low-barrier rotation strategy of a bulky group (such as -CF3, -tBu) is employed to directly promote non-radiative decay.In 2017, our group prepared NIR-absorbingmeso-CF3-BODIPYs by one-pot synthesis for the first time and reveal the property of non-fluorescent emission [36].In 2019, Xiet al.successfully discovered the highest PCE (η=88.3%) of thismeso-CF3-BODIPY[37].Very recently, our group successfully synthesized 1,7-di-tertbutyl-substituted aza-BODIPY for the first time [38].Although the low-barrier rotation of the distal -tBu groups in aza-BODIPY results in low quantum yield, the PCE (η=48%) is remarkably enhanced[38].Thereby, by restricting fluorescence and ISC, the enhancement of PCE could be achieved by high-efficiency non-radiative decay [39].Herein, to understand the influence of the -CF3rotation effect on non-radiation attenuation profoundly, 1,7-diphenylsubstitutedmeso-CF3-BODIPY (namelymeso-CF3-BDP) was designed (Fig.1a).The crystal structure showed obvious slip-stacked alignment (θ=24°), and the dye nanoparticles constituted by selfassembly emerged obvious bathochromic-shift (λabs=746 nm) due toJ-aggregates.In addition, the low-barrier rotation of the -CF3group can directly promote non-radiative decay.Self-assembledmeso-CF3-BDP 1 nanoparticles (namely 1-NPs) showed excellent PCE (η=82%), which is highly desirable for an effective and potential tumor PTA.Although the photothermal radiation with different photon intensity is acquainted by trigger cell death through either necrosis or apoptosis [40], PTT is usually engaged in necrosis mechanism.In contrast, PTT caused by apoptosis pathway is rarely reported [40,41].Furthermore, based on American National Standard for Safe Use of Lasers Outdoors, the maximum permissible exposure (MPE) for skin exposure is 0.2 W/cm2at the 635 nm laser.Hence, the safe PTT at low power laser density should be advocated and could be involved in the apoptosis mechanism.In this work, 1-NPs fabricated byJ-aggregates could induce the cancer cells death at low laser power density by triggering the apoptosis mechanism, which is fascinating since apoptosis discourages an inflammatory response (Fig.1b).As a result, this study proposes an alternate molecular design platform byJ-aggregates to enhance PCE through the insertion of rotating segment (-CF3) and trigger the cancer cells apoptosis in PTT under low power laser irradiation.

    Fig.2.(a) ORTEP drawing of BDPs 1-3 (CCDC: 2189483 for 1; 1547540 for 2 [36];2189484 for 3).The dihedral angles: C14-C9-C1-C8: 126.4(3)°, C31-C30-C23-C21:134.7(3)° for 1; C12-C11-C2-C1: 107.1(5)°, C29-C24-C7-C6: 125.2(6)° for 2; C29-C28-C15-C14: 137.6(3)°, C35-C34-C11-C12: 134.3(3)° for 3.(b) ESP distribution diagram of BDPs 1-3.

    Based on the synthetic method pioneered by our group [36],one-pot synthesis ofmeso-CF3-BDP 1 is achieved in 43% yields, as shown in Scheme S1 (Supporting information).In a sharp contrast,the contrastable dyemeso-H-BDP 3 (H-substitute atmeso-site)was also prepared (Scheme S1 and Figs.S1-S5 in Supporting information).Moreover, the solid state structures of BDPs 1-3 were confirmed by X-ray crystallographic analysis (Fig.2a).The sp3hybridized boron center inmeso-CF3-BDP 1 appeared as slightly distorted tetrahedron geometry with angles N1-B1-N2 of 108.15(19)°and F1-B1-F2 of 111.2(2)°, deviating from the ideal value of 109.5°In a stark comparison withmeso-H-BDP 3 (the dihedral angles of C29-C28-C15-C14: 137.6°; C35-C34-C11-C12: 134.3°), the dihedral angles of C14-C9-C1-C8 and C31-C30-C23-C21 inmeso-CF3-BDP 1 were small and measured to be 126.4° and 134.7°, respectively.Moreover, the smaller dihedral angles of C12-C11-C2-C1 and C29-C24-C7-C6 inmeso-CF3-BDP 2 (non-ring-fused configuration) were also observed to be 107.1° and 125.2°, respectively [36].Therefore, the 1,7-diphenyl torsion is mainly due to the steric hindrance from the introduction of themeso-CF3group,which meanwhile provides the enough space for the rotation of the -CF3group atmeso-site.Moreover, the electrostatic potential(ESP) maps for 1-3 in the gas phase were also investigated (Fig.2b).The negative charges (red color) were mainly concentrated on the fluorine atoms and oxygen atoms of BODIPY units, including the -CF3group.In contrast, the positive charges (blue color)were evenly distributed in the remaining positions.These results demonstrated the uneven charge distribution and the significant structural distortion of BODIPY, which is beneficial for the rotation energy-releasing of the -CF3group.

    Fig.3.(a) Normalized absorption spectra of BDPs 1 (red), 2 (green) and 3 (black) in CH2Cl2 at 298 K.(b, c) Emission changes of BDPs 1 and 3 in different concentrations of glycerol/methanol (v/v: 0:10; 1:9, 2:8, 3:7, 4:6 and 5:5) solution.(d) Energy levels of the S0 states of chemical bond for BDP 1 with the dihedral angle θ (Scheme S1).

    To gain insight into the photophysical properties ofmeso-CF3-BDPs, the absorption and emission spectra for BDPs 1-3 were measured and outlined in Fig.3a and Table S1 (Supporting information).Compared to the spectroscopic information for corresponding dyemeso-H-BDP 3 (λabs/λem=658/687 nm,φf=0.55),the introduction of the electron-withdrawing group (-CF3) leads to a remarkable bathochromic shift (74 nm) ofmeso-CF3-BDP 1(λabs=732 nm), the absorption maximum of which locates at the NIR region.However,meso-CF3-BDP 1 was astoundingly found to exhibit no fluorescence character.The lack of fluorescence signal indicates the excited state decays through non-radiative pathways and results in highly efficient PCE.In comparison withmeso-HBDP 3 (ε=140,000 L mol-1cm-1; FWHM: 36 nm),meso-CF3-BDP 1 has higher molar extinction coefficients (155,000 L mol-1cm-1)and wider full width at half maxima (FWHM: 52 nm) which is mainly caused by the drastic vibration of the -CF3fragment.Additionally, the band gaps (LUMO/HOMO) were calculated to be 2.07,2.23 and 2.30 eV for BDPs 1-3, respectively (Fig.S6 in Supporting information).All the theoretical calculation results well explained and supported the difference of absorption maxima.Furthermore, in order to reveal the obstruction of the rotating segment, the effect of viscosity on the fluorescence by using different concentrations of glycerol was further investigated (Figs.3b and c).Generally, the substituent rotation can be leastwise restricted in viscous media, and the corresponding fluorescence enhancement should be observed [42-45].Comparing to the remarkable fluorescence enhancement ofmeso-H-BDP 3, no obvious change in fluorescence intensity was observed formeso-CF3-BDP 1 in the mixture of glycerol and methanol in different proportions (Figs.3b and c).This was attributed to the “l(fā)ow-barrier” rotation of the -CF3group (Fig.S7 in Supporting information).Comparing tomeso-HBDP 3, the smaller dihedral angles inmeso-CF3-BDP 1 dodges the steric hindrance between the 1,7-diphenyl groups and themeso-CF3group to exactly provide the space for the low-barrier rotation of the -CF3group (Fig.2a).Moreover, we also calculated the rotated potential energy barrier of the -CF3group inmeso-CF3-BDP 1, as picked in Fig.3d.The energy maxima inmeso-CF3-BDP 1 are 26.3 kJ/mol, indicating the low-barrier rotation of the -CF3group in this molecule.As a result, the -CF3rotation inmeso-CF3-BDP 1 significantly increases the non-radiative efficiency.

    We further investigated singlet oxygen generation ofmeso-CF3-BDPs 1 and 2 to inspect the ISC process.By utilizing 1,3-diphenylisobenzofuran (DPBF), a singlet oxygen (1O2) indicator, the efficiency of1O2generation was evaluated by detecting the decrease of DPBF indicator absorbance at 416 nm [46,47].Based on the slope coefficient of the decay lines, the1O2yields ofmeso-CF3-BDPs 1 and 2 were so low and calculated to be 0 and 0.006 respectively (Fig.S8 in Supporting information), indicating that ISC is basically prohibited.

    Fig.4.Molecular packing diagram of (a) front view and (b) side view for meso-CF3-BDP 1.(c) Self-assembly of meso-CF3-BDP 1.(d) DLS and (e) TEM of 1-NPs in aqueous solution.(f) Photo of pure water.(g) Photo of 1-NPs in water.(h) Normalized absorption of 5 μmol/L meso-CF3-BDP 1 (blue curve) in CH2Cl2 and 20 μmol/L 1-NPs in water (red curve).

    Since we preliminarily probed the key data of fluorescence (φf=0) and1O2yield (φΔ=0) of this novel dyemeso-CF3-BDP 1, such information urges us to further explore the insight into the photothermal conversion capacity.To enhance the water solubility and biocompatibility ofmeso-CF3-BDP 1 for application in photoimaging and phototherapy in biological system,meso-CF3-BDP 1 and amphipathic polymer material 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were selfassembled into dye nanoparticles (abbreviated 1-NPs) [48-50].To confirm the molecular design concept, the molecular packing mode ofmeso-CF3-BDP 1viasingle-crystal structure analysis was firstly investigated (Fig.4a).In the single-crystal structure, the C-H…F hydrogen bond (2.677 ?A) between the -OMe group and the -BF2-group, and the C-H…F hydrogen bond (2.514 ?A) between the -Ph group and the -BF2- group dominate the molecular packing structure ofmeso-CF3-BDP 1 (Fig.4b), which facilitates theJaggregation packing mode.The slipping angle and the distance between each molecule are determined to be 24° and ~3.6 ?A, respectively (Fig.4b).Based on transmission electron microscopy (TEM)photograph, their sizes were less than 110 nm (Fig.4e).Moreover,dynamic light scattering (DLS) of 1-NPs showed a suitable hydrodynamic diameter (10-110 nm) in Fig.4d, and the average hydrodynamic diameter and the polydispersity index (PDI) were about 56.35 nm and 0.215.The prepared 1-NPs in aqueous solution are stable for two weeks (Figs.4f and g).Owing to theJ-aggregation effect (Fig.4c), the absorption maximum (λabs=746 nm) of 1-NPs in aqueous solution bathochromically shifted 14 nm and its absorption band covered the ranges of the NIR region (650-900 nm) and became wider [14,17], comparing to those (650-800 nm) of 1 in CH2Cl2(Fig.4h) [51].

    To discover the photothermal efficacy of hydrosoluble 1-NPs(Figs.S9 and S10 in Supporting information), the temperature elevation of the multiple concentrations ranging from 20 μmol/L to 80 μmol/L 1-NPs were recorded in the presence of 690 nm laser irradiation (0.6 W/cm2) (Fig.S9a).As revealed in Figs.S9a and b,80 μmol/L 1-NPs exhibited a intense photothermal conversion ability (ΔT=55.5 °C) upon photon-irradiation (0.6 W/cm2in 5 min),comparing to those (ΔT=27.5 °C for 20 μmol/L; ΔT=36.1 °C for 40 μmol/L) in the low concentration, suggesting that temperature augment is concentration dependent.Thus, we further discussed the temperature enhancement under different illumination of 80 μmol/L 1-NPs, and found that the stronger the radiation intensity, the higher temperature enhancement (ΔT=28.9 °C in 0.2 W/cm2; ΔT=39.4 °C in 0.4 W/cm2; ΔT=55.5 °C in 0.6 W/cm2)(Fig.S9c).Therefore, higher concentration and stronger laser radiation are feasible for photothermal conversion process.1-NPs showed an outstanding photothermal conversion during three heating-cooling cycles, approving the possibility of reuse (Fig.S9d).The PCE of 1-NPs was established by acquiring the temperature response of the heating and cooling curves (Fig.S9e), as revealed in Fig.S9f (τ=129 s).The PCE value (η) of 1-NPs was calculated to be 82%, which was much higher than that of the commercialized PTAs indocyanine green (ICG) NPs (η= 17.3%) [52,53], Au nanorods (η=21%) [54] and was inferior to the highest one (η= 88.3%) [37].

    To further explore the biological compatibility and potential inhibiting cancer cells effect of 1-NPs, the double-staining kit calcein AM (stains live cells with green fluorescence presented) and prodium iodide (PI, stains dead cells with red fluorescence presented) was applied to demonstrate the effectiveness of 1-NPs with low-power photon-irradiation on cancer cell viability.As displayed in column 4 of Fig.S11 (Supporting information), 1-NPs induced death of gastric cancer cells SGC-7901, exhibiting a significant red fluorescence, suggesting cell death state under laser treatment.In contrast, control group, sole laser-treated or sole 1-NPstreated groups had distinct green fluorescence, demonstrating no phototherapy effect for killing cancer cells.These results exhibited that cancer cells destroyed by 1-NPs with laser irradiation (690 nm,0.2 W/cm2) was observed on the premise of ensuring biosafety.

    To deeply research the triggering mechanism of 1-NPs under photo-mediated on cancer cell death, then, flow cytometry on SGC-7901 cells was performed.In comparison to the other groups, the cells treated with 1-NPs plus low power laser irradiation (690 nm,0.2 W/cm2) displayed a reduction in the stage of DNA synthesis phase (S phase), indicating that 1-NPs intercepted cancer cell proliferation, block cancer cell cycle progression caused by laser irradiation, as shown in Fig.5a [55-57].Meanwhile, Fig.5b evaluated that the percentage of apoptotic cells increased from 14.42% to 54.33% after treatment with 1-NPs imposed laser irradiation, cells treated with 1-NPs alone or light irradiation alone showed lower apoptosis rates, demonstrating the valid competence of 1-NPs to induce cancer cells apoptosis under light-responsive.The effect of 1-NPs with NIR laser irradiation on cycle and apoptosis related factors was further verified in SGC-7901 cancer cell by real-time polymerase chain reaction (RT-qPCR) and Western blot at both RNA and protein levels as shown in Figs.5c and d and Fig.S12 (Supporting information).Over expression of Cyclin D1 resulted in cell cycle disorder and uncontrolled cancer cell growth, the decreased expression level of Cyclin D1 indicated that treatment with 1-NPs plus 690 nm laser irradiation induced cancer cell cycle stagnation,and suppressed cancer cell proliferation [58].Meanwhile, Bcl-2 is a negative factor of cell apoptosis and Bax is a positive regulator of apoptosis [59,60].As shown in Figs.5c and d, executing lighttreated in the 1-NPs groups, the RNA and protein levels of Bax increased, while the RNA and protein levels of Bcl-2 decreased, indicating that the photothermal therapeutic effect of 1-NPs can trigger apoptosis in cancer cells.The above results are in high consistency with those of AM/PI co-stained experiments, indicating that 1-NPs upon low-power laser irradiation effectively restrains cell cycle progression, triggers cell apoptosis factors, and inhibits cancer cell proliferation.Thus, the design principle for 1-NPs obtained the probability of a NIR PTA for cancer treatment.

    Fig.5.(a) Cell cycle analysis using flow cytometry in SGC-7901 cells.NC: negative control.(b) Apoptosis analysis using flow cytometry in SGC-7901 cells.??P < 0.01,n=2. t-test.All data were shown as mean ± standard deviation (SD).UT: untreated.(c) mRNA expression levels related to the regulation of apoptosis (Bax and Bcl-2)was evaluated using RT-qPCR in SGC-7901 cells.(d) Protein expression levels related to the regulation of cell cycle (Cyclin D1) and cell apoptosis (Bax and Bcl-2)were evaluated by Western blot in SGC-7901 cells.Different treatments are including untreated, 20 μmol/L 1-NPs, laser (690 nm, 20 min), and BDP 1-NPs plus laser irradiation (0.2 W/cm2).

    In conclusion, one-pot synthesis of 1,7-diphenyl subsititutedmeso-CF3-BDP was achieved in 43% yields.The low-barrier rotation of the -CF3group inmeso-CF3-BDP remarkably increases the non-radiative efficiency, and the photothermal conversion effi-ciency of the self-assembled nanoparticles (1-NPs:λabs=746 nm)byJ-aggregates based on X-ray crystallographic analysis was 82%.1-NPs plus low power laser irradiation (0.2 W/cm2) could effectively block cell cycle progression, inhibit cancer cell proliferation and trigger cell apoptosis.Therefore, this study proposes an alternate molecular design platform byJ-aggregates to promote PCE through the introduction of rotating segment and trigger the cancer cells apoptosis in PTT at low power laser density.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22078201, U1908202), Natural Science Foundation of Liaoning (No.2021NLTS1206), Serving Local Project of Education Department of Liaoning Province (No.LZ2020005), Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment (Nos.2021JH13/10200018, 21-104-0-23) and the Distinguished Professor Project Liaoning Province (No.20183532).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108223.

    日韩视频在线欧美| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 日本黄色日本黄色录像| 人人澡人人妻人| 亚洲精品美女久久av网站| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 国产精品一区二区免费欧美 | 成年动漫av网址| av在线播放精品| 国产精品国产三级专区第一集| 国产在线观看jvid| 激情五月婷婷亚洲| 青草久久国产| 一区福利在线观看| 国产精品一区二区免费欧美 | 成人亚洲欧美一区二区av| 麻豆乱淫一区二区| 一级毛片电影观看| 最新的欧美精品一区二区| 日韩视频在线欧美| 最近手机中文字幕大全| 99精品久久久久人妻精品| 日韩电影二区| 97人妻天天添夜夜摸| 18禁黄网站禁片午夜丰满| 亚洲久久久国产精品| 亚洲欧美精品综合一区二区三区| 69精品国产乱码久久久| 一本一本久久a久久精品综合妖精| 一本大道久久a久久精品| 女人精品久久久久毛片| 精品人妻熟女毛片av久久网站| 亚洲成人手机| 国产免费视频播放在线视频| 久久久欧美国产精品| 久久九九热精品免费| 中文字幕人妻丝袜一区二区| 欧美精品亚洲一区二区| 熟女少妇亚洲综合色aaa.| 亚洲av日韩在线播放| 欧美日韩亚洲高清精品| 亚洲精品av麻豆狂野| 如日韩欧美国产精品一区二区三区| 国产午夜精品一二区理论片| 老司机影院成人| 成人三级做爰电影| 精品久久久久久久毛片微露脸 | 人人妻人人澡人人爽人人夜夜| 侵犯人妻中文字幕一二三四区| 18在线观看网站| 亚洲人成网站在线观看播放| 高清欧美精品videossex| 欧美xxⅹ黑人| 亚洲欧美色中文字幕在线| www日本在线高清视频| 成年女人毛片免费观看观看9 | 好男人电影高清在线观看| 亚洲中文日韩欧美视频| 日韩制服骚丝袜av| 久久人妻熟女aⅴ| 国产一区有黄有色的免费视频| 中文字幕精品免费在线观看视频| 国产成人啪精品午夜网站| 人成视频在线观看免费观看| h视频一区二区三区| 亚洲中文字幕日韩| 激情五月婷婷亚洲| 国产精品成人在线| 叶爱在线成人免费视频播放| 伊人久久大香线蕉亚洲五| 热re99久久国产66热| 久久久国产欧美日韩av| 天堂8中文在线网| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 脱女人内裤的视频| 男人操女人黄网站| 最近最新中文字幕大全免费视频 | 久久中文字幕一级| 91麻豆精品激情在线观看国产 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人精品无人区| 91麻豆精品激情在线观看国产 | 成人手机av| 80岁老熟妇乱子伦牲交| 韩国精品一区二区三区| 激情视频va一区二区三区| 免费在线观看日本一区| 不卡av一区二区三区| 各种免费的搞黄视频| 久久久国产精品麻豆| 久久精品国产a三级三级三级| 国产免费视频播放在线视频| 各种免费的搞黄视频| 久久天躁狠狠躁夜夜2o2o | 超色免费av| 人妻 亚洲 视频| 欧美 亚洲 国产 日韩一| 久久ye,这里只有精品| 成年人黄色毛片网站| 国产av精品麻豆| 日韩精品免费视频一区二区三区| 亚洲精品成人av观看孕妇| 丰满迷人的少妇在线观看| 国产麻豆69| 国产亚洲精品久久久久5区| 国产日韩欧美在线精品| 丰满少妇做爰视频| 伦理电影免费视频| 亚洲伊人久久精品综合| 一区在线观看完整版| 亚洲九九香蕉| 黄片小视频在线播放| 无遮挡黄片免费观看| 婷婷色av中文字幕| 热99国产精品久久久久久7| 一级毛片电影观看| 操美女的视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲av国产av综合av卡| 你懂的网址亚洲精品在线观看| 一本一本久久a久久精品综合妖精| 少妇粗大呻吟视频| 精品少妇一区二区三区视频日本电影| 一区二区三区四区激情视频| 精品一区在线观看国产| 久久久久国产一级毛片高清牌| 久久精品亚洲av国产电影网| 国产亚洲欧美在线一区二区| 午夜福利一区二区在线看| 嫩草影视91久久| 精品少妇一区二区三区视频日本电影| 天天躁日日躁夜夜躁夜夜| 欧美大码av| 1024视频免费在线观看| 国产一区二区激情短视频 | 日本欧美国产在线视频| 国产男女内射视频| 如日韩欧美国产精品一区二区三区| 久久人妻福利社区极品人妻图片 | xxx大片免费视频| 两性夫妻黄色片| 欧美黄色片欧美黄色片| 麻豆乱淫一区二区| 国精品久久久久久国模美| 亚洲国产精品999| 欧美乱码精品一区二区三区| 国产成人啪精品午夜网站| 青草久久国产| 人体艺术视频欧美日本| 欧美老熟妇乱子伦牲交| 美女视频免费永久观看网站| 一本综合久久免费| 别揉我奶头~嗯~啊~动态视频 | 成人亚洲欧美一区二区av| 99国产综合亚洲精品| 男女边摸边吃奶| 首页视频小说图片口味搜索 | 亚洲少妇的诱惑av| 乱人伦中国视频| 久久精品久久久久久久性| 国产精品99久久99久久久不卡| 亚洲一区中文字幕在线| 91九色精品人成在线观看| 亚洲国产最新在线播放| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区在线观看99| 91麻豆精品激情在线观看国产 | 久久久精品国产亚洲av高清涩受| 成人手机av| 免费高清在线观看视频在线观看| 电影成人av| 日韩人妻精品一区2区三区| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区黑人| 90打野战视频偷拍视频| 亚洲av美国av| 日本黄色日本黄色录像| 亚洲av电影在线进入| 久久久欧美国产精品| 涩涩av久久男人的天堂| 国产精品一区二区精品视频观看| 咕卡用的链子| 久久国产精品人妻蜜桃| 爱豆传媒免费全集在线观看| 一区二区av电影网| 欧美精品一区二区免费开放| 亚洲一码二码三码区别大吗| 99国产精品免费福利视频| av欧美777| av欧美777| 搡老岳熟女国产| 亚洲专区中文字幕在线| 亚洲欧美激情在线| 真人做人爱边吃奶动态| 欧美国产精品一级二级三级| 国产成人欧美在线观看 | 男女下面插进去视频免费观看| 人人妻人人澡人人爽人人夜夜| 久久精品国产亚洲av涩爱| 91麻豆精品激情在线观看国产 | 久久这里只有精品19| 久久久欧美国产精品| 亚洲精品一二三| 欧美人与性动交α欧美精品济南到| 久久精品亚洲av国产电影网| 国产成人免费观看mmmm| 久久鲁丝午夜福利片| 成人三级做爰电影| 最黄视频免费看| 一区二区三区精品91| 久久精品亚洲av国产电影网| 精品一区二区三区四区五区乱码 | 免费av中文字幕在线| 黑人欧美特级aaaaaa片| 2018国产大陆天天弄谢| 一本—道久久a久久精品蜜桃钙片| 国产黄频视频在线观看| 又大又爽又粗| 69精品国产乱码久久久| 欧美日韩视频精品一区| 成人手机av| 丝袜人妻中文字幕| 永久免费av网站大全| 麻豆av在线久日| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 在线观看免费高清a一片| 99国产精品一区二区三区| 一区二区三区乱码不卡18| 午夜激情av网站| 飞空精品影院首页| 国语对白做爰xxxⅹ性视频网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品在线美女| 飞空精品影院首页| 91字幕亚洲| 男人添女人高潮全过程视频| 亚洲成av片中文字幕在线观看| 一本一本久久a久久精品综合妖精| 叶爱在线成人免费视频播放| 天天操日日干夜夜撸| 国产成人精品久久二区二区91| 麻豆国产av国片精品| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美久久黑人一区二区| 午夜日韩欧美国产| av不卡在线播放| 99热全是精品| 久久人人97超碰香蕉20202| 国产精品香港三级国产av潘金莲 | 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 天天躁日日躁夜夜躁夜夜| 婷婷色综合www| 建设人人有责人人尽责人人享有的| 91成人精品电影| 无遮挡黄片免费观看| 两个人免费观看高清视频| 深夜精品福利| 黄片小视频在线播放| 夫妻性生交免费视频一级片| 天天添夜夜摸| 亚洲av欧美aⅴ国产| 精品国产乱码久久久久久小说| √禁漫天堂资源中文www| 中文字幕高清在线视频| 一区二区三区激情视频| 国产亚洲av高清不卡| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久人妻精品电影 | 日韩中文字幕视频在线看片| 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 一区二区日韩欧美中文字幕| 国产高清不卡午夜福利| 制服诱惑二区| 男女国产视频网站| 一本久久精品| 午夜精品国产一区二区电影| 国产又色又爽无遮挡免| 午夜福利,免费看| 欧美日韩亚洲综合一区二区三区_| 视频在线观看一区二区三区| 精品国产乱码久久久久久小说| 一级毛片电影观看| 在现免费观看毛片| 精品亚洲乱码少妇综合久久| 久久久久精品人妻al黑| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片| av天堂久久9| 欧美乱码精品一区二区三区| 999精品在线视频| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 日本色播在线视频| 伦理电影免费视频| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 欧美黑人欧美精品刺激| 亚洲av欧美aⅴ国产| 爱豆传媒免费全集在线观看| 热re99久久国产66热| 欧美 日韩 精品 国产| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲自偷自拍图片 自拍| 韩国高清视频一区二区三区| 欧美av亚洲av综合av国产av| 成人免费观看视频高清| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 免费在线观看影片大全网站 | 久久国产精品男人的天堂亚洲| 黄色视频不卡| 国产成人精品无人区| 久久久久久亚洲精品国产蜜桃av| 久久热在线av| 99热全是精品| 午夜福利一区二区在线看| 欧美xxⅹ黑人| 男人舔女人的私密视频| 熟女av电影| 免费观看av网站的网址| 别揉我奶头~嗯~啊~动态视频 | 欧美人与性动交α欧美精品济南到| 欧美中文综合在线视频| 老司机影院成人| 久久亚洲精品不卡| 大陆偷拍与自拍| 天天躁夜夜躁狠狠久久av| 亚洲成国产人片在线观看| 夫妻午夜视频| 免费在线观看日本一区| a级毛片黄视频| 丝袜喷水一区| 国产精品二区激情视频| 大陆偷拍与自拍| 久久九九热精品免费| 七月丁香在线播放| 免费在线观看日本一区| 免费日韩欧美在线观看| 伊人久久大香线蕉亚洲五| 久久天堂一区二区三区四区| 国产有黄有色有爽视频| 18禁黄网站禁片午夜丰满| 中国国产av一级| 一级a爱视频在线免费观看| 久久精品国产a三级三级三级| 亚洲精品美女久久av网站| 免费人妻精品一区二区三区视频| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 久久精品久久久久久久性| 国产一区二区激情短视频 | 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| 亚洲精品日本国产第一区| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 国产成人免费观看mmmm| 国产免费一区二区三区四区乱码| 91字幕亚洲| 国产在线免费精品| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 亚洲成人免费av在线播放| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 美国免费a级毛片| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 七月丁香在线播放| 不卡av一区二区三区| 亚洲国产看品久久| 欧美精品人与动牲交sv欧美| 中文字幕色久视频| 无限看片的www在线观看| 日本91视频免费播放| 精品福利永久在线观看| 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 色94色欧美一区二区| 国产精品亚洲av一区麻豆| a 毛片基地| 亚洲av美国av| 成年人黄色毛片网站| 日日夜夜操网爽| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 一本综合久久免费| 国产精品国产av在线观看| 国产精品偷伦视频观看了| 国产免费视频播放在线视频| 97在线人人人人妻| 国产精品 国内视频| av天堂久久9| 老汉色∧v一级毛片| 精品久久久久久久毛片微露脸 | www.999成人在线观看| 女警被强在线播放| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 国产精品久久久久久人妻精品电影 | 中文字幕高清在线视频| 天天影视国产精品| 免费人妻精品一区二区三区视频| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 中文字幕人妻丝袜制服| 伦理电影免费视频| 好男人电影高清在线观看| 国产免费福利视频在线观看| 国产精品一区二区在线不卡| 纯流量卡能插随身wifi吗| 天天添夜夜摸| 黑人猛操日本美女一级片| 老司机靠b影院| 久久人妻熟女aⅴ| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| 人人澡人人妻人| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| av一本久久久久| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 亚洲欧美中文字幕日韩二区| 宅男免费午夜| 国产成人91sexporn| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 后天国语完整版免费观看| 久久久国产欧美日韩av| 成人国产一区最新在线观看 | 男女高潮啪啪啪动态图| 免费在线观看影片大全网站 | 亚洲av成人精品一二三区| 五月天丁香电影| 看免费成人av毛片| 亚洲精品乱久久久久久| a 毛片基地| 亚洲成人免费av在线播放| 深夜精品福利| 国产男女超爽视频在线观看| 成人亚洲精品一区在线观看| 欧美+亚洲+日韩+国产| 美女扒开内裤让男人捅视频| 亚洲 欧美一区二区三区| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 美女中出高潮动态图| 日本av免费视频播放| 人妻人人澡人人爽人人| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 国产精品一区二区在线不卡| 亚洲成人免费av在线播放| 成人手机av| 老司机亚洲免费影院| 19禁男女啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 久久久亚洲精品成人影院| 日韩一本色道免费dvd| 七月丁香在线播放| 丝袜在线中文字幕| 男女免费视频国产| av在线播放精品| 欧美变态另类bdsm刘玥| 免费不卡黄色视频| 国产亚洲av高清不卡| 男女之事视频高清在线观看 | 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 亚洲精品国产av蜜桃| 日韩大码丰满熟妇| 不卡av一区二区三区| 五月开心婷婷网| 欧美大码av| 男女无遮挡免费网站观看| 18禁黄网站禁片午夜丰满| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 亚洲欧美日韩高清在线视频 | 少妇人妻久久综合中文| 999精品在线视频| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 久久久久国产一级毛片高清牌| 91字幕亚洲| 国产精品偷伦视频观看了| 欧美精品啪啪一区二区三区 | 亚洲中文字幕日韩| 一级毛片黄色毛片免费观看视频| 国产99久久九九免费精品| kizo精华| 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻一区二区| 黄频高清免费视频| 99久久综合免费| 久久鲁丝午夜福利片| 精品第一国产精品| 免费少妇av软件| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 嫁个100分男人电影在线观看 | 黄色视频不卡| 夫妻午夜视频| 午夜福利视频在线观看免费| 免费不卡黄色视频| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一出视频| 国产免费福利视频在线观看| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 一边亲一边摸免费视频| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 建设人人有责人人尽责人人享有的| 高清黄色对白视频在线免费看| av电影中文网址| 夫妻性生交免费视频一级片| 丁香六月欧美| 在线天堂中文资源库| 久久热在线av| 国产又色又爽无遮挡免| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 国产成人av教育| 少妇粗大呻吟视频| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影免费在线| 中文字幕制服av| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 久久99精品国语久久久| 日韩中文字幕欧美一区二区 | 亚洲欧美一区二区三区久久| 国产三级黄色录像| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看| 亚洲情色 制服丝袜| 人妻一区二区av| 亚洲中文字幕日韩| 成人亚洲欧美一区二区av| 亚洲国产欧美网| 久久久国产精品麻豆| 脱女人内裤的视频| 亚洲精品美女久久av网站| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 一级片'在线观看视频| 久热这里只有精品99| 国产精品三级大全| 午夜免费观看性视频| 午夜久久久在线观看| 一区福利在线观看| 国产成人啪精品午夜网站| tube8黄色片| 亚洲伊人久久精品综合| 亚洲欧美激情在线| 国产精品一国产av| 免费在线观看影片大全网站 | 中文字幕最新亚洲高清| 国产精品二区激情视频| 日本av手机在线免费观看| www.av在线官网国产| 国产免费一区二区三区四区乱码| 你懂的网址亚洲精品在线观看| 99国产精品一区二区三区| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 麻豆国产av国片精品| 狠狠精品人妻久久久久久综合| 极品人妻少妇av视频| 日本欧美视频一区| 欧美少妇被猛烈插入视频|