• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria

    2023-10-14 03:02:08HiningZhngChojunHeLiminShenWenjunToJinhuiZhuJinzhoSongZiyongLiJunYin
    Chinese Chemical Letters 2023年9期

    Hining Zhng, Chojun He, Limin Shen, Wenjun To, Jinhui Zhu, Jinzho Song,Ziyong Li,?, Jun Yin,?

    a Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China

    b Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University,Wuhan 430079, China

    Keywords:Photodynamic therapy Aggregation-induced emission Photosensitizer Membrane-targeting Singlet oxygen Broad-spectrum Bacteria imaging

    ABSTRACT An amphiphilic AIE photosensitizer has been successfully developed, which allows for easily inserting into the bacterial membranes.Binding experiments with phospholipid preliminary demonstrates its membrane specificity.As expected, it is proved to possess a broad-spectrum bacterial staining performance and photodynamic antibacterial activity toward S. aureus and E. coli.

    Bacterial infectious diseases have posed a serious challenge to the health of human beings and increasingly raised public and medical concerns over the past few decades [1].Antibiotics were the most effective treatments for bacteria when they were first invented.However, some bacteria have developed severe antibiotic resistance after a long-term abuse or misuse, which is expected to cause 10 million deaths per year by 2050 and a significant economic burden [2].Despite such a foreseeable crisis for human health nowadays, very few new antibiotics have been developed and marketed, which is mainly due to rapid acquisition of resistance, the long drug development cycle, and poor return on investment [3].Accordingly, recent efforts have been made to develop alternative new antimicrobial strategies.

    Photodynamic therapy (PDT) as a new non-invasive treatment modality for infection, tumor and other diseases has attracted widespread attention due to high spatiotemporal selectivity, minimal side effects and low systemic toxicity over the last few decades [4-6].During the process of PDT, photosensitizers (PSs)and light were employed to sensitize adjacent normal oxygen (3O2)to generate singlet oxygen (1O2) or other types of reactive oxygen species (ROS)viaenergy transfer or electron transfer of the excited triplet PSs, respectively [7].The highly reactive ROS can cause irreversible damages to bacteria by chemical oxidation, so that it is scarcely possible for bacteria to develop resistance to PDT[8].As far as we know, the treatment outcome of PDT is closely related to the PS employed,i.e., effective PSs with high ROS sensitizing efficiency and target specificity greatly favor the PDT applications [9].Traditional PSs (e.g., porphyrins, BODIPY, phenothiazinium salts, cyanines) have been widely applied in the field of photodynamic antibacterial and anticancer agents [10-12].However, these PSs are usually featured with giant hydrophobic coplanar structures, and inclined to experience strongπ-πinteractions at high concentrations or in the aggregated state, which will result in distinct fluorescence quenching and reduced ROS sensitizing efficiency owing to the decay of the excited state energyvianon-radiative pathways [13], thus severely limiting their applications in both imaging and PDT therapy.In comparison, PSs with aggregation-induced emission (AIE) properties, which exhibit both enhanced emission and elevated photosensitization efficiency in the aggregated state or even in aqueous media as a result of restricted intramolecular motions, have recently emerged as a class of promising candidates [14].To date, a large number of AIE PSs have been successfully developed to kill bacteria [15-19].Detailed studies have revealed that the bactericidal efficiency of these AIE PSs can be remarkably enhanced when a positively charged AIE PS binds to the bacteriaviaelectrostatic interactions [20], which is attributed to the short lifetimes and small effective working radii of ROS [21].According to the structural features of the phospholipid bilayer of the bacterial membrane,i.e., the negatively charged“polar head” and the “non-polar tail” of phospholipid, exploring an amphiphilic AIE PS with membrane-targeting capabilities through electrostatic and hydrophobic interactions is highly desirable for higher antibacterial efficiency.

    Fig.1.Chemical structure of amphiphilic AIE photosensitizer (TPA-Py) and cartoon representation of the insertion into the bacterial membrane.

    In this work, we have proposed an amphiphilic membranetargeting AIE PS (TPA-Py, as shown in Fig.1), in which two DA type photosensitizers were covalently linked through a flexible butyl chain enabling both the hydrophilic and hydrophobic parts of TPA-Py more easy to insert into the bacterial membranes.More importantly, the rational design has endowed TPA-Py with four main features: (I) the triphenylamine (TPA) acting as both hydrophobic donor (D) and AIE active moiety; (II) the pyridinium salt acting as hydrophilic acceptor (A); (III) the amphiphilic structure favoring bacterial membrane-targeting abilities; (IV) 2Br-as counter anions facilitating the intersystem crossing (ISC) process due to heavy atomic effect [22].Moreover, TPA-Py can specifically target bacterial membranes through electrostatic and hydrophobic interactions.As expected, TPA-Py was proved to show a broadspectrum bacterial staining performance and high1O2generation efficiency under irradiation with 420 nm light, resulting in rapid and complete inactivation ofS.aureusandE.coli.

    The design principle of amphiphilic AIE photosensitizer TPAPy with membrane-targeting capacity is illustrated in Fig.1.The triphenylamine (TPA) fragment is elegantly selected in consideration of its superior AIE performance and natural hydrophobicity which will be embedded into the “non-polar tail” of phospholipid by hydrophobic interactions [23].Besides, the positively charged pyridinium units can anchor on the surface of phospholipid bilayer and bind to “polar head” of phospholipid with negative charge by intense electrostatic interactions [24].So, considering the amphiphilic feature of the bacterial membranes [25], the conjugation of two amphiphilic chromophores through a flexible butyl chain favors the insertion into the bacterial membranes by the dual hydrophobic and electrostatic interactions, leading to a highly effi-cient antimicrobial performance.Moreover, once bound to the bacterial membrane structures, the intramolecular motions of TPA-Py are restricted and generate intense fluorescence, implying that AIE phenomenon occurs inside bacteria, which will facilitate bacterial imaging.As depicted in Scheme S1 (Supporting information), the amphiphilic AIE photosensitizer TPA-Py was prepared by two steps in a yield of 63%.And its chemical structure was characterized by1H NMR,13C NMR and HRMS spectroscopy (Figs.S2-S4 in Supporting information).

    With this photosensitizer in hand, we first examined the photophysical properties of TPA-Py in different solvents.As illustrated in Fig.2a, TPA-Py exhibited a maximal absorption band ranging from 345 nm to 550 nm in toluene, CHCl3and DMSO, which is resulted from intramolecular charge transfer (ICT) from TPA moiety to pyridinium unit [26,27].In contrast to that in DMSO, the maximal absorption wavelength of TPA-Py exhibited a distinct bathochromicshift in the less polar solvents (toluene and CHCl3), implying a negative solvent-dependent photophysical behavior, which may be attributed to the poor solubility in the small polar solvents causing the formation of the aggregates.Subsequently, its AIE properties were further evaluated by using a mixed solvents (toluene/DMSO,toluene is a poor solvent for TPA-Py).As depicted in Figs.2b and c, almost no fluorescence was detected for TPA-Py in pure DMSO.When toluene fraction (fT) was increased from 0% to 80%, TPA-Py showed negligible fluorescence change.With continuously raising the fraction of toluene to 90%, the fluorescence intensity of TPA-Py at 545 nm dramatically increased byca.275-fold and reached to its maximum along with an intense yellow fluorescence appearance(insert in Fig.2c), which definitely indicates a typical AIE feature.This fluorescence enhancement phenomenon can be explained by the restriction of rotational motions owing to the formation of the aggregates (Fig.S1 in Supporting information).The average particle diameter of the aggregates was determined to beca.69 nm by dynamic light scattering (DLS) analysis (Fig.2d).In addition, TPAPy exhibited a relatively high quantum yields (ΦF=9.6%) in the mixtures of DMSO/toluene withfT=90% compared to that in pure DMSO (ΦF=0.23%), as well as a fluorescence lifetime of 3.08 ns(Fig.2e).As anticipated, a strong yellow fluorescence at 545 nm was observed for TPA-Py in the solid state (Fig.2f), accompanied with a high quantum yield (ΦF=8.2%) and shorter lifetime(τ=1.66 ns) (Fig.2e).

    To further understand the relationships between the electronic features and photophysical properties of TPA-Py, density functional theory (DFT) calculations were conducted to explore its electron densities and optimized molecular geometries in Gaussian 09 B3LYP/6-31G?level [28].As illustrated in Fig.2g, the HOMO orbital energy of TPA-Py was mainly delocalized around the TPA fragments, while its LUMO was distributed over the pyridinium units due to electron-deficient effect of pyridinium group, indicating the separation of HOMO-LUMO and a typical D-A type structural feature for either side of TPA-Py, which would favor the ROS generation.In addition, a lower HOMO-LUMO energy gap (Eg=2.30 eV)was obtained.Based on DFT calculations, the optimized groundstate geometry of TPA-Py presented a “Z-type” configuration between two TPA-pyridinium dyads owing to the presence of the middle flexible C4 chain (Fig.2h), which helps to easily insert into the bacterial membranes for efficient antimicrobial performance.

    Fig.2.(a) The absorption spectra of TPA-Py in different solvents (2.0× 10-5 mol/L).(b) The fluorescence spectra of TPA-Py (2.0× 10-5 mol/L) in the mixtures of DMSO/toluene with different toluene fractions (fT) (λex=424 nm).(c) The plot of the relative emission intensity of TPA-Py versus toluene fraction (fT), I0 and I are emission intensities of TPA-Py in pure DMSO and DMSO/toluene mixtures, respectively.(d) Size distribution of TPA-Py in the mixtures of DMSO/toluene with fT=90%.(e) Timeresolved decay profiles of TPA-Py in the mixtures of DMSO/toluene with fT=90% and solid state.(f) The fluorescence spectra of TPA-Py in the solid state.The molecular orbital profiling (g) and the optimized ground-state geometry (h) of TPA-Py based on DFT calculations at the B3LYP/6-31G?level via the Gaussian 09 program.

    Although some progress has been made in AIEgens-based photosensitizers in recent years, the poor imaging capability for Gram negative (G-) bacteria limits their further research and applications [29,30].In consideration of the amphiphilic nature of the outer phospholipid membrane of the G-bacteria, the amphiphilic TPA-Py could enhance the binding affinity to the G-bacteria through the dual hydrophobic and electrostatic interactions, thus it is expected to achieve the broad-spectrum imaging of G+and G-bacteria.We selectedS.aureusandE.colias representatives of G+and G-bacteria to preliminarily assess the bacterial staining ability of TPA-Py.As depicted in Fig.3a, whenS.aureuswas incubated with 10 μmol/L TPA-Py, the bright yellow fluorescence signal was visualized within 15 min, showing excellent bacteria imaging for G+bacteria.For the previously reported AIE PSs, most showed a very weak staining capability for the G-bacteria.This is mainly attributed to the multilayer outer membranes in G-bacteria composed of phospholipid membranes [31-35], which provides a natural barrier preventing the invasion of the interbedded peptidoglycan network by the extraneous PSs.However, after 15 min of incubatingE.coliwith TPA-Py, some intense yellow fluorescence was clearly detected in sharp contrast to the background, implying that this amphiphilic AIE PS has a high binding affinity to the outer membrane in G-bacteria.Therefore, these results revealed that TPA-Py could achieve the broad-spectrum bacteria imaging for G+and G-bacteria.

    Fig.4.(a) The decomposition rates of ABDA in the presence of TPA-Py and RB under 420 nm light irradiation, where A0 and A are the absorbance of ABDA at 378 nm,[TPA-2Py]=[RB]=5× 10-6 mol/L, [ABDA]=5× 10-5 mol/L.The survival rate (b) and photographs of the agar plates (c) of S. aureus and E. coli incubated with TPA-Py (0, 0.4,2.0, 10 μmol/L, respectively) and without/with 420 nm light treatment.Error bars: mean ± SD (n=3).(d) SEM images of S. aureus accumulated with TPA-Py without or with 420 nm light irradiation (upper: TPA-Py in dark; bottom: TPA-Py in light).Power of irradiation: 8.9 mW/cm2.

    To further demonstrate targeting capability of TPA-Py toward the bacterial membrane, a phospholipid, 1,2-dihexadecanoyl-snglycero-3-phosphocholine (DOPC), was utilized to explore the interactions between TPA-Py and phospholipid.As illustrated in Fig.3b, TPA-Py exhibited almost no fluorescence in phosphate buffered saline (PBS) with 1% DMSO fraction, while its emission intensity at 546 nm was significantly enhanced byca.400-fold with the addition of DOPC (5 mg/mL), accompanied by the emergence of a strong yellow fluorescence under irradiation with a hand-held UV lamp at 365 nm (insert in Fig.3b).Compared to the maximum emission in the aggregated state (λem=545 nm) and solid state (λem=545 nm), TPA-Py showed an analogical emission peak(λem=546 nm) in DOPC-containing PBS solution, which may be ascribed to essentially the same aggregation form in the bacterial membranes as solution and solid states.

    Encouraged by the structural features and broad-spectrum bacterial staining of TPA-Py, its singlet oxygen (1O2) generation capability was further evaluated in PBS with 1% DMSO fraction,which was monitored by time-dependent absorption degradation (378 nm) of commercial 9,10-anthracenediyl-bis-(methylene)-dimalonic acid (ABDA) as an1O2indicator upon irradiation with 420 nm light (8.9 mW/cm2) (Scheme S2 in Supporting information).As shown in Fig.4a, in sharp contrast to ABDA alone, the absorption intensity of ABDA gradually decreased under 420 nm light in the presence of TPA-Py, which comes of the decomposition by the increasing generation of1O2.To validate its1O2generation efficiency, a commercial PS Rose Bengal (RB) was used to perform the same operation in the presence of ABDA.Furthermore, the decomposition rate of ABDA treated with RB was lower than that of TPA-Py by monitoring the attenuation of absorption at 378 nm, indicating the superior1O2generation efficiency for TPAPy.What is more, the absorbance of ABDA in the presence of TPAPy was decreased by 63.6% upon irradiation for 180 s, revealing that 10.6 μmol of ABDA was consumed per minute when 5 μmol/L of TPA-Py was exposed to 420 nm light.In comparison, degradation with 55.9% of the absorbance at 378 nm of ABDA was obtained for 5 μmol/L of RB, and 9.3 μmol of ABDA was consumed under the same irradiation conditions, which implied a relatively inferior photosensitizing performance compared with the presented amphiphilic TPA-Py.Besides, the1O2quantum yield of TPA-Py was determined as 28% with RB as the reference photosensitizer.

    The superior singlet oxygen generation efficiency of TPA-Py inspired us to ultimately investigate its photodynamic antibacterial activity against Gram-positiveS.aureusand Gram-negativeE.coliunder 420 nm light irradiation through a standard plate colonycounting method [36].As depicted in Figs.4b and c, in the absence of TPA-Py, almost no obvious changes in the survival rates ofS.aureusandE.coliwere detected in the dark or under light irradiation, indicating bothS.aureusandE.colican grow and multiply healthily without TPA-Py treatment.For both bacterial strains,although the dark toxicity of TPA-Py was slightly raised with increasing concentration, the survival rates ofS.aureusandE.coliin the dark were still as high asca.93% and 90% even at a concentration of 10 μmol/L, respectively, which implied a low dark toxicity for TPA-Py.Under the treatment of light irradiation, more than 92% ofS.aureusand 87% ofE.coliwere killed at a low concentration of 0.4 μmol/L.The survival rates ofS.aureusandE.coliincubated with 2 μmol/L TPA-Py descended to nearly 0% and 2%,respectively, suggesting a high photodynamic efficiency of TPA-Py towardS.aureusandE.coli.Almost 100% ofE.coliwas eradicated when the concentration of TPA-Py was increased to 10 μmol/L.Therefore, TPA-Py showed broad-spectrum photodynamic antibacterial activity, which can be reasonably ascribed to a high binding affinity of amphiphilic TPA-Py to the bacterial membranes and the efficient generation of singlet oxygen.Subsequently, scanning electron microscopy (SEM) was utilized to obtain in-depth insights into the morphological changes ofS.aureusandE.coliupon treatment with TPA-Py without or with light irradiation.As illustrated in Fig.4d, when treated with only TPA-Py, the morphology ofS.aureusstill remained intact with smooth bodies and well-defined borders.Upon treatment with both TPA-Py and light, the bacterial shape was significantly changed along with the shrinkage and fusion of cell walls.Thus, the SEM results definitely provide a direct evidence of the photodynamic antibacterial for TPA-Py towardS.aureus.Unfortunately, treatingE.coliby the same method did not obtain a change in bacterial morphology through SEM.

    In summary, we rationally designed and successfully developed an amphiphilic AIE photosensitizer (TPA-Py), in which TPA acted as both hydrophobic donor and AIE active moiety and pyridinium salt with positive charge acted as hydrophilic acceptor, thus allowing for easily inserting into the bacterial membranes due to carrying both the hydrophobic and hydrophilic entities.TPA-Pyshowed excellent AIE properties in the mixtures of DMSO/toluene.As expected, it presented a broad-spectrum bacterial staining ability forS.aureusandE.colidue to electrostatic and hydrophobic interactions.In addition,TPA-Pyshowed a relatively superior1O2generation efficiency compared with the commercial RB.Moreover,TPA

    Pyexhibited broad-spectrum photodynamic antibacterial activity towardS.aureusandE.coli.This study will provide a promising therapeutic platform for membrane-targeting AIE photosensitizer in the field of antimicrobial PDT.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge financial support from Natural Science Foundation of Henan Province (No.222300420501), the Key Scientific and Technological Project of Henan province (No.212102210549), the Key Scientific Research Project of Higher Education of Henan Province (No.22A430007), and National College Students Innovation and Entrepreneurship Training Program (No.202210482028).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108160.

    久久久久精品人妻al黑| 男女午夜视频在线观看| 一个人免费看片子| 老司机影院毛片| av免费观看日本| 免费高清在线观看视频在线观看| 各种免费的搞黄视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲最大av| 精品久久久精品久久久| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 一级毛片 在线播放| 最近中文字幕高清免费大全6| 九色亚洲精品在线播放| 久久久欧美国产精品| 精品国产一区二区三区久久久樱花| 欧美日韩精品成人综合77777| av天堂久久9| 亚洲欧美精品综合一区二区三区 | 久久精品亚洲av国产电影网| 亚洲欧洲日产国产| av不卡在线播放| 亚洲伊人色综图| 看免费成人av毛片| 成人手机av| 久久ye,这里只有精品| 曰老女人黄片| 在线观看人妻少妇| 波野结衣二区三区在线| 免费播放大片免费观看视频在线观看| 久久综合国产亚洲精品| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 看十八女毛片水多多多| 日本午夜av视频| 久久热在线av| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 免费观看在线日韩| 美女国产视频在线观看| av卡一久久| 亚洲精品国产av蜜桃| 欧美日本中文国产一区发布| 青草久久国产| 久久午夜综合久久蜜桃| 国产精品免费视频内射| 精品国产一区二区三区四区第35| 国产一区二区三区在线臀色熟女 | 99国产极品粉嫩在线观看| 久久久久亚洲av毛片大全| 国产亚洲欧美精品永久| 欧美黄色淫秽网站| 搡老乐熟女国产| 制服人妻中文乱码| 高潮久久久久久久久久久不卡| 久久影院123| 国产激情欧美一区二区| 在线国产一区二区在线| 日日摸夜夜添夜夜添小说| 国产伦一二天堂av在线观看| 欧美性长视频在线观看| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 欧美日韩亚洲高清精品| 日本欧美视频一区| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 黑人猛操日本美女一级片| 久热爱精品视频在线9| 在线永久观看黄色视频| 交换朋友夫妻互换小说| 美女扒开内裤让男人捅视频| 美女国产高潮福利片在线看| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 岛国在线观看网站| 在线观看一区二区三区| 久久精品国产亚洲av高清一级| 在线av久久热| aaaaa片日本免费| 热re99久久国产66热| www.自偷自拍.com| 国产av精品麻豆| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 精品人妻1区二区| 国产av精品麻豆| 老司机午夜福利在线观看视频| 超碰成人久久| 精品一区二区三卡| 久久亚洲真实| 搡老乐熟女国产| 国产一区二区三区视频了| 国产成年人精品一区二区 | 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 久久人妻熟女aⅴ| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| 亚洲熟妇熟女久久| x7x7x7水蜜桃| 99国产精品一区二区三区| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 伦理电影免费视频| 天堂俺去俺来也www色官网| 亚洲av成人av| 欧美日韩视频精品一区| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | www.www免费av| 亚洲精品久久午夜乱码| 大型黄色视频在线免费观看| 久久精品人人爽人人爽视色| 一级作爱视频免费观看| 一级毛片女人18水好多| 韩国精品一区二区三区| 免费观看人在逋| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉精品热| 亚洲男人天堂网一区| 日韩人妻精品一区2区三区| 精品久久久久久成人av| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜一区二区| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 电影成人av| 亚洲欧美日韩高清在线视频| 亚洲伊人色综图| 最近最新中文字幕大全免费视频| 黑人猛操日本美女一级片| 999久久久精品免费观看国产| 国产三级黄色录像| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影观看| 日日爽夜夜爽网站| 国产野战对白在线观看| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 欧美一区二区精品小视频在线| 黑丝袜美女国产一区| 亚洲男人的天堂狠狠| 妹子高潮喷水视频| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| 亚洲精品成人av观看孕妇| 长腿黑丝高跟| 女人被狂操c到高潮| 麻豆成人av在线观看| 国产三级黄色录像| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸 | 两个人看的免费小视频| 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 美女扒开内裤让男人捅视频| 亚洲国产欧美日韩在线播放| 极品教师在线免费播放| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 亚洲av第一区精品v没综合| 精品欧美一区二区三区在线| 岛国在线观看网站| 精品一区二区三卡| 一级毛片女人18水好多| 亚洲国产欧美网| 国产99白浆流出| 深夜精品福利| 国产欧美日韩一区二区精品| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 亚洲成人免费av在线播放| 老汉色av国产亚洲站长工具| 久久精品91无色码中文字幕| 大码成人一级视频| netflix在线观看网站| 欧美不卡视频在线免费观看 | 亚洲第一欧美日韩一区二区三区| 国产成人免费无遮挡视频| 亚洲成人久久性| 亚洲视频免费观看视频| 国产av精品麻豆| 免费在线观看黄色视频的| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 免费在线观看完整版高清| a在线观看视频网站| 国产人伦9x9x在线观看| av免费在线观看网站| 欧美激情极品国产一区二区三区| 熟女少妇亚洲综合色aaa.| 身体一侧抽搐| 日韩欧美免费精品| 午夜福利,免费看| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 露出奶头的视频| svipshipincom国产片| 男人舔女人的私密视频| 亚洲精华国产精华精| 91精品国产国语对白视频| 国产成人系列免费观看| 桃红色精品国产亚洲av| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 久久性视频一级片| 日韩免费高清中文字幕av| 88av欧美| 精品久久蜜臀av无| 999精品在线视频| 国产成人精品无人区| 亚洲精品久久午夜乱码| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 久久精品91蜜桃| 日韩欧美免费精品| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 青草久久国产| 日韩精品中文字幕看吧| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久| 最好的美女福利视频网| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 国产一卡二卡三卡精品| 国产97色在线日韩免费| 国产99白浆流出| 国产成人精品久久二区二区91| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 亚洲色图av天堂| 黑丝袜美女国产一区| 91老司机精品| 国产真人三级小视频在线观看| 一进一出抽搐动态| 亚洲欧美日韩另类电影网站| 欧美日韩乱码在线| 怎么达到女性高潮| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 国产成人欧美| 亚洲av熟女| 免费一级毛片在线播放高清视频 | 成人手机av| 曰老女人黄片| av在线天堂中文字幕 | 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 大型黄色视频在线免费观看| 91国产中文字幕| www日本在线高清视频| 日本黄色日本黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 91成人精品电影| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 国产成人精品无人区| 91在线观看av| 国产午夜精品久久久久久| 国产精品永久免费网站| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放 | 超色免费av| 不卡av一区二区三区| 露出奶头的视频| 看免费av毛片| 欧美激情 高清一区二区三区| 一级片'在线观看视频| 久久欧美精品欧美久久欧美| 波多野结衣一区麻豆| 国产精品99久久99久久久不卡| 99精国产麻豆久久婷婷| 欧美最黄视频在线播放免费 | 精品久久久久久成人av| 免费看a级黄色片| 香蕉国产在线看| 一级黄色大片毛片| 亚洲七黄色美女视频| 在线观看舔阴道视频| 成年人免费黄色播放视频| 在线播放国产精品三级| 天天影视国产精品| 女人精品久久久久毛片| 韩国精品一区二区三区| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 免费人成视频x8x8入口观看| 一本综合久久免费| 久久久久久久午夜电影 | 少妇裸体淫交视频免费看高清 | 啦啦啦 在线观看视频| xxx96com| 91麻豆精品激情在线观看国产 | 19禁男女啪啪无遮挡网站| 精品第一国产精品| 免费av毛片视频| av网站在线播放免费| 欧美av亚洲av综合av国产av| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 成人手机av| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 午夜91福利影院| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 久久中文看片网| 亚洲精品国产色婷婷电影| 精品国产一区二区三区四区第35| 久久草成人影院| 色在线成人网| 免费在线观看亚洲国产| 自线自在国产av| 国产欧美日韩一区二区精品| 亚洲精品国产区一区二| 两性夫妻黄色片| 日本黄色视频三级网站网址| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 9热在线视频观看99| а√天堂www在线а√下载| 国产熟女xx| 90打野战视频偷拍视频| 麻豆一二三区av精品| 久久精品影院6| 黄片播放在线免费| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 久久中文看片网| 久久影院123| 18禁国产床啪视频网站| 91大片在线观看| 18禁国产床啪视频网站| 久久影院123| 亚洲第一青青草原| 制服人妻中文乱码| 午夜福利,免费看| 久久国产精品人妻蜜桃| 午夜福利,免费看| 人人澡人人妻人| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 黄色视频不卡| 成人精品一区二区免费| 久久久久久久午夜电影 | 免费人成视频x8x8入口观看| 精品福利观看| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 欧美在线黄色| 人妻久久中文字幕网| 国产在线观看jvid| 亚洲第一欧美日韩一区二区三区| 美女午夜性视频免费| 一级片'在线观看视频| av欧美777| 大码成人一级视频| avwww免费| 亚洲男人的天堂狠狠| 两个人免费观看高清视频| www.精华液| 在线永久观看黄色视频| 国产aⅴ精品一区二区三区波| 精品国产美女av久久久久小说| 搡老乐熟女国产| 亚洲男人天堂网一区| 怎么达到女性高潮| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 嫩草影院精品99| 久久精品亚洲精品国产色婷小说| 亚洲精品中文字幕一二三四区| 日韩国内少妇激情av| cao死你这个sao货| 亚洲欧美日韩另类电影网站| 国产色视频综合| 女人被躁到高潮嗷嗷叫费观| 国产麻豆69| 新久久久久国产一级毛片| 国产97色在线日韩免费| 女同久久另类99精品国产91| 男女下面插进去视频免费观看| 热99国产精品久久久久久7| 69av精品久久久久久| 亚洲色图av天堂| 又大又爽又粗| 久久婷婷成人综合色麻豆| 国产精品美女特级片免费视频播放器 | 黑人猛操日本美女一级片| 国产高清激情床上av| 色综合欧美亚洲国产小说| 国产不卡一卡二| 日本vs欧美在线观看视频| 国产一区二区三区视频了| 久久精品亚洲av国产电影网| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 午夜91福利影院| 天堂中文最新版在线下载| 欧美日韩av久久| 亚洲人成电影观看| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| av中文乱码字幕在线| 老司机午夜福利在线观看视频| 一区福利在线观看| 最新美女视频免费是黄的| 天堂√8在线中文| 中文字幕av电影在线播放| 大陆偷拍与自拍| 高清欧美精品videossex| 国产成人精品无人区| 女同久久另类99精品国产91| 这个男人来自地球电影免费观看| 黄色 视频免费看| 精品久久久久久电影网| 亚洲成人免费av在线播放| 国产精品亚洲av一区麻豆| 精品一品国产午夜福利视频| 黄色丝袜av网址大全| 国产精品免费一区二区三区在线| 国产精品电影一区二区三区| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 在线观看日韩欧美| 无遮挡黄片免费观看| 日韩欧美在线二视频| 人人妻人人爽人人添夜夜欢视频| 丁香六月欧美| 国产精品av久久久久免费| 激情在线观看视频在线高清| 国产色视频综合| 国产深夜福利视频在线观看| 可以免费在线观看a视频的电影网站| 男女做爰动态图高潮gif福利片 | 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 免费看a级黄色片| 免费久久久久久久精品成人欧美视频| 欧美黑人欧美精品刺激| 欧美日本中文国产一区发布| 精品卡一卡二卡四卡免费| 亚洲九九香蕉| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 久久人人97超碰香蕉20202| 国产麻豆69| 久久狼人影院| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 色婷婷久久久亚洲欧美| 欧美乱妇无乱码| av中文乱码字幕在线| 国产精品久久电影中文字幕| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 成熟少妇高潮喷水视频| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 高清黄色对白视频在线免费看| 夜夜看夜夜爽夜夜摸 | 12—13女人毛片做爰片一| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 日日摸夜夜添夜夜添小说| 国产精品av久久久久免费| 九色亚洲精品在线播放| 18禁黄网站禁片午夜丰满| 美女午夜性视频免费| 91老司机精品| 欧美日韩乱码在线| 亚洲 欧美 日韩 在线 免费| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 免费观看精品视频网站| 91av网站免费观看| 在线观看免费视频日本深夜| 很黄的视频免费| 国产精品香港三级国产av潘金莲| 我的亚洲天堂| 亚洲av第一区精品v没综合| 精品国产亚洲在线| 亚洲一区高清亚洲精品| 久久中文看片网| 午夜91福利影院| 1024视频免费在线观看| 999久久久国产精品视频| 精品日产1卡2卡| 宅男免费午夜| 亚洲一区二区三区不卡视频| 在线观看免费日韩欧美大片| 嫩草影视91久久| 国产精品 欧美亚洲| 国产亚洲欧美在线一区二区| 水蜜桃什么品种好| 欧美日韩福利视频一区二区| 午夜a级毛片| 一级毛片精品| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费 | 国产成人av激情在线播放| 精品国产乱码久久久久久男人| 中文亚洲av片在线观看爽| 国产成人一区二区三区免费视频网站| 黄色女人牲交| 一区二区三区国产精品乱码| 午夜福利在线观看吧| 男人舔女人的私密视频| 国产精品 欧美亚洲| 成人亚洲精品一区在线观看| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 超色免费av| 久久久国产欧美日韩av| 我的亚洲天堂| 久久久久久久精品吃奶| 亚洲专区中文字幕在线| 国产激情久久老熟女| 国产黄a三级三级三级人| 亚洲色图av天堂| 国产成人av教育| 他把我摸到了高潮在线观看| 好看av亚洲va欧美ⅴa在| 18禁裸乳无遮挡免费网站照片 | 欧美国产精品va在线观看不卡| 一区在线观看完整版| 国产又爽黄色视频| 看免费av毛片| 久久久久久久久久久久大奶| 亚洲全国av大片| 高清在线国产一区| 俄罗斯特黄特色一大片| 欧美日韩黄片免| 成熟少妇高潮喷水视频| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 十分钟在线观看高清视频www| 亚洲久久久国产精品| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区色噜噜 | av中文乱码字幕在线| 久久草成人影院| 久久亚洲真实| 麻豆成人av在线观看| 中文欧美无线码| 91字幕亚洲| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 搡老乐熟女国产| 99在线人妻在线中文字幕| 久久久久久久久中文| 久久久久久久精品吃奶| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 免费少妇av软件| 伦理电影免费视频| 免费高清视频大片| netflix在线观看网站| 极品教师在线免费播放| 日韩精品中文字幕看吧| 桃红色精品国产亚洲av| 日韩精品青青久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产91精品成人一区二区三区| 国产精品野战在线观看 | 欧美日韩国产mv在线观看视频| 夜夜爽天天搞| 日韩中文字幕欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 日本五十路高清| 成熟少妇高潮喷水视频| 亚洲,欧美精品.| 亚洲av成人一区二区三| 亚洲黑人精品在线| www日本在线高清视频| 精品免费久久久久久久清纯| 不卡av一区二区三区| 亚洲人成电影观看| 神马国产精品三级电影在线观看 | 精品福利观看| 国产av又大|