• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria

    2023-10-14 03:02:08HiningZhngChojunHeLiminShenWenjunToJinhuiZhuJinzhoSongZiyongLiJunYin
    Chinese Chemical Letters 2023年9期

    Hining Zhng, Chojun He, Limin Shen, Wenjun To, Jinhui Zhu, Jinzho Song,Ziyong Li,?, Jun Yin,?

    a Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China

    b Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University,Wuhan 430079, China

    Keywords:Photodynamic therapy Aggregation-induced emission Photosensitizer Membrane-targeting Singlet oxygen Broad-spectrum Bacteria imaging

    ABSTRACT An amphiphilic AIE photosensitizer has been successfully developed, which allows for easily inserting into the bacterial membranes.Binding experiments with phospholipid preliminary demonstrates its membrane specificity.As expected, it is proved to possess a broad-spectrum bacterial staining performance and photodynamic antibacterial activity toward S. aureus and E. coli.

    Bacterial infectious diseases have posed a serious challenge to the health of human beings and increasingly raised public and medical concerns over the past few decades [1].Antibiotics were the most effective treatments for bacteria when they were first invented.However, some bacteria have developed severe antibiotic resistance after a long-term abuse or misuse, which is expected to cause 10 million deaths per year by 2050 and a significant economic burden [2].Despite such a foreseeable crisis for human health nowadays, very few new antibiotics have been developed and marketed, which is mainly due to rapid acquisition of resistance, the long drug development cycle, and poor return on investment [3].Accordingly, recent efforts have been made to develop alternative new antimicrobial strategies.

    Photodynamic therapy (PDT) as a new non-invasive treatment modality for infection, tumor and other diseases has attracted widespread attention due to high spatiotemporal selectivity, minimal side effects and low systemic toxicity over the last few decades [4-6].During the process of PDT, photosensitizers (PSs)and light were employed to sensitize adjacent normal oxygen (3O2)to generate singlet oxygen (1O2) or other types of reactive oxygen species (ROS)viaenergy transfer or electron transfer of the excited triplet PSs, respectively [7].The highly reactive ROS can cause irreversible damages to bacteria by chemical oxidation, so that it is scarcely possible for bacteria to develop resistance to PDT[8].As far as we know, the treatment outcome of PDT is closely related to the PS employed,i.e., effective PSs with high ROS sensitizing efficiency and target specificity greatly favor the PDT applications [9].Traditional PSs (e.g., porphyrins, BODIPY, phenothiazinium salts, cyanines) have been widely applied in the field of photodynamic antibacterial and anticancer agents [10-12].However, these PSs are usually featured with giant hydrophobic coplanar structures, and inclined to experience strongπ-πinteractions at high concentrations or in the aggregated state, which will result in distinct fluorescence quenching and reduced ROS sensitizing efficiency owing to the decay of the excited state energyvianon-radiative pathways [13], thus severely limiting their applications in both imaging and PDT therapy.In comparison, PSs with aggregation-induced emission (AIE) properties, which exhibit both enhanced emission and elevated photosensitization efficiency in the aggregated state or even in aqueous media as a result of restricted intramolecular motions, have recently emerged as a class of promising candidates [14].To date, a large number of AIE PSs have been successfully developed to kill bacteria [15-19].Detailed studies have revealed that the bactericidal efficiency of these AIE PSs can be remarkably enhanced when a positively charged AIE PS binds to the bacteriaviaelectrostatic interactions [20], which is attributed to the short lifetimes and small effective working radii of ROS [21].According to the structural features of the phospholipid bilayer of the bacterial membrane,i.e., the negatively charged“polar head” and the “non-polar tail” of phospholipid, exploring an amphiphilic AIE PS with membrane-targeting capabilities through electrostatic and hydrophobic interactions is highly desirable for higher antibacterial efficiency.

    Fig.1.Chemical structure of amphiphilic AIE photosensitizer (TPA-Py) and cartoon representation of the insertion into the bacterial membrane.

    In this work, we have proposed an amphiphilic membranetargeting AIE PS (TPA-Py, as shown in Fig.1), in which two DA type photosensitizers were covalently linked through a flexible butyl chain enabling both the hydrophilic and hydrophobic parts of TPA-Py more easy to insert into the bacterial membranes.More importantly, the rational design has endowed TPA-Py with four main features: (I) the triphenylamine (TPA) acting as both hydrophobic donor (D) and AIE active moiety; (II) the pyridinium salt acting as hydrophilic acceptor (A); (III) the amphiphilic structure favoring bacterial membrane-targeting abilities; (IV) 2Br-as counter anions facilitating the intersystem crossing (ISC) process due to heavy atomic effect [22].Moreover, TPA-Py can specifically target bacterial membranes through electrostatic and hydrophobic interactions.As expected, TPA-Py was proved to show a broadspectrum bacterial staining performance and high1O2generation efficiency under irradiation with 420 nm light, resulting in rapid and complete inactivation ofS.aureusandE.coli.

    The design principle of amphiphilic AIE photosensitizer TPAPy with membrane-targeting capacity is illustrated in Fig.1.The triphenylamine (TPA) fragment is elegantly selected in consideration of its superior AIE performance and natural hydrophobicity which will be embedded into the “non-polar tail” of phospholipid by hydrophobic interactions [23].Besides, the positively charged pyridinium units can anchor on the surface of phospholipid bilayer and bind to “polar head” of phospholipid with negative charge by intense electrostatic interactions [24].So, considering the amphiphilic feature of the bacterial membranes [25], the conjugation of two amphiphilic chromophores through a flexible butyl chain favors the insertion into the bacterial membranes by the dual hydrophobic and electrostatic interactions, leading to a highly effi-cient antimicrobial performance.Moreover, once bound to the bacterial membrane structures, the intramolecular motions of TPA-Py are restricted and generate intense fluorescence, implying that AIE phenomenon occurs inside bacteria, which will facilitate bacterial imaging.As depicted in Scheme S1 (Supporting information), the amphiphilic AIE photosensitizer TPA-Py was prepared by two steps in a yield of 63%.And its chemical structure was characterized by1H NMR,13C NMR and HRMS spectroscopy (Figs.S2-S4 in Supporting information).

    With this photosensitizer in hand, we first examined the photophysical properties of TPA-Py in different solvents.As illustrated in Fig.2a, TPA-Py exhibited a maximal absorption band ranging from 345 nm to 550 nm in toluene, CHCl3and DMSO, which is resulted from intramolecular charge transfer (ICT) from TPA moiety to pyridinium unit [26,27].In contrast to that in DMSO, the maximal absorption wavelength of TPA-Py exhibited a distinct bathochromicshift in the less polar solvents (toluene and CHCl3), implying a negative solvent-dependent photophysical behavior, which may be attributed to the poor solubility in the small polar solvents causing the formation of the aggregates.Subsequently, its AIE properties were further evaluated by using a mixed solvents (toluene/DMSO,toluene is a poor solvent for TPA-Py).As depicted in Figs.2b and c, almost no fluorescence was detected for TPA-Py in pure DMSO.When toluene fraction (fT) was increased from 0% to 80%, TPA-Py showed negligible fluorescence change.With continuously raising the fraction of toluene to 90%, the fluorescence intensity of TPA-Py at 545 nm dramatically increased byca.275-fold and reached to its maximum along with an intense yellow fluorescence appearance(insert in Fig.2c), which definitely indicates a typical AIE feature.This fluorescence enhancement phenomenon can be explained by the restriction of rotational motions owing to the formation of the aggregates (Fig.S1 in Supporting information).The average particle diameter of the aggregates was determined to beca.69 nm by dynamic light scattering (DLS) analysis (Fig.2d).In addition, TPAPy exhibited a relatively high quantum yields (ΦF=9.6%) in the mixtures of DMSO/toluene withfT=90% compared to that in pure DMSO (ΦF=0.23%), as well as a fluorescence lifetime of 3.08 ns(Fig.2e).As anticipated, a strong yellow fluorescence at 545 nm was observed for TPA-Py in the solid state (Fig.2f), accompanied with a high quantum yield (ΦF=8.2%) and shorter lifetime(τ=1.66 ns) (Fig.2e).

    To further understand the relationships between the electronic features and photophysical properties of TPA-Py, density functional theory (DFT) calculations were conducted to explore its electron densities and optimized molecular geometries in Gaussian 09 B3LYP/6-31G?level [28].As illustrated in Fig.2g, the HOMO orbital energy of TPA-Py was mainly delocalized around the TPA fragments, while its LUMO was distributed over the pyridinium units due to electron-deficient effect of pyridinium group, indicating the separation of HOMO-LUMO and a typical D-A type structural feature for either side of TPA-Py, which would favor the ROS generation.In addition, a lower HOMO-LUMO energy gap (Eg=2.30 eV)was obtained.Based on DFT calculations, the optimized groundstate geometry of TPA-Py presented a “Z-type” configuration between two TPA-pyridinium dyads owing to the presence of the middle flexible C4 chain (Fig.2h), which helps to easily insert into the bacterial membranes for efficient antimicrobial performance.

    Fig.2.(a) The absorption spectra of TPA-Py in different solvents (2.0× 10-5 mol/L).(b) The fluorescence spectra of TPA-Py (2.0× 10-5 mol/L) in the mixtures of DMSO/toluene with different toluene fractions (fT) (λex=424 nm).(c) The plot of the relative emission intensity of TPA-Py versus toluene fraction (fT), I0 and I are emission intensities of TPA-Py in pure DMSO and DMSO/toluene mixtures, respectively.(d) Size distribution of TPA-Py in the mixtures of DMSO/toluene with fT=90%.(e) Timeresolved decay profiles of TPA-Py in the mixtures of DMSO/toluene with fT=90% and solid state.(f) The fluorescence spectra of TPA-Py in the solid state.The molecular orbital profiling (g) and the optimized ground-state geometry (h) of TPA-Py based on DFT calculations at the B3LYP/6-31G?level via the Gaussian 09 program.

    Although some progress has been made in AIEgens-based photosensitizers in recent years, the poor imaging capability for Gram negative (G-) bacteria limits their further research and applications [29,30].In consideration of the amphiphilic nature of the outer phospholipid membrane of the G-bacteria, the amphiphilic TPA-Py could enhance the binding affinity to the G-bacteria through the dual hydrophobic and electrostatic interactions, thus it is expected to achieve the broad-spectrum imaging of G+and G-bacteria.We selectedS.aureusandE.colias representatives of G+and G-bacteria to preliminarily assess the bacterial staining ability of TPA-Py.As depicted in Fig.3a, whenS.aureuswas incubated with 10 μmol/L TPA-Py, the bright yellow fluorescence signal was visualized within 15 min, showing excellent bacteria imaging for G+bacteria.For the previously reported AIE PSs, most showed a very weak staining capability for the G-bacteria.This is mainly attributed to the multilayer outer membranes in G-bacteria composed of phospholipid membranes [31-35], which provides a natural barrier preventing the invasion of the interbedded peptidoglycan network by the extraneous PSs.However, after 15 min of incubatingE.coliwith TPA-Py, some intense yellow fluorescence was clearly detected in sharp contrast to the background, implying that this amphiphilic AIE PS has a high binding affinity to the outer membrane in G-bacteria.Therefore, these results revealed that TPA-Py could achieve the broad-spectrum bacteria imaging for G+and G-bacteria.

    Fig.4.(a) The decomposition rates of ABDA in the presence of TPA-Py and RB under 420 nm light irradiation, where A0 and A are the absorbance of ABDA at 378 nm,[TPA-2Py]=[RB]=5× 10-6 mol/L, [ABDA]=5× 10-5 mol/L.The survival rate (b) and photographs of the agar plates (c) of S. aureus and E. coli incubated with TPA-Py (0, 0.4,2.0, 10 μmol/L, respectively) and without/with 420 nm light treatment.Error bars: mean ± SD (n=3).(d) SEM images of S. aureus accumulated with TPA-Py without or with 420 nm light irradiation (upper: TPA-Py in dark; bottom: TPA-Py in light).Power of irradiation: 8.9 mW/cm2.

    To further demonstrate targeting capability of TPA-Py toward the bacterial membrane, a phospholipid, 1,2-dihexadecanoyl-snglycero-3-phosphocholine (DOPC), was utilized to explore the interactions between TPA-Py and phospholipid.As illustrated in Fig.3b, TPA-Py exhibited almost no fluorescence in phosphate buffered saline (PBS) with 1% DMSO fraction, while its emission intensity at 546 nm was significantly enhanced byca.400-fold with the addition of DOPC (5 mg/mL), accompanied by the emergence of a strong yellow fluorescence under irradiation with a hand-held UV lamp at 365 nm (insert in Fig.3b).Compared to the maximum emission in the aggregated state (λem=545 nm) and solid state (λem=545 nm), TPA-Py showed an analogical emission peak(λem=546 nm) in DOPC-containing PBS solution, which may be ascribed to essentially the same aggregation form in the bacterial membranes as solution and solid states.

    Encouraged by the structural features and broad-spectrum bacterial staining of TPA-Py, its singlet oxygen (1O2) generation capability was further evaluated in PBS with 1% DMSO fraction,which was monitored by time-dependent absorption degradation (378 nm) of commercial 9,10-anthracenediyl-bis-(methylene)-dimalonic acid (ABDA) as an1O2indicator upon irradiation with 420 nm light (8.9 mW/cm2) (Scheme S2 in Supporting information).As shown in Fig.4a, in sharp contrast to ABDA alone, the absorption intensity of ABDA gradually decreased under 420 nm light in the presence of TPA-Py, which comes of the decomposition by the increasing generation of1O2.To validate its1O2generation efficiency, a commercial PS Rose Bengal (RB) was used to perform the same operation in the presence of ABDA.Furthermore, the decomposition rate of ABDA treated with RB was lower than that of TPA-Py by monitoring the attenuation of absorption at 378 nm, indicating the superior1O2generation efficiency for TPAPy.What is more, the absorbance of ABDA in the presence of TPAPy was decreased by 63.6% upon irradiation for 180 s, revealing that 10.6 μmol of ABDA was consumed per minute when 5 μmol/L of TPA-Py was exposed to 420 nm light.In comparison, degradation with 55.9% of the absorbance at 378 nm of ABDA was obtained for 5 μmol/L of RB, and 9.3 μmol of ABDA was consumed under the same irradiation conditions, which implied a relatively inferior photosensitizing performance compared with the presented amphiphilic TPA-Py.Besides, the1O2quantum yield of TPA-Py was determined as 28% with RB as the reference photosensitizer.

    The superior singlet oxygen generation efficiency of TPA-Py inspired us to ultimately investigate its photodynamic antibacterial activity against Gram-positiveS.aureusand Gram-negativeE.coliunder 420 nm light irradiation through a standard plate colonycounting method [36].As depicted in Figs.4b and c, in the absence of TPA-Py, almost no obvious changes in the survival rates ofS.aureusandE.coliwere detected in the dark or under light irradiation, indicating bothS.aureusandE.colican grow and multiply healthily without TPA-Py treatment.For both bacterial strains,although the dark toxicity of TPA-Py was slightly raised with increasing concentration, the survival rates ofS.aureusandE.coliin the dark were still as high asca.93% and 90% even at a concentration of 10 μmol/L, respectively, which implied a low dark toxicity for TPA-Py.Under the treatment of light irradiation, more than 92% ofS.aureusand 87% ofE.coliwere killed at a low concentration of 0.4 μmol/L.The survival rates ofS.aureusandE.coliincubated with 2 μmol/L TPA-Py descended to nearly 0% and 2%,respectively, suggesting a high photodynamic efficiency of TPA-Py towardS.aureusandE.coli.Almost 100% ofE.coliwas eradicated when the concentration of TPA-Py was increased to 10 μmol/L.Therefore, TPA-Py showed broad-spectrum photodynamic antibacterial activity, which can be reasonably ascribed to a high binding affinity of amphiphilic TPA-Py to the bacterial membranes and the efficient generation of singlet oxygen.Subsequently, scanning electron microscopy (SEM) was utilized to obtain in-depth insights into the morphological changes ofS.aureusandE.coliupon treatment with TPA-Py without or with light irradiation.As illustrated in Fig.4d, when treated with only TPA-Py, the morphology ofS.aureusstill remained intact with smooth bodies and well-defined borders.Upon treatment with both TPA-Py and light, the bacterial shape was significantly changed along with the shrinkage and fusion of cell walls.Thus, the SEM results definitely provide a direct evidence of the photodynamic antibacterial for TPA-Py towardS.aureus.Unfortunately, treatingE.coliby the same method did not obtain a change in bacterial morphology through SEM.

    In summary, we rationally designed and successfully developed an amphiphilic AIE photosensitizer (TPA-Py), in which TPA acted as both hydrophobic donor and AIE active moiety and pyridinium salt with positive charge acted as hydrophilic acceptor, thus allowing for easily inserting into the bacterial membranes due to carrying both the hydrophobic and hydrophilic entities.TPA-Pyshowed excellent AIE properties in the mixtures of DMSO/toluene.As expected, it presented a broad-spectrum bacterial staining ability forS.aureusandE.colidue to electrostatic and hydrophobic interactions.In addition,TPA-Pyshowed a relatively superior1O2generation efficiency compared with the commercial RB.Moreover,TPA

    Pyexhibited broad-spectrum photodynamic antibacterial activity towardS.aureusandE.coli.This study will provide a promising therapeutic platform for membrane-targeting AIE photosensitizer in the field of antimicrobial PDT.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge financial support from Natural Science Foundation of Henan Province (No.222300420501), the Key Scientific and Technological Project of Henan province (No.212102210549), the Key Scientific Research Project of Higher Education of Henan Province (No.22A430007), and National College Students Innovation and Entrepreneurship Training Program (No.202210482028).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108160.

    a级毛片黄视频| 999久久久国产精品视频| 中文字幕亚洲精品专区| 人妻一区二区av| 肉色欧美久久久久久久蜜桃| 成年女人毛片免费观看观看9 | 一级黄片播放器| 人人妻人人爽人人添夜夜欢视频| 欧美xxⅹ黑人| 久久久久视频综合| 国产精品熟女久久久久浪| 中文字幕制服av| 深夜精品福利| 亚洲人成电影免费在线| 欧美日韩视频高清一区二区三区二| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 日本a在线网址| 国产极品粉嫩免费观看在线| 国产免费一区二区三区四区乱码| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 国产男人的电影天堂91| 后天国语完整版免费观看| 久久久久久久久久久久大奶| 精品欧美一区二区三区在线| 欧美精品啪啪一区二区三区 | 伊人久久大香线蕉亚洲五| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 老司机午夜十八禁免费视频| 人妻人人澡人人爽人人| 国产精品麻豆人妻色哟哟久久| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 国产成人欧美| 性高湖久久久久久久久免费观看| 欧美日韩亚洲高清精品| 男女无遮挡免费网站观看| 久久人妻福利社区极品人妻图片 | 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 999精品在线视频| 久久亚洲国产成人精品v| a级毛片在线看网站| 中文精品一卡2卡3卡4更新| 午夜福利视频精品| 国产亚洲av片在线观看秒播厂| 精品久久久久久久毛片微露脸 | 亚洲国产中文字幕在线视频| 国产亚洲av高清不卡| 国产高清不卡午夜福利| 成人亚洲欧美一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 最黄视频免费看| 免费在线观看日本一区| 久久人人97超碰香蕉20202| 国产三级黄色录像| 国产一区二区在线观看av| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区国产| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 麻豆国产av国片精品| 黄片播放在线免费| 91字幕亚洲| 爱豆传媒免费全集在线观看| 99国产精品99久久久久| 亚洲少妇的诱惑av| 伊人亚洲综合成人网| 男女边吃奶边做爰视频| 超碰97精品在线观看| 免费在线观看完整版高清| 日本av免费视频播放| 国产成人av激情在线播放| 免费看av在线观看网站| 国产男女超爽视频在线观看| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 国产伦理片在线播放av一区| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三 | 午夜av观看不卡| 亚洲国产精品成人久久小说| 欧美在线黄色| 美女大奶头黄色视频| 亚洲综合色网址| 99国产精品一区二区三区| 搡老岳熟女国产| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 欧美成狂野欧美在线观看| 我的亚洲天堂| 精品人妻1区二区| 丝袜美腿诱惑在线| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 99香蕉大伊视频| 国产免费视频播放在线视频| 亚洲国产精品国产精品| 久久人妻熟女aⅴ| 伊人久久大香线蕉亚洲五| 在线观看一区二区三区激情| 亚洲九九香蕉| 国产成人91sexporn| 一级毛片我不卡| 久久久精品区二区三区| 亚洲第一av免费看| 久久免费观看电影| 在线av久久热| 亚洲国产欧美一区二区综合| www.熟女人妻精品国产| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 久久性视频一级片| av国产精品久久久久影院| 天天躁夜夜躁狠狠躁躁| 人成视频在线观看免费观看| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 老司机午夜十八禁免费视频| 亚洲精品久久午夜乱码| 丁香六月天网| 丝袜人妻中文字幕| 丝袜美足系列| 国产真人三级小视频在线观看| 麻豆av在线久日| 久久影院123| 久久久久久人人人人人| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区三区| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 国产一区二区 视频在线| 狠狠婷婷综合久久久久久88av| 老司机午夜十八禁免费视频| 亚洲欧美一区二区三区国产| 90打野战视频偷拍视频| 久久久精品94久久精品| 午夜精品国产一区二区电影| 大型av网站在线播放| 黑人猛操日本美女一级片| 老汉色∧v一级毛片| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 悠悠久久av| 成人亚洲欧美一区二区av| 亚洲精品国产一区二区精华液| 99热全是精品| 午夜福利在线免费观看网站| 精品福利观看| 国产av一区二区精品久久| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频| 国产成人系列免费观看| 美女视频免费永久观看网站| 99精国产麻豆久久婷婷| 黄片播放在线免费| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 色播在线永久视频| 免费看不卡的av| 婷婷色综合大香蕉| a级毛片黄视频| 久久精品国产亚洲av涩爱| 日韩一卡2卡3卡4卡2021年| 成年人午夜在线观看视频| 人妻一区二区av| 亚洲伊人久久精品综合| 午夜两性在线视频| 香蕉丝袜av| 一级毛片电影观看| 你懂的网址亚洲精品在线观看| 欧美另类一区| 亚洲图色成人| 成人手机av| 国产在视频线精品| 高清视频免费观看一区二区| 成年女人毛片免费观看观看9 | 最近中文字幕2019免费版| www.精华液| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| 99久久综合免费| 两个人免费观看高清视频| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免| 欧美黄色淫秽网站| 国产伦理片在线播放av一区| 免费看十八禁软件| 一区二区三区乱码不卡18| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网 | 国产亚洲欧美精品永久| 男人舔女人的私密视频| 免费人妻精品一区二区三区视频| 一本综合久久免费| 欧美日本中文国产一区发布| svipshipincom国产片| 国产高清视频在线播放一区 | 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 黑人欧美特级aaaaaa片| 91成人精品电影| 免费看十八禁软件| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱| 大码成人一级视频| 久久人人97超碰香蕉20202| 久久久亚洲精品成人影院| 日日爽夜夜爽网站| 久久久欧美国产精品| 国产成人av教育| 水蜜桃什么品种好| 日韩中文字幕欧美一区二区 | www日本在线高清视频| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频| 只有这里有精品99| 精品久久久精品久久久| 久久久久精品人妻al黑| av片东京热男人的天堂| 黄色视频在线播放观看不卡| 香蕉丝袜av| 老司机在亚洲福利影院| 捣出白浆h1v1| 国产亚洲欧美精品永久| www.自偷自拍.com| 欧美精品一区二区免费开放| 亚洲精品第二区| 欧美日韩综合久久久久久| 青春草亚洲视频在线观看| 欧美av亚洲av综合av国产av| 国产成人91sexporn| 超碰97精品在线观看| 天天操日日干夜夜撸| 91精品国产国语对白视频| 91麻豆精品激情在线观看国产 | 亚洲成人免费av在线播放| 只有这里有精品99| 女性被躁到高潮视频| 国产一区二区三区综合在线观看| 欧美久久黑人一区二区| 人妻 亚洲 视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产av蜜桃| 久久天躁狠狠躁夜夜2o2o | 1024视频免费在线观看| 一本综合久久免费| 国产精品一区二区在线观看99| 久久久精品94久久精品| av欧美777| 日韩一卡2卡3卡4卡2021年| 亚洲精品中文字幕在线视频| 国产精品偷伦视频观看了| 亚洲欧美清纯卡通| 男人操女人黄网站| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密 | 亚洲精品久久成人aⅴ小说| 亚洲av男天堂| 黑人巨大精品欧美一区二区蜜桃| 免费在线观看黄色视频的| 国产精品久久久久成人av| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 中文乱码字字幕精品一区二区三区| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 成年动漫av网址| 国产97色在线日韩免费| 丝瓜视频免费看黄片| 亚洲综合色网址| 人人妻,人人澡人人爽秒播 | 亚洲熟女毛片儿| 亚洲欧美精品自产自拍| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 久久国产精品人妻蜜桃| kizo精华| 国产日韩欧美视频二区| 国产一区二区激情短视频 | 国产精品.久久久| 搡老乐熟女国产| 男女无遮挡免费网站观看| 一级毛片 在线播放| 男人舔女人的私密视频| 一区在线观看完整版| 热99久久久久精品小说推荐| 亚洲人成电影免费在线| 中文字幕制服av| 国产色视频综合| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 一区福利在线观看| 777米奇影视久久| 亚洲伊人色综图| 美女主播在线视频| 亚洲精品国产av蜜桃| 亚洲色图 男人天堂 中文字幕| 国产黄色视频一区二区在线观看| 男女下面插进去视频免费观看| 午夜91福利影院| 亚洲国产日韩一区二区| 久久久久久久精品精品| 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 少妇的丰满在线观看| 老熟女久久久| 国产麻豆69| 亚洲专区中文字幕在线| 午夜老司机福利片| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 一区福利在线观看| 超色免费av| 欧美人与性动交α欧美软件| 久久精品国产亚洲av高清一级| netflix在线观看网站| 日韩,欧美,国产一区二区三区| 制服人妻中文乱码| kizo精华| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 国产一区二区 视频在线| kizo精华| 色视频在线一区二区三区| 一本一本久久a久久精品综合妖精| 久久久精品94久久精品| 亚洲第一青青草原| 我的亚洲天堂| 大香蕉久久网| netflix在线观看网站| 国产免费现黄频在线看| 国产av国产精品国产| 捣出白浆h1v1| 亚洲中文日韩欧美视频| 性高湖久久久久久久久免费观看| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 在线天堂中文资源库| 亚洲色图综合在线观看| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频 | 国产又爽黄色视频| 午夜久久久在线观看| 日韩欧美一区视频在线观看| 一级毛片电影观看| 国产精品久久久人人做人人爽| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| 国产亚洲午夜精品一区二区久久| kizo精华| 久久青草综合色| 精品少妇黑人巨大在线播放| 亚洲,一卡二卡三卡| 美女高潮到喷水免费观看| 亚洲精品久久午夜乱码| 90打野战视频偷拍视频| 夜夜骑夜夜射夜夜干| 肉色欧美久久久久久久蜜桃| 在现免费观看毛片| 免费观看人在逋| 又黄又粗又硬又大视频| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 久久精品亚洲av国产电影网| 婷婷色av中文字幕| 国产成人一区二区三区免费视频网站 | 久久精品国产a三级三级三级| 视频区图区小说| 男人舔女人的私密视频| 在线av久久热| 欧美黑人精品巨大| 久久ye,这里只有精品| 亚洲男人天堂网一区| 精品少妇久久久久久888优播| 99re6热这里在线精品视频| 久久久久久久久免费视频了| 成人免费观看视频高清| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 秋霞在线观看毛片| 欧美人与性动交α欧美精品济南到| 在线亚洲精品国产二区图片欧美| 精品人妻熟女毛片av久久网站| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 五月开心婷婷网| 少妇猛男粗大的猛烈进出视频| 天天添夜夜摸| 老司机亚洲免费影院| 老鸭窝网址在线观看| 侵犯人妻中文字幕一二三四区| 国产黄频视频在线观看| 女人被躁到高潮嗷嗷叫费观| 七月丁香在线播放| 一区福利在线观看| 青青草视频在线视频观看| 五月开心婷婷网| 人妻人人澡人人爽人人| 人成视频在线观看免费观看| 久久久精品区二区三区| 亚洲欧洲国产日韩| 亚洲成人免费av在线播放| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 50天的宝宝边吃奶边哭怎么回事| 久久女婷五月综合色啪小说| 欧美人与性动交α欧美软件| 久久天躁狠狠躁夜夜2o2o | 性少妇av在线| 国产免费又黄又爽又色| 亚洲国产精品一区三区| 水蜜桃什么品种好| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美| 一本—道久久a久久精品蜜桃钙片| 午夜影院在线不卡| 国产高清videossex| 久久久久精品人妻al黑| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o | 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 久久热在线av| 亚洲中文av在线| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 悠悠久久av| 女人精品久久久久毛片| 亚洲人成网站在线观看播放| 亚洲精品av麻豆狂野| 色网站视频免费| 丝袜脚勾引网站| 国产成人影院久久av| 国产成人欧美| 亚洲精品乱久久久久久| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 最近最新中文字幕大全免费视频 | 人人妻人人澡人人看| 国产在线观看jvid| 久久国产精品人妻蜜桃| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 丝袜人妻中文字幕| 在线亚洲精品国产二区图片欧美| 精品欧美一区二区三区在线| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区免费| 成在线人永久免费视频| 国产1区2区3区精品| 成人免费观看视频高清| 99热国产这里只有精品6| 大话2 男鬼变身卡| 9191精品国产免费久久| 成人免费观看视频高清| 50天的宝宝边吃奶边哭怎么回事| 欧美在线黄色| 首页视频小说图片口味搜索 | 人成视频在线观看免费观看| 女性被躁到高潮视频| 国产女主播在线喷水免费视频网站| 久久久久网色| 国产女主播在线喷水免费视频网站| 2021少妇久久久久久久久久久| 中文字幕精品免费在线观看视频| 中文字幕色久视频| 久久精品国产a三级三级三级| 99精品久久久久人妻精品| 亚洲精品国产av蜜桃| 18禁黄网站禁片午夜丰满| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠久久av| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 老司机在亚洲福利影院| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 久久99一区二区三区| 国语对白做爰xxxⅹ性视频网站| 久久中文字幕一级| 无限看片的www在线观看| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 国产熟女欧美一区二区| 色播在线永久视频| 老司机影院毛片| 美女福利国产在线| 视频区欧美日本亚洲| 午夜福利视频精品| 视频区欧美日本亚洲| 丝袜美足系列| 久久人妻福利社区极品人妻图片 | 大陆偷拍与自拍| 在线观看免费高清a一片| 国产欧美亚洲国产| 久久精品国产综合久久久| 亚洲九九香蕉| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 国产成人精品无人区| 一边摸一边抽搐一进一出视频| 男女免费视频国产| 亚洲精品日本国产第一区| 国产成人精品无人区| 欧美精品亚洲一区二区| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 日本午夜av视频| 日韩中文字幕欧美一区二区 | 晚上一个人看的免费电影| 国产成人一区二区三区免费视频网站 | 婷婷色av中文字幕| 国产精品偷伦视频观看了| 999精品在线视频| 国产精品秋霞免费鲁丝片| 亚洲av在线观看美女高潮| 亚洲av男天堂| 美女午夜性视频免费| √禁漫天堂资源中文www| 国产欧美日韩一区二区三 | 成年人午夜在线观看视频| 成人国产一区最新在线观看 | 午夜免费观看性视频| 一区二区三区四区激情视频| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 国产97色在线日韩免费| 欧美黑人欧美精品刺激| netflix在线观看网站| 只有这里有精品99| 天天影视国产精品| 免费一级毛片在线播放高清视频 | 国产xxxxx性猛交| 看免费av毛片| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| 国产亚洲欧美精品永久| 国产欧美日韩精品亚洲av| 丁香六月欧美| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 午夜老司机福利片| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| 国产精品一区二区在线观看99| 9热在线视频观看99| 精品一区二区三区四区五区乱码 | 日韩av免费高清视频| 国产一区二区激情短视频 | 亚洲第一青青草原| 热99国产精品久久久久久7| 欧美日韩福利视频一区二区| h视频一区二区三区| netflix在线观看网站| 久久性视频一级片| 日韩 欧美 亚洲 中文字幕| 精品高清国产在线一区| 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 十八禁人妻一区二区| 久久国产精品男人的天堂亚洲| 免费在线观看日本一区| 亚洲黑人精品在线| 极品少妇高潮喷水抽搐| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 无遮挡黄片免费观看| 日日爽夜夜爽网站| 亚洲精品久久久久久婷婷小说| 久久久国产欧美日韩av| 丁香六月欧美| 超色免费av| 亚洲国产看品久久| 色播在线永久视频| 如日韩欧美国产精品一区二区三区| 精品一区二区三卡| 精品国产国语对白av| 麻豆国产av国片精品|