• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive analysis of relativistic embedded class-I exponential compact spheres in f(R,φ) gravity via Karmarkar condition

    2023-10-11 08:35:08ZoyaAsgharAdnanMalikFarasatShamirandFatemahMofarreh
    Communications in Theoretical Physics 2023年10期

    Zoya Asghar,Adnan Malik,M Farasat Shamir and Fatemah Mofarreh

    1 National University of Computer and Emerging Sciences,Lahore Campus,Pakistan

    2 School of Mathematical Sciences,Zhejiang Normal University,Jinhua,Zhejiang,China

    3 Department of Mathematics,University of Management and Technology,Sialkot Campus,Pakistan

    4 Mathematical Science Department Faculty of Science Princess Nourah bint Abdulrahman University,Riyadh 11546,Saudi Arabia

    Abstract In this article,we use the prominent Karmarkar condition to investigate some novel features of astronomical objects in the f(R,φ)gravity;R and φ represent the Ricci curvature and the scalar field,respectively.It is worth noting that we classify the exclusive set of modified field equations using the exponential type model of the f(R,φ) theory of gravity f(R,φ)=φ(R+α(eβR-1)).We show the embedded class-I approach via a static,spherically symmetric spacetime with an anisotropic distribution.To accomplish our objective,we use a particular interpretation of metric potential (grr) that has already been given in the literature and then presume the Karmarkar condition to derive the second metric potential.We employ distinct compact stars to determine the values of unknown parameters emerging in metric potentials.To ensure the viability and consistency of our exponential model,we execute distinct physical evolutions,i.e.the graphical structure of energy density and pressure evolution,mass function,adiabatic index,stability,equilibrium,and energy conditions.Our investigation reveals that the observed anisotropic findings are physically appropriate and have the highest level of precision.

    Keywords: stellar structures,metric potentials,f(R,φ) theory of gravity,Karmarkar condition

    1.Introduction

    The rapid evolution of the cosmos is one of the most intriguing dimensions of study in astrophysics in recent years.According to astrophysicists,the Universe?s energy structure is 20% dark matter (DM),76% dark energy (DE),and 4% ordinary matter(OM) [1–4].Whereas DM pressure is nearly nonexistent compared to the DE?s strong negative pressure.Cosmologists believe that dark energy is the primary factor causing the Universe?s enigmatic evolution.Although general relativity(GR) offers a basic concept of gravitational notions and produces excellent results in a relativistic theory,it is not sufficient when dealing with difficulties like the unknown DE?s exotic nature.These gravitational theories are acknowledged as the modified theories of gravity and the most suitable replacement for GR.Various modified theories available in the literature include f(R),f(R,T),f(R,φ),f(R,G),f(R,φ,X) and f(R,RαβRαβ,φ)gravitational theories[5–31].It is interesting to note that astronomers plan to study the collapsing attributes of celestial configurations with the asset of modified gravitational theories.Buchdahl [13] introduced the f(R) gravity,which modifies the Einstein action by utilizing any arbitrary Ricci scalar function.The exponential-type gravity models were introduced by Cognola et al [32] to investigate the physical attributes of astronomical formations.Harko [7] introduced the f(R,T) gravity theory,which is an amalgamation of the curvature or matter.Sharif and Ikram [33] presented f(G,T) gravity and probed the stability attributes.Capozziello and Laurentis[34],who also talked about f(R,φ) gravity,first proposed the scalar field in action.They argued about a unique method for resolving and addressing GR?s flaws.The nature of relativistic compact structures in the f(R,φ)gravity was studied by Shamir,and Malik [35].Various literature has been available related to scalar-tensor theories [36–41].The modified f(R,φ) gravity,which specifies the structure of the inner space,was studied by Malik [42] to determine how charged compact stars behave.

    Cosmologists illustrated various theories about the formation of stellar objects.Gravitational forces occurring at the core of compact stars are intensely exothermic.This reaction occurs when the interior pressure of the realistic structure falls to preserve the pressure against the exterior gravitational implosion.Distinct types of intense stars,including white dwarfs,gravastars,neutron stars,black holes,or quark stars,appeared due to the imploding stars.These stars are categorized according to their masses and are an intriguing issue within the background of modified theories.Although the precise nature of these things is yet unclear,one might surmise that they are massive objects with small radii.To explore the exotic nature of such stellar configuration models,we require an accurate outcome to Einstein field equations(EFE),which was first computed by Schwarzschild [43] in 1916.Afterward,Tolman [44] and Oppenheimer [45] provided a detailed review of celestial structures.They claimed that the physical properties of astrophysical configurations demonstrated the interaction between inner pressure and gravitational force,which preserves an equilibrium condition.Baade and Zwicky [46] were among the first researchers to discuss the idea of cosmic star structure.Later,Ruderman [47]investigated the celestial sphere in the source of anisotropic fluid and declared that the density of nuclear elements shows anisotropic behavior at the center.A perfect isotropic fluid was believed to be the basis of stellar systems in the formation of astrophysical structures.These stars are classified as stellar,isotropic,spherically symmetric,and highly heavy objects.But still,some physical elements of compact stars may not be expressed by this isotropic feature.In astronomy,the anisotropic fluid is gaining much attention as a worthy substitute for isotropic matter distribution.Anisotropy is assumed as the fluid due to the combination of distinct types of fluids,magnetic field,viscosity,rotation,etc.Bowers and Liang[48]discussed the notion of non-zero anisotropy in the creation of stars.Furthermore,Ruderman [47] was the first to propose that the celestial structure?s high density illustrates the anisotropy at the stellar object?s core.Various literature has been presented in the context of anisotropic distribution[49–53].Also,the anisotropic pressures are categorized into radial and transverse distributions.

    Astrophysicists used the EFE explanatory method to investigate a four-dimensional manifold family that transforms into Euclidean space for a well-behaved astronomical structure. Nash [54] discovered the first isometric embedding theorem.Later,Gunther [55] provided a modified version of this theorem.Gupta and Sharma [56] utilized the plane metric to obtain the embedded class method.The Karmarkar condition is a differential equation that the embedded classes develop in spherically symmetric spacetime that comprises both the potential components,i.e.grrand gtt.The mentioned condition was introduced by Karmarkar [57] and is defined as R1414R2323=R1212R3434+R1224R1334.There is a vast amount of literature on the Karmarkar condition.Maurya et al [58] and Bhar et al [59]examined the response of astrophysical objects in the analysis of GR by using Karmarkar and embedded class-I conditions.Sharif and Saba [60] explored the Karmarkar condition in f(G)gravity along with the anisotropic charged solution,and their results are symmetric and consistent.Naz et al [61] studied the possibility of a unique variety of embedding class-I results of astrophysical objects by utilizing the Karmarkar constraints in the f(R) gravity.Asghar et al [62] probed the different stellar structures in f(R,T)gravity with the help of the Karmarkar condition.Rahaman et al [63] examined the embedding class-I solution for studying the anisotropic structures by implementing the Karmarkar requirement in the f(R,T) gravity.Singh et al[64] apply an embedding approach to explore the graphical features of sphere configurations in f(R,T) gravity.After getting motivated by the prior literature,we further extend the Asghar et al [62] notion in modified f(R,φ) gravity by implementing the Karmarkar condition to examine the physical attributes of various stellar stars.For the present analysis,we consider the exponential f(R,φ)gravity model,i.e.f(R,φ)=φ(R+α(e-βR-1))[32].Also,using a precise solution for the metric potential grr[65] that has already been published in the literature,we employ the well-known Karmarkar condition to calculate the second metric potential.

    The format of our profile is as follows: in the next part,the modified EFE?s,as well as a realistic model of f(R,φ)theory,are explored in the light of the Karmarkar condition.Section 3 is concerned with junction conditions for obtaining constants by contrasting the internal geometry to Schwarzschild?s external spacetime.The graphical study is described in section 4,which includes the anisotropic component,stability analysis,Tolman–Oppenheimer–Volkoff equation (TOV),equation of state parameters,mass–radius connection,and surface redshift analysis.We finalized the key findings in the concluding portion.

    2.Modified f(R,φ) field equations via Karmarkar condition

    The scalar-tensor theories [66] are a fascinating group of extended theories of gravity.This subsection provides an overview of the f(R,φ)theory of gravity and discusses how it applies to static spherically symmetric stellar structures.The following effective action results in a wide range of higherorder scalar-tensor theories [67] as

    Fig. 1.Behavior of metric potential grr and gtt.

    Here,f(R,φ) is a function that depends on curvature R and scalar field φ.Also,-g illustrates the determinant of gηζ.The EFE?s of f(R,φ) are derived by varying the action in equation (1) concerning the metric tensor.

    Here,ν and λ are only the functions of r.Moreover,to investigate the consistency and equilibrium of the compact system,we examine an exponential model of the f(R,φ)gravity,which assists us in getting a comprehensive performance of the formation of realistic structures.The exponential f(R,φ) gravity model [32] is depicted as

    Here,α and β are unknown parameters and φ ≡rχ.We assume w(φ)=w0φm,where m can be any non-zero value.It is worth noting that the consideration of the Klein–Gordon equation (3) is required for the relevant outcomes.Also,the spacetime metric reveals the class of an embedded class-I and whether it fulfilled the prominent Karmarkar condition [57],which is stated as

    with R2323≠0.By substituting the Riemann tensor components into equation (7),we get the succeeding differential form

    The integration of the above gives the following form of equation

    where,A and B are integrating constants.We presume a specific value of the metric potential grr=eλ(r)[65] to calculate the results of embedded class-I

    where,a and b can be any non-zero constant parameters.When equation(10)is substituted for equation(9),the metric potential eνhas the value

    Furthermore,to investigate the implications of our chosen f(R,φ)model,we examined the essential requirements for the metric tensors of static spherically symmetric spacetime,namely eλ(0)=1 and((eλ(r)) ′)r=0=0.The physical structure of grrought to be free of singularities,uniform,and monotonically increasing for a realistic f(R,φ) gravity model.Figure 1 shows the physical nature of eλ(r),which increases monotonically and attains its highest value towards the boundary.Hence,using equations (6),(10),and (11),themodified f(R,φ) field equations stated in equation (2) yields

    Table 1.Unknown parameters of the compact structures.

    Here,

    3.Junction conditions

    Whatever the geometry of the star is,either derived internally or externally,the intrinsic boundary metric remains the same.Thus,ensuring that the elements of the metric tensor irrespective of the coordinate system across the surface of the boundary will remain continuous.No doubt,in GR,the Schwarzschild solutions have been pioneers in guiding us to choose from the various possibilities of the junction conditions while exploring the celestial stars.Now when we come to the case of modified theories of gravity,modified TOV equations with zero pressure and energy density,the solution outside the star can vary from Schwarzschild?s solution.However,it is expected that the solutions of the modified TOV equations [44,45] with energy density and pressure(maybe non-zero)may adjust Schwarzschild?s solution with some distinct preference of f(R,φ)gravity model.Perhaps this is the reason that Birkhoff?s theorem may not hold in modified gravity [68].The detailed examination of the issue in f(R,φ) gravity can be an interesting task.Many authors have assumed the Schwarzschild solution for this purpose giving some impressive outcomes [1–71].Now to solve the field equations under the restricted boundary essentials at r=R,the pressure pr=0,the internal metric (5) needs these matching conditions.To resolve the EFE with the limited restriction at r=R,we contrast our inner geometry to the exterior Schwarzschild solution,which is described by

    where,M is the mass of compact sphere.The continuity of metric parameters of equation (5) at r=R emerges in the governing equations:

    In this case,(+) and (-) represent the external and internal structures.We use equations (5),(12),and (13) to calculate the values of the parameters as

    Fig. 2.Graphical variations of ρ,pr and pt for α=0.01,χ=1×107,w0=1,m=1,β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12)and β=1.5 for (S6,S9).

    Table 1 contains the constants a,b,A and B for the mass and radius of the selected stellar spheres.Furthermore,it is imperative to emphasize that the following constraints should be met for celestial stars to behave properly:

    ? The behavior of ρ,prand ptshould be optimistic,continuous,and maxima in the apex.

    ? Each one of the energy parameters should be accomplished.

    ? The equilibrium consistency requirement must be met by all of the forces.

    4.Physical analysis of f(R,φ) gravity model

    Further,we explore the pictorial behavior of the sphere objects under discussion within the light of the f(R,φ)gravity model.We examine various physical investigations,including density,pressure components,mass component,surface redshift,stability,energy and equilibrium conditions.All features are important in describing the characteristics of compact objects.The free parameter β is chosen for the considered stars in such a way i.e.β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12) and β=1.5 for (S6,S9).

    4.1.Energy density and pressure progression

    Here,we examine how the f(R,φ) gravity model affects the graphical representations of the ρ,prand pt.Figure 2 makes it abundantly evident that all graphs represent optimistic behavior.Also,these graphs reach their peak values at the core and contact the surface at the border,demonstrating that they behave comprehensively.

    As part of our discussion,figure 3 displays the graphs for the gradients of ρ,prand pt.These attributes reflect the maximum compactness characteristic of astrophysical objects.

    4.2.Anisotropy

    Here,we explore its graphical response of the anisotropy parameter,defined as Δ=pt-pr[76].Anisotropic factors confirm the validity of stellar objects.Figure 4 shows that the anisotropy component for a given f(R,φ) gravity model demonstrates repulsive behavior when Δ>0.This suggests that our system behaves appropriately and is reliable.

    4.3.Tolman-Oppenheimer-Volkoff equation for f(R,T) gravity

    Next,we investigate the equilibrium essential of the f(R,φ)gravity model for the ensuing forces: hydrostatics,anisotropic,and gravitational.To accomplish this,we evaluate the TOV equation [44,45] assuming as

    Fig. 4.Evolution of anisotropy for α=0.01,χ=1×107,w0=1,m=1,β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12)and β=1.5 for (S6,S9).

    Fig. 5.Behavior ofhF,gF andaF for α=0.01,χ=1×107,w0=1,m=1,β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12)and β=1.5 for (S6,S9).

    The total sum of the four forces listed above should equal zero for a realistic model of f(R,φ)gravity.It suggests that all of these forces for an equilibrium scenario cancel out each other?s effects and preserve the balanced condition,i.e.

    The right panel of figure 5 makes it quite explicit that all forces are fulfilled by the appropriate stability criteria.

    4.4.Energy conditions

    Energy conditions play a major contribution in confirming the validity of compact structures.The following factors comprise the well-known energy conditions: There are four categories of energy:dominant energy conditions(DEC),null energy conditions (NEC),weak energy conditions (WEC),and strong energy conditions(SE)C,defined as

    Figure 6 illustrates that all attributes are fully served for the investigated exponential f(R,φ) gravity model.

    4.5.Equation of state (EoS) factors

    The condition 0

    4.6.Mass-radius function,compactness parameter and surface redshift progression

    The evolution of the mass distribution demonstrates that mass is constant at the core,i.e.M(r) →0.Also,the mathematical version of the compactness metric U(r)is provided as [79]

    The surface redshift function Zs is described as

    Fig. 6.Evolution of energy bonds for α=0.01,χ=1×107,w0=1,m=1,β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12)and β=1.5 for (S6,S9).

    Figure 8 shows a graphical representation of the mass function,compactness parameter,and surface redshift.The plots of these factors show monotonically rising behavior.These graphs confirm the consistent nature of the realistic structures.

    4.7.Stability analysis

    The stability analysis in the f(R,φ)gravity is discussed in this section.The causality requirement is essential in the topic of stellar spheres.When the f(R,φ) model shows an inner configuration,the sound velocity of the pressure has to be smaller than the speed of the light.The causality element of pressure waves emerges in radial and transverse dimensions in anisotropic systems.All elements should be constrained to the velocity of context to produce an accurate f(R,φ) framework.The following phrase serves as the basis for the stability condition.

    4.8.Adiabatic index

    We also investigate the stiffness of EoS by examining the adiabatic factor.The adiabatic element value should be higher thanfor a steady structure.The adiabatic parameter proportion is denoted as

    Fig. 8.Behavior of M (r),U (r),and Zs for α=0.01,χ=1×107,w0=1,m=1,β=1 for(S1,S2,S3,S4,S5,S7,S8,S10,S11,S12)and β=1.5 for (S6,S9).

    Table 2.The numerical values of adiabatic index d critical adiabatic index for the different compact structures.

    Our selected exponential f(R,φ) gravity model,as described in figure 10,demonstrates the stable nature of stellar formations.The stability of the model,taking into account the relativistic adiabatic index,requires further analysis due to potential instabilities arising from relativistic corrections to the adiabatic index,denoted as γ [82,83].To address this issue,a more rigorous condition was proposed in[84],which introduces the concept of a critical value,γcrit,for the adiabatic index.This critical value depends on the amplitude of the Lagrangian displacement from equilibrium and the compactness factor U(r) ≡The amplitude of the Lagrangian displacement is characterized by the parameter ζ.A specific form of this parameter allows for the expression of the critical relativistic adiabatic index.

    The stability condition for the model is expressed as γ ≥γcrit,as shown in table 2.Notably,the condition γ ≥γcritis consistently met in all cases.Thus,we can confidently assert that the current toy model remains stable when subjected to local radial perturbations induced by relativistic corrections.

    4.9.Comparison

    Shamir and Malik [85] investigated the behavior of stellar structures in f(R,φ) theory of gravity by using three stars namely Her X-1,SAX J 1808.4-3658,and 4U 1820-30.In our recent work,we have investigated the behavior of stars for twelve different stars,which is more comprehensive analysis than [85].Malik [86] investigated the behavior of charged compact stars in the modified f(R,φ) theory of gravity,by taking four stars like Her X-I,Cen X-III,EXO 1785-248 and LMC X-IV.In our current analysis,we investigated the nature of stellar structures by using the Karmarkar conditions for twelve stars,which makes our work more generalized and comprehensive than the previous investigation.

    Fig. 10.Behavior of γ for α=0.01,χ=1×107,w0=1,m=1,β=1 for (S1,S2,S3,S4,S5,S7,S8,S10,S11,S12) and β=1.5 for(S6,S9).

    5.Conclusion

    ? The consistency of ρ,prand ptfor the model under consideration is shown in figure 2.The behavior of these graphs reaches its apex in the core and then declines towards the border.

    ? Figure 3 illustrates the gradient of ρ,prand pt.These graphs provide non-positive depictions,confirming that our findings are reliable.

    ? Figure 4 demonstrates that Δ>0,indicating that anisotropic factor is repulsive in nature.This observation confirms the occurrence of astrophysical stars.

    ? All of the forceshF,gF andaF are steady and display equilibrium manners,as seen in figure 5.

    ? Figure 6 represents the energy condition for the selected f(R,φ) model.Also,it is worth mentioning that our selected model confirms all of the relevant requirements.

    ? It is clear from figure 7 that the composition of EoS ratios is uniform.

    ? Figure 8 clearly shows the monotonically increasing nature of the mass function,compactness parameter,and surface redshift.

    ? The sound velocity componentsandexist among[0,1]for the exponential f(R,φ)model.Figure 9 shows that the causality conditions are appropriate for the proposed celestial configuration.

    ? The satisfactory nature of the adiabatic parameter can be noticed in figure 10.

    Thus,our research revealed a consistent behavior for all required conditions and well-fitting behavior in the presence of a realistic structure.Also,it is worth saying that our obtained consequences are identical to the conclusions investigated by Asghar et al [62] in the f(R,T) gravity scenario.

    Acknowledgments

    Adnan Malik acknowledges the Grant No.YS304023912 to support his Postdoctoral Fellowship at Zhejiang Normal University,China.The author,Fatemah Mofarreh,expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R27),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| 无遮挡黄片免费观看| 国产一区有黄有色的免费视频| 丝袜喷水一区| 欧美97在线视频| 另类亚洲欧美激情| www.av在线官网国产| 国产av精品麻豆| 久久久久国内视频| 久久久精品国产亚洲av高清涩受| bbb黄色大片| 操美女的视频在线观看| 一级片'在线观看视频| 天堂8中文在线网| 日韩免费高清中文字幕av| 咕卡用的链子| 亚洲va日本ⅴa欧美va伊人久久 | 少妇 在线观看| 一区二区三区激情视频| 久久人人97超碰香蕉20202| 日韩视频在线欧美| 一二三四社区在线视频社区8| 中文字幕人妻丝袜制服| 国产成人影院久久av| 欧美日韩福利视频一区二区| 国产成人免费观看mmmm| 久久国产精品人妻蜜桃| 国产亚洲精品一区二区www | av福利片在线| 国产成人欧美在线观看 | 国产精品一二三区在线看| 美女视频免费永久观看网站| 在线观看人妻少妇| 在线精品无人区一区二区三| 亚洲中文av在线| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久5区| 久久免费观看电影| 99香蕉大伊视频| 婷婷丁香在线五月| 久久99热这里只频精品6学生| 国产精品久久久久成人av| 在线观看www视频免费| 亚洲少妇的诱惑av| 午夜影院在线不卡| 考比视频在线观看| 日韩熟女老妇一区二区性免费视频| 满18在线观看网站| 日本av免费视频播放| 午夜老司机福利片| 一级片'在线观看视频| 精品第一国产精品| netflix在线观看网站| 我要看黄色一级片免费的| 久久人人爽人人片av| 黑人巨大精品欧美一区二区蜜桃| 午夜影院在线不卡| 一二三四社区在线视频社区8| 国产精品久久久久久人妻精品电影 | 久久 成人 亚洲| netflix在线观看网站| 建设人人有责人人尽责人人享有的| 国产在线一区二区三区精| 丁香六月天网| 久久久久精品人妻al黑| 国产有黄有色有爽视频| 久久天躁狠狠躁夜夜2o2o| 日本vs欧美在线观看视频| 欧美精品av麻豆av| 一边摸一边抽搐一进一出视频| av线在线观看网站| 捣出白浆h1v1| 一级片免费观看大全| 国产国语露脸激情在线看| 女人精品久久久久毛片| 制服人妻中文乱码| 亚洲自偷自拍图片 自拍| 自线自在国产av| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 国产区一区二久久| 高潮久久久久久久久久久不卡| 无限看片的www在线观看| 亚洲三区欧美一区| 在线观看人妻少妇| 欧美黄色片欧美黄色片| 性色av乱码一区二区三区2| 亚洲色图 男人天堂 中文字幕| 桃花免费在线播放| 啦啦啦中文免费视频观看日本| 岛国在线观看网站| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 久久热在线av| 亚洲精品国产av成人精品| 一边摸一边做爽爽视频免费| 亚洲av成人不卡在线观看播放网 | 国产国语露脸激情在线看| 精品第一国产精品| 一级a爱视频在线免费观看| 亚洲伊人色综图| 亚洲视频免费观看视频| 精品免费久久久久久久清纯 | 在线亚洲精品国产二区图片欧美| 国产欧美日韩一区二区三 | 91麻豆av在线| 中文字幕高清在线视频| 侵犯人妻中文字幕一二三四区| 女人高潮潮喷娇喘18禁视频| 老汉色av国产亚洲站长工具| 亚洲五月婷婷丁香| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 精品福利观看| 涩涩av久久男人的天堂| 人妻一区二区av| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 啦啦啦在线免费观看视频4| 97精品久久久久久久久久精品| 久久久国产欧美日韩av| 国产精品一区二区在线观看99| 制服诱惑二区| 国产人伦9x9x在线观看| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区| 视频在线观看一区二区三区| 大码成人一级视频| 精品高清国产在线一区| 三上悠亚av全集在线观看| 人妻 亚洲 视频| 天堂中文最新版在线下载| 老司机午夜十八禁免费视频| 精品高清国产在线一区| 在线亚洲精品国产二区图片欧美| 午夜福利,免费看| 丰满迷人的少妇在线观看| 亚洲avbb在线观看| 午夜日韩欧美国产| 欧美日韩黄片免| 成年动漫av网址| 国产免费现黄频在线看| 这个男人来自地球电影免费观看| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 黑人操中国人逼视频| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 天堂中文最新版在线下载| 国产成人免费观看mmmm| 精品少妇内射三级| 国产欧美日韩一区二区三区在线| 久久久欧美国产精品| 免费观看av网站的网址| 午夜老司机福利片| 国产1区2区3区精品| 国产精品一二三区在线看| 亚洲成人国产一区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产av新网站| 国精品久久久久久国模美| 国产精品久久久久久精品古装| 免费少妇av软件| 女人久久www免费人成看片| 香蕉国产在线看| 国产精品免费大片| 色老头精品视频在线观看| 亚洲全国av大片| 大香蕉久久网| 中文字幕人妻熟女乱码| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 91麻豆精品激情在线观看国产 | bbb黄色大片| 天堂8中文在线网| 久久久久网色| 91成人精品电影| 黄色视频,在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 精品国内亚洲2022精品成人 | 久久中文字幕一级| 国产97色在线日韩免费| 成人影院久久| 亚洲午夜精品一区,二区,三区| 亚洲伊人色综图| 国产精品.久久久| tocl精华| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 国产伦人伦偷精品视频| 色婷婷av一区二区三区视频| 精品国产国语对白av| 丁香六月天网| 国产在线免费精品| 国产成人av教育| 国产成人a∨麻豆精品| 亚洲国产成人一精品久久久| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 国产亚洲午夜精品一区二区久久| 亚洲国产精品成人久久小说| 久久狼人影院| 亚洲欧美一区二区三区黑人| 国产97色在线日韩免费| 岛国在线观看网站| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 十八禁人妻一区二区| 欧美中文综合在线视频| 97精品久久久久久久久久精品| 91麻豆精品激情在线观看国产 | 淫妇啪啪啪对白视频 | 黑丝袜美女国产一区| 99热网站在线观看| 亚洲国产欧美网| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 9色porny在线观看| 久久久久久免费高清国产稀缺| 亚洲国产日韩一区二区| 国产精品偷伦视频观看了| 高潮久久久久久久久久久不卡| 久久久久久人人人人人| 天天添夜夜摸| 亚洲综合色网址| 狂野欧美激情性bbbbbb| 国产主播在线观看一区二区| 十八禁人妻一区二区| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 成在线人永久免费视频| 久久久久久亚洲精品国产蜜桃av| av不卡在线播放| 人妻 亚洲 视频| 成人黄色视频免费在线看| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 国产成+人综合+亚洲专区| 波多野结衣av一区二区av| 美女脱内裤让男人舔精品视频| 日本一区二区免费在线视频| av电影中文网址| 美女中出高潮动态图| 免费高清在线观看视频在线观看| 制服人妻中文乱码| 国产高清视频在线播放一区 | 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 十分钟在线观看高清视频www| 一级毛片女人18水好多| 日韩欧美国产一区二区入口| 在线看a的网站| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 亚洲第一青青草原| 亚洲人成电影免费在线| 国产免费视频播放在线视频| 国产亚洲av片在线观看秒播厂| cao死你这个sao货| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 一本一本久久a久久精品综合妖精| 99香蕉大伊视频| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| 久久九九热精品免费| 久久 成人 亚洲| h视频一区二区三区| 午夜精品久久久久久毛片777| 一区二区三区乱码不卡18| 日韩电影二区| 亚洲天堂av无毛| netflix在线观看网站| 午夜免费观看性视频| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 中文字幕制服av| 国产精品自产拍在线观看55亚洲 | h视频一区二区三区| 中文欧美无线码| 一区二区三区乱码不卡18| 亚洲精品一二三| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 欧美日本中文国产一区发布| 视频区图区小说| 日韩 亚洲 欧美在线| 大香蕉久久网| av网站在线播放免费| 天堂俺去俺来也www色官网| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 日韩有码中文字幕| 手机成人av网站| 黄色视频不卡| av又黄又爽大尺度在线免费看| 日韩中文字幕欧美一区二区| 99精国产麻豆久久婷婷| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 91av网站免费观看| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| av超薄肉色丝袜交足视频| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 日本a在线网址| 黄色a级毛片大全视频| 免费少妇av软件| 69av精品久久久久久 | 啦啦啦视频在线资源免费观看| 天天影视国产精品| 最近最新中文字幕大全免费视频| 国产成人啪精品午夜网站| 自线自在国产av| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| 男女午夜视频在线观看| 1024视频免费在线观看| 午夜免费鲁丝| 日本五十路高清| 久久精品成人免费网站| 真人做人爱边吃奶动态| 天天影视国产精品| 精品国产乱码久久久久久小说| 亚洲午夜精品一区,二区,三区| www.av在线官网国产| 婷婷丁香在线五月| 成人av一区二区三区在线看 | 国产精品免费视频内射| www.av在线官网国产| 2018国产大陆天天弄谢| 性色av一级| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 丝袜喷水一区| 18在线观看网站| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| av一本久久久久| 不卡一级毛片| 亚洲av日韩在线播放| 久久青草综合色| 久久精品熟女亚洲av麻豆精品| 麻豆av在线久日| 亚洲av片天天在线观看| 亚洲国产成人一精品久久久| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 久久99一区二区三区| 久久久久精品国产欧美久久久 | 免费观看人在逋| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 啪啪无遮挡十八禁网站| 午夜91福利影院| 91精品三级在线观看| 国产激情久久老熟女| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看| 亚洲色图综合在线观看| 考比视频在线观看| 亚洲国产av新网站| 国产亚洲一区二区精品| 国产福利在线免费观看视频| 99久久综合免费| 欧美黑人欧美精品刺激| svipshipincom国产片| 中文字幕制服av| 1024视频免费在线观看| 国产成人a∨麻豆精品| 人妻 亚洲 视频| 性少妇av在线| 秋霞在线观看毛片| 亚洲九九香蕉| 一级毛片电影观看| 国产日韩欧美亚洲二区| 亚洲美女黄色视频免费看| 真人做人爱边吃奶动态| 99国产精品免费福利视频| 欧美一级毛片孕妇| 乱人伦中国视频| 欧美日韩成人在线一区二区| 亚洲av片天天在线观看| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 国产成人av教育| 男男h啪啪无遮挡| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 天天操日日干夜夜撸| 色播在线永久视频| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 狂野欧美激情性bbbbbb| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 亚洲av电影在线进入| 啦啦啦视频在线资源免费观看| 国产91精品成人一区二区三区 | 18禁黄网站禁片午夜丰满| 超碰97精品在线观看| 啪啪无遮挡十八禁网站| 超碰成人久久| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 青春草视频在线免费观看| 欧美日韩一级在线毛片| 亚洲熟女毛片儿| 日韩人妻精品一区2区三区| 不卡av一区二区三区| 国产精品自产拍在线观看55亚洲 | av超薄肉色丝袜交足视频| 夜夜骑夜夜射夜夜干| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| 人人妻人人澡人人看| 老司机在亚洲福利影院| av在线app专区| 麻豆国产av国片精品| 国产亚洲一区二区精品| 最新的欧美精品一区二区| 亚洲国产精品成人久久小说| 免费高清在线观看日韩| 日日爽夜夜爽网站| 亚洲av美国av| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 亚洲精华国产精华精| 精品少妇内射三级| av有码第一页| 啦啦啦在线免费观看视频4| www.999成人在线观看| 正在播放国产对白刺激| 91麻豆精品激情在线观看国产 | 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 国产在视频线精品| 国产一区二区激情短视频 | 人人妻人人澡人人爽人人夜夜| 午夜福利视频精品| 亚洲精品粉嫩美女一区| 久久综合国产亚洲精品| 亚洲av美国av| 91老司机精品| 国产伦理片在线播放av一区| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 国产一区二区三区av在线| 久久久精品区二区三区| 欧美成狂野欧美在线观看| 啦啦啦啦在线视频资源| 电影成人av| 超碰成人久久| 亚洲一码二码三码区别大吗| av不卡在线播放| 叶爱在线成人免费视频播放| 一区二区三区乱码不卡18| 国产在线免费精品| 免费一级毛片在线播放高清视频 | 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| av在线app专区| 亚洲欧美成人综合另类久久久| 精品亚洲乱码少妇综合久久| bbb黄色大片| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 亚洲少妇的诱惑av| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 日韩制服骚丝袜av| 亚洲少妇的诱惑av| 最新在线观看一区二区三区| 日本欧美视频一区| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 免费久久久久久久精品成人欧美视频| 午夜免费观看性视频| 国产高清国产精品国产三级| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 天堂8中文在线网| 十八禁网站免费在线| 色视频在线一区二区三区| 黄片小视频在线播放| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| svipshipincom国产片| 亚洲成人国产一区在线观看| 成人18禁高潮啪啪吃奶动态图| 1024香蕉在线观看| 50天的宝宝边吃奶边哭怎么回事| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 天天添夜夜摸| 超碰成人久久| 麻豆av在线久日| 日韩中文字幕欧美一区二区| 中文欧美无线码| 悠悠久久av| 亚洲伊人久久精品综合| 成人av一区二区三区在线看 | 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 少妇粗大呻吟视频| 极品人妻少妇av视频| 久久国产精品男人的天堂亚洲| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 99国产精品免费福利视频| 精品高清国产在线一区| 国产av精品麻豆| 曰老女人黄片| 中国美女看黄片| 欧美日韩黄片免| 中文字幕人妻熟女乱码| 嫩草影视91久久| 亚洲成国产人片在线观看| 狂野欧美激情性xxxx| 亚洲伊人色综图| 大片电影免费在线观看免费| 亚洲精品一二三| 久久国产亚洲av麻豆专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩精品网址| 在线观看免费日韩欧美大片| 中文字幕制服av| 日韩大片免费观看网站| 日韩精品免费视频一区二区三区| 9色porny在线观看| 色94色欧美一区二区| 国产在视频线精品| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 夜夜夜夜夜久久久久| 久久精品熟女亚洲av麻豆精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美精品.| 国产男女内射视频| 久久亚洲国产成人精品v| 精品国产乱子伦一区二区三区 | 一级毛片精品| 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 天天添夜夜摸| 狂野欧美激情性bbbbbb| 国产成人影院久久av| 中文字幕制服av| 视频区图区小说| 巨乳人妻的诱惑在线观看| 久久影院123| 国产成人精品在线电影| 欧美精品啪啪一区二区三区 | 亚洲色图综合在线观看| 成在线人永久免费视频| 丝袜脚勾引网站| 嫁个100分男人电影在线观看| 伊人久久大香线蕉亚洲五| av又黄又爽大尺度在线免费看| 国产伦理片在线播放av一区| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 97在线人人人人妻| 国产亚洲午夜精品一区二区久久| 91精品三级在线观看| 高潮久久久久久久久久久不卡| 成在线人永久免费视频| 少妇 在线观看| 国产一区二区在线观看av| 国产av一区二区精品久久| 91大片在线观看|