• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lyapunov functions for studying global asymptotic stability of two rumor spreading models

    2023-10-11 08:35:24ManhTuanHoang
    Communications in Theoretical Physics 2023年10期

    Manh Tuan Hoang

    Department of Mathematics,FPT University,Hoa Lac Hi-Tech Park,Km29 Thang Long Blvd,Hanoi,Vietnam

    Abstract In a previous work (2018,Commun.Theor.Phys.70,795–802),a new compartment model for the spreading of rumors was introduced and analyzed.However,only the local asymptotic stability of this model was discussed.In the present work,we first provide a rigorous mathematical analysis for the global asymptotic stability (GAS) of the above-mentioned rumor spreading model.By constructing suitable Lyapunov candidate functions,we obtain the GAS of a rumor-free (boundary) equilibrium point and a unique rumor-spreading (positive) equilibrium point.After that,we utilize the approach based on the Lyapunov candidate functions to study the GAS of another rumor spreading model with control strategies,which was proposed in (2022,Physica A 606,128157).As an important consequence,the GAS of the rumor spreading model with control strategies is determined fully without resorting to technical hypotheses used in the benchmark work.Lastly,the theoretical findings are supported by a set of illustrative numerical examples.The obtained results not only improve the ones constructed in the two abovementioned benchmark papers but also can be extended to study the global dynamics of other rumor propagation models in the context of both integer-order and fractional-order derivatives.

    Keywords: rumor propagation models,global asymptotic stability,Lyapunov stability theory,control strategies,social networks

    1.Introduction

    It is well-known that controlling rumors is an important social issue,especially in the context of the rapidly evolving Internet and social media sites and platforms For this reason,many mathematicians and engineers have studied a broad range of mathematical models based on basic principles of compartment epidemiological models for describing the transmission of rumors (see,for example,[1–12]).These models have various useful applications in real-world situations and can suggest effective and suitable strategies to control the spreading of rumors.It is important to note that rumors are often spread in community and social networks;hence,there is a high similarity between the spreading of rumors and the transmission of infectious diseases (see,for instance,[13–15]).

    In a previous work[1],Dong and Huang proposed a new rumor spreading model,which is based on characteristics of the transmission of rumors in online social networks and can be considered as a modification of the well-known SIS epidemic models.In this model,the total population N is divided into two compartments according to their statuses with respect to rumors,namely the susceptible(health)class S that contains network users who are not under the influence of some rumor message at some time and the infected (transmission) class I containing network users who are in the influence of some rumor message at some time so that they involve in the message propagation.Then,the following model was formulated by using basic ideas of mathematical epidemiology and suitable technical hypotheses

    Here,all the parameters are assumed to be positive due to biological and epidemiological reasons.It is important to remark that the changing total user number N(t)in the online social networks was assumed to satisfy the logistic differential equation dN/dt=bN(1-N) since the network population grows but definitely has the global human population as its upper ceiling,where b is the net growth rate of users and is determined by the difference of the registration rate of new users and deactivation rate of users.We refer the readers to[1] for more details of the model (5) and its derivation.

    It was proved in [1] that the model (1) always has a rumor-free equilibrium point F0=(1,0)for all the values of the parameters and a unique (positive) rumor-spreading equilibrium point,which is given byF*=(S*,I*)=exists if β>b+σ.It should be emphasized that in [1] only local asymptotic stability of F* was established but numerical examples suggested that this equilibrium point may be not only locally asymptotically stable but also globally asymptotically stable (see section 4 in [1]).It is worth noting that the analysis of global asymptotic stability (GAS) of dynamical systems governed by differential equations is an important and prominent problem with many applications in both theory and practice [16–19].

    Motivated by the above reason,in the first part of this work,we provide a rigorous mathematical analysis for the GAS of the compartment model (1).By using suitable Lyapunov functions,we obtain the GAS of the rumor-free and rumor-spreading equilibrium points of the model (1).The obtained results improve the stability analysis performed in [1].

    After establishing the complete GAS of the model(1),we consider another rumor spreading model with discontinuous control strategies introduced in [12].This model is a combination of the model(1)with control strategies and is given by

    where φ(I) is called a control function and satisfies the following properties

    (i)φ:R+→R+and has a limited number of jump discontinuities in every compact interval;

    (ii) φ and is non-decreasing and φ(x)?[0,1] for all x ?[0,1].

    The derivation and practical meanings of the control function φ(I) were explained in [12].

    In[12],stability analysis of equilibrium points and global convergence in finite time of the model (2) were studied.In particular,it was shown that a rumor-free equilibrium E0=(1,0)always exists and it is globally asymptotically stable if σ0,then at least one rumor-spreading (positive)equilibrium point E*=(S*,I*) exists (see theorem 3.1 in [12])and it is globally asymptotically stable whenever (see theorem 4.2 in [12])

    Although the conditions (3) and (4) may be not difficult to be verified,they make the parameter space limited;moreover,stability analysis of many epidemic models suggested that positive equilibrium points are often globally asymptotically stable provided they exist (see,for instance,[20–22]).Therefore,it is reasonable to predict that conditions(3)and(4)may be technical hypotheses and can be released.

    By the above reason,in the second part of this work,we utilize the approach based on the Lyapunov functions,which was used to analyze the GAS of the model(1),to investigate the GAS of the equilibrium points of the model (2).As expected,we obtain the complete GAS of the model (2)without resorting to the technical hypotheses (3) and (4).Hence,the stability analysis in [12] is improved.

    As we mentioned above,the GAS analysis of dynamical systems is an essential problem with many useful applications in real-world situations but it is not a trivial task in general.It is well-known that the Lyapunov stability theory has been considered as one of the most successful approaches to this problem [16–19].However,an indispensable requirement of this approach is the construction of suitable Lyapunov function candidates but there is no general technique for constructing such Lyapunov functions.In the present work,by transforming the model(1)to the new system(5)and utilizing well-known Lyapunov functions suggested in previous works,namely linear Lyapunov functions and Voltera–Lyapunov functions (see,e.g.[23–27]),we construct appropriate Lyapunov functions to establish the GAS of the rumor spreading models (1)and also (2).Moreover,the constructed Lyapunov functions can be utilized to study the stability properties of extensions of the rumor spreading models in the context of fractional-order models.This is an important advantage of the used Lyapunov functions.

    Lastly,in the third part of this work,we report a set of illustrative numerical examples to support the theoretical findings.The obtained results indicate that the numerical examples are consistent with the theoretical assertions.

    The plan of this work is as follows:

    In section 2,we analyze the complete GAS of the model(1).The GAS analysis of the model (2) is performed in section 3.Section 4 reports a set of illustrative numerical examples.Some conclusions and discussions are presented in the last section.

    2.Stability analysis of the model (1)

    In this section,we analyze the GAS of the model (1).First,let us denote by N the total population,that is,N(t)=S(t)+I(t) for t ≥0.Then,the model (1) can be represented in the from

    Here,a feasible region of the model (5) is given by

    Lemma 1 (Local asymptotic stability).

    (i) The equilibrium pointE1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium pointE0=(1,0)is locally asymptotically stable ifσ+b>βand is unstable ifσ+b<β.

    (iii) The rumor-spreading equilibrium pointE* is locally asymptotically stable if it exists,i.e.whenσ+b<β.

    Proof.The Jacobian matrix of the system (5) is given by

    Hence,J(N,I) evaluating at E1is

    The matrixJ(E1) has two eigenvalues,which areλ1=b>0 andλ2=-σ.Hence,E1is unstable.

    Similarly,the Jacobian matrix evaluating at E0is given by

    Therefore,ifβ<σ+bthenJ(E0) has two negative eigenvalues,which implies that E0is locally asymptotically stable.Ifβ>σ+b,thenJ(E0) has one positive eigenvalueλ2=β-σ-b,which implies that E0is unstable.

    Lastly,the Jacobian matrix evaluating at E* is given by

    Remark 1.By transforming the model(1)to the form(5),the local stability analysis in the proof of lemma 1 is simpler than the analysis presented in [1].

    We now establish the GAS of E0and E* by using the Lyapunov stability theory [16–19].Note that if (N(0),I(0))=(0,0),then (N(t),I(t))=(0,0) for all t ≥0 and if I(0)=0,then I(t)=0 for t ≥0.On the other hand,if N(0)>0 and I(0)>0,then it follows from (5) that

    which implies that the set

    is a positively invariant set of the model (5).

    Theorem 1 (Global asymptotic stability analysis).

    (i) The rumor-free equilibrium point E0is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω - {(0,0)}whenσ+b>β.

    (ii) The rumor-spreading equilibrium point E* is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω*defined in(7)if it exists.

    Proof.Proof of Part (i) Consider a Lyapunov function candidateV0:Ω -{(0,0)}→R+given by

    where0τis a positive real number that will be chosen later.The time derivative of the function V0along solutions of the model (5) satisfies

    We deduce fromβ<σ+bandI≤ 1that

    Combining (9) and (10),we obtain

    Proof of Part (ii) Consider a Lyapunov function candidateV*: Ω*→R+defined by

    whereτ* is any positive real number satisfying

    Since(N*,I*) is the unique positive equilibrium point,the model (5) can be rewritten in the form

    This implies that the derivative of V*along trajectories of(5)satisfies

    Thus,we deduce from (13) and (14) that the function V*satisfies the Lyapunov stability theorem,which implies the GAS of E*.The proof of this part is complete. ?

    3.Stability analysis of the model (2)

    In this section,we examine the GAS of the rumor model with control strategies (2).

    3.1.Stability of the model with smooth control functions

    For the sake of convenience,we first consider the case when the control function φ is a smooth function.This makes the stability analysis of the equilibria of the model easier.In the case when φ is a function having a limited number of jump discontinuities in every compact interval,the analysis will be studied in a similar way.

    Assume that the control function φ is a smooth function,non-decreasing and φ(x)?[0,1] for all x ?[0,1].Let us denote by N(t)=S(t)+I(t) for t ≥0.Then,we obtain a new system from the system (2)

    The model (15) also admits the set Ω defined in (6) as a feasible region and positively invariant set.Then,it is easily seen that the model (15) always has two rumor-free equilibrium points,which are ?0=(N0,I0)=(1,0)and?1=(N1,I1)=(0,0).In the following lemma,we show that the model (15) can possess a unique (positive) rumorspreading equilibrium point.

    Lemma 2.Ifqφ(0)+a+b<σ,then the model(15)has?*=(N*,I*)=(1,I*),where I* is a unique solution of a unique (positive) rumor-spreading equilibrium point the equation

    Otherwise,ifφ(0)+a+b≥σthen the model has no rumor-spreading equilibrium points.

    Proof.To determine possible positive equilibrium points,we consider the following system of algebraic equations

    Hence,we obtain N=1 and

    It is easy to see that

    Therefore,the equationf(I)=0 has a unique solutionI?(0,1).Consequently,the existence of the unique rumorspreading equilibrium point is shown.The proof is completed.

    We first analyze the LAS of the model (15).

    Theorem 2 (Local asymptotic stability).

    (i) The equilibrium point ?1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium point ?0=(1,0)is locally asymptotically stable ifa+b+qφ(0)>σand is unstable ifa+b+qφ(0)<σ.

    (iii) The rumor-spreading equilibrium point?* is locally asymptotically stable if it exists.

    Proof.The Jacobian matrix of the system (15) is given by

    which implies that1? is unstable.

    Similarly,we have

    Therefore,ifa+b+qφ(0)>σthenJ(?0)has two negative eigenvalues and hence,E0is locally asymptotically stable.Ifa+b+qφ(0)<σ,thenJ(E0) has two eigenvalues of opposite sign,which implies that ?0is unstable.

    Lastly,the Jacobian matrix evaluating at?* is given by

    Hence,J(?*) has two eigenvalues,which areμ1=-a<0 and

    This implies that E* is locally asymptotically stable.

    In the following two theorems,the GAS of the model(15) is examined.

    Theorem 3 (GAS of the free-rumor equilibrium point).Ifa+b+qφ(0)>σ,then the rumor-free equilibrium point?0=(1,0)is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω -{?1}.

    Proof.We consider a Lyapunov function candidateL0:Ω -{ ?1}→R+given by

    where w0is a real number satisfying

    Note that N0=1.Then,the derivative of L0along solutions of (15) satisfies

    Note thatφ(I)≥φ(0)≥0andI≥I2forI?[0,1]andσ-(a+b+qφ(0))<0.Consequently,we have the following estimate for

    Thus,we deduce from (18) and (19) that the function L0satisfies the Lyapunov stability theorem and hence,the GAS of ?0is shown.The proof is complete.

    Theorem 4 (GAS of the rumor-spreading equilibrium point).The rumor-spreading equilibrium point?*is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω* given in (7) provided that it exists.

    Proof.We consider a Lyapunov candidate functionL*: Ω*→R+defined by

    where w* is a real number satisfying

    Since(N*,I*) is a unique positive equilibrium point,the model (15) can be represented in the form

    From (20) and (22) and due to the fact that φ is nondecreasing,the time derivative of the function L* along solutions of (15) satisfies:

    Hence,we deduce form (21) and (23) that the function L*satisfies the Lyapunov stability theorem and thus,the GAS of?* is obtained.The proof is complete.

    3.2.A note on stability analysis of the model with discontinuous control functions

    In[12],Zhu et al performed a complex and rigorous analysis of the global dynamics of the model(2)in the case the control function φ(I) is not necessarily smooth but has a limited number of jump discontinuities in every compact interval.It was proved that if σ-a-b-q>0,then the model (2) has at least one positive equilibrium E*=(S*,I*)(see theorem 3.1 in [12]).It is important to note that the condition σ-a-b-q>0 implies that σ-a-b-qφ(0)>0 since φ(0)≤φ(1)≤1.On the other hand,the GAS of the unique positive equilibrium point was established by using a Lyapunov function given by

    and β is a positive parameter.By using the Lyapunov function given in (24)–(25),it was proved in [12],theorem 3.2 that the positive equilibrium point is globally asymptotically stable if the conditions (3) and (4) hold.

    Fig. 1.Global dynamics of the model (5) in Case 1 of Example 1.

    Now,by using the approach used in section 3.1 with the help of the Lyapunov candidate function given by (20) and the arguments in the proof of theorem 4,we can conclude that the positive equilibrium point of the model (2) is globally asymptotically stable provided that it exists.As an important consequence,the conditions (3) and (4) are released.This provides an important improvement of theorem 3.2 in [12].

    4.Numerical examples

    In this section,we report some numerical examples to support the theoretical findings constructed before.In all numerical examples performed below,we will use the classical fourth stage Runge-Kutta (RK4) method (see [28]) using a small step size Δt,namely,Δt=10-5,to numerically simulate the models (5) and (15) over the time interval [0,100].

    Example 1 (Global dynamics of the model (5)).In this example,we investigate global dynamics of the model (5).For this purpose,consider the model (5) with the following set of the parameters

    In table 1,the term ‘GAS’ stands for the globally asymptotically stable equilibrium point.Figures 1 and 2 depict solutions of the model (5) generated by the RK4 method.In these figures,each blue curve is a trajectory corresponding to a specific initial data,the yellow arrowsshow the evolution of the model and the red circles indicate the position of the globally asymptotically stable equilibrium points.It is clear that the numerical results are strong evidence supporting the validity of the theoretical findings presented in section 2.

    Table 1.The set of the parameters used in Example 1.

    Example 2 (Global dynamics of the model (15)).In this example,we consider the model (15) with a smooth control function given byφ(I)=1-e-IforI≥0and the parameters given in Table 2.

    Figures 3 and 4 sketch phase planes corresponding to specific initial data of the model(15).It is clear that the GAS of the equilibrium points is confirmed.Hence,the assertions in section 3 are supported.

    5.Conclusions and discussions

    Fig. 2.Global dynamics of the model (5) in Case 2 of Example 1.

    Table 2.The set of the parameters used in Example 2.

    As the first and also the main conclusion of this work,we have provided a rigorous mathematical analysis for the GAS of the compartment models for the spreading of rumors (1)and (2).By using the Lyapunov candidate functions constructed in sections 2 and 3,the complete GAS of the two rumor spreading models has been determined fully.The obtained results in this work improve the ones constructed in[1] and [12].

    The GAS analysis of the two rumor spreading models implies that there are only two scenarios of the spreading of the rumors,the first one corresponding to the GAS of the rumor-free equilibrium point means that the rumors will be receded and extinguished and the second one corresponding to the GAS of the rumor-spreading equilibrium point implies that the rumors always appear.Hence,we are able to control the spreading of the rumors by adjusting the parameters in the models.This may be useful in real-world situations.

    In recent years,mathematical models described by fractional-order differential equations have been strongly developed and widely used to study complex systems arising in real-world applications,in which the stability problems of fractional-order systems is very important and prominent.The Lyapunov stability theory for fractional-order dynamical systems can be considered as one of the most successful approaches to this problem [26,29–32].Hence,it is reasonable to assume that the Lyapunov functions proposed in the present work can be utilized to analyze the global dynamics of the rumor spreading models (1) and (2) in the context of fractional-order derivatives.For example,we can consider the Lyapunov candidate functions in sections 2 and 3 with the help of the fractional-order Lyapunov theory in[26,29–32]to study stability properties of the following fractional-order versions

    Fig. 3.Global dynamics of the model with control strategies (15) in Case 1 of Example 2.

    The proposed Lyapunov functions in the present work may be only suitable with the two rumor spreading models under consideration.Hence,it is necessary to propose new Lyapunov function candidates or different approaches to study the stability properties of other rumor spreading models that are more complex in form or structure.This issue will be considered in future studies.

    In the near future,we will study stability properties and practical applications of the rumor spreading models (1) and(2) in the context of fractional-order derivative operators.Also,reliable numerical methods for solving the models (1)and (2) as well as their fractional-order versions will be considered.

    Acknowledgments

    We would like to thank the editor and anonymous referees for useful and valuable comments that led to a great improvement of the paper.

    Ethical approval

    Not applicable.

    Availability of supporting data

    The data supporting the findings of this study are available within the article [and/or] its supplementary materials.

    Conflicts of interest

    We have no conflicts of interest to disclose.

    Funding information

    Not available.

    Authors’ contributions

    Manh Tuan Hoang: Conceptualization,Methodology,Software,Formal analysis,Writing-Original draft preparation,Methodology,Writing—Review and Editing,Supervision.

    婷婷色综合www| 婷婷六月久久综合丁香| 精品少妇黑人巨大在线播放| 秋霞伦理黄片| 99热这里只有是精品50| 人妻系列 视频| 一级毛片我不卡| xxx大片免费视频| 精品人妻视频免费看| 日韩欧美一区视频在线观看 | 建设人人有责人人尽责人人享有的 | 国产精品久久久久久久电影| 秋霞伦理黄片| 亚洲在线观看片| 国产在线一区二区三区精| 免费黄色在线免费观看| 亚洲av免费高清在线观看| 男女视频在线观看网站免费| 久久99热这里只频精品6学生| 国产高清有码在线观看视频| 国产精品久久视频播放| 男人和女人高潮做爰伦理| 久久久久久国产a免费观看| 国产 一区精品| 亚洲精品亚洲一区二区| 国内少妇人妻偷人精品xxx网站| 波野结衣二区三区在线| 一个人看视频在线观看www免费| 青春草视频在线免费观看| 免费黄频网站在线观看国产| 亚洲久久久久久中文字幕| 成年免费大片在线观看| 免费黄色在线免费观看| 春色校园在线视频观看| 日本爱情动作片www.在线观看| 免费电影在线观看免费观看| 精华霜和精华液先用哪个| 日韩欧美精品v在线| 国产永久视频网站| 天堂中文最新版在线下载 | 少妇猛男粗大的猛烈进出视频 | 五月伊人婷婷丁香| 国产三级在线视频| 天天躁夜夜躁狠狠久久av| 国内精品美女久久久久久| 一个人看的www免费观看视频| 高清视频免费观看一区二区 | 亚洲一级一片aⅴ在线观看| www.色视频.com| 最新中文字幕久久久久| 亚洲精品成人久久久久久| 亚洲国产精品sss在线观看| 国产三级在线视频| 亚洲精品久久久久久婷婷小说| 日本-黄色视频高清免费观看| av.在线天堂| 肉色欧美久久久久久久蜜桃 | 国产精品久久久久久久电影| 纵有疾风起免费观看全集完整版 | 亚洲av中文av极速乱| 纵有疾风起免费观看全集完整版 | 男女边吃奶边做爰视频| 免费av毛片视频| 国产一区亚洲一区在线观看| 看非洲黑人一级黄片| 日本wwww免费看| 精品人妻视频免费看| 91aial.com中文字幕在线观看| 久久久亚洲精品成人影院| 欧美精品一区二区大全| 成人亚洲欧美一区二区av| 三级经典国产精品| 夜夜看夜夜爽夜夜摸| 高清午夜精品一区二区三区| 日本免费在线观看一区| 九九在线视频观看精品| 欧美区成人在线视频| av福利片在线观看| 三级男女做爰猛烈吃奶摸视频| 寂寞人妻少妇视频99o| 身体一侧抽搐| 肉色欧美久久久久久久蜜桃 | 成人高潮视频无遮挡免费网站| 十八禁网站网址无遮挡 | 欧美区成人在线视频| 在线天堂最新版资源| 国产精品久久久久久久电影| 午夜福利在线观看免费完整高清在| 国产午夜福利久久久久久| 精品熟女少妇av免费看| 老司机影院毛片| 国产老妇女一区| 国产永久视频网站| 黄片无遮挡物在线观看| 亚洲熟女精品中文字幕| 男女下面进入的视频免费午夜| 最近最新中文字幕免费大全7| 99热网站在线观看| 亚洲精品乱久久久久久| 精品午夜福利在线看| 日本猛色少妇xxxxx猛交久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久免费精品人妻一区二区| 国产成人午夜福利电影在线观看| 搞女人的毛片| 国产一区二区三区综合在线观看 | 亚洲成人中文字幕在线播放| 日本色播在线视频| 国产三级在线视频| 91aial.com中文字幕在线观看| 少妇被粗大猛烈的视频| 精华霜和精华液先用哪个| 热99在线观看视频| av又黄又爽大尺度在线免费看| 久热久热在线精品观看| 99热这里只有精品一区| 一级av片app| 黄色欧美视频在线观看| 真实男女啪啪啪动态图| 啦啦啦韩国在线观看视频| 久久久久免费精品人妻一区二区| 国产探花极品一区二区| 搞女人的毛片| 国产一级毛片七仙女欲春2| 国产黄片美女视频| av网站免费在线观看视频 | videossex国产| 在线免费观看不下载黄p国产| 99久久人妻综合| 欧美高清成人免费视频www| av.在线天堂| 色综合亚洲欧美另类图片| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| 在线a可以看的网站| 美女大奶头视频| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 国产在视频线在精品| 国内精品一区二区在线观看| 日本与韩国留学比较| 精品一区在线观看国产| 国产麻豆成人av免费视频| 国产免费又黄又爽又色| 大陆偷拍与自拍| 菩萨蛮人人尽说江南好唐韦庄| 欧美zozozo另类| 国产v大片淫在线免费观看| 国产午夜精品论理片| 汤姆久久久久久久影院中文字幕 | 麻豆乱淫一区二区| kizo精华| av播播在线观看一区| 99九九线精品视频在线观看视频| 亚洲精品第二区| 久久这里有精品视频免费| 三级国产精品欧美在线观看| 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 高清毛片免费看| 大陆偷拍与自拍| 久久久久精品性色| 免费少妇av软件| 精品一区二区三区人妻视频| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 免费大片18禁| 嫩草影院入口| 在线免费十八禁| 成年免费大片在线观看| 女的被弄到高潮叫床怎么办| 亚洲国产精品国产精品| 夜夜爽夜夜爽视频| 91精品一卡2卡3卡4卡| 少妇熟女aⅴ在线视频| 亚洲成人av在线免费| av在线蜜桃| 免费高清在线观看视频在线观看| 日韩欧美精品v在线| 99热网站在线观看| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 亚洲精品影视一区二区三区av| 老司机影院成人| 婷婷色av中文字幕| 极品少妇高潮喷水抽搐| 成人一区二区视频在线观看| 欧美高清成人免费视频www| h日本视频在线播放| 永久免费av网站大全| 日日啪夜夜撸| 婷婷色综合大香蕉| 爱豆传媒免费全集在线观看| 噜噜噜噜噜久久久久久91| 日韩av在线大香蕉| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 高清在线视频一区二区三区| 久久久精品免费免费高清| 成年版毛片免费区| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 日韩精品有码人妻一区| 九九久久精品国产亚洲av麻豆| 午夜激情久久久久久久| 99九九线精品视频在线观看视频| 久久99热这里只频精品6学生| 日日摸夜夜添夜夜爱| 91精品伊人久久大香线蕉| 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 三级毛片av免费| 在线免费观看不下载黄p国产| 亚洲av成人精品一区久久| 夫妻性生交免费视频一级片| 亚洲精品aⅴ在线观看| 久久热精品热| 亚洲乱码一区二区免费版| 亚洲美女视频黄频| 国产男人的电影天堂91| 视频中文字幕在线观看| 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| 如何舔出高潮| 亚洲国产精品国产精品| 国产欧美日韩精品一区二区| 国产伦理片在线播放av一区| 国产成人精品福利久久| 麻豆久久精品国产亚洲av| 国产精品一区二区性色av| 久久热精品热| 只有这里有精品99| 26uuu在线亚洲综合色| 亚洲av福利一区| 综合色丁香网| 亚洲婷婷狠狠爱综合网| 久久久色成人| 天堂网av新在线| 亚洲在久久综合| 亚洲av日韩在线播放| 久久国产乱子免费精品| 亚洲av.av天堂| 18禁在线播放成人免费| 性插视频无遮挡在线免费观看| 国内精品宾馆在线| 特大巨黑吊av在线直播| 久久精品熟女亚洲av麻豆精品 | 国产av码专区亚洲av| 中文字幕av成人在线电影| 亚洲国产av新网站| 亚洲内射少妇av| 午夜福利在线观看吧| 亚洲精品成人av观看孕妇| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区四那| 国产男女超爽视频在线观看| 国内少妇人妻偷人精品xxx网站| 黄片wwwwww| 久久精品综合一区二区三区| 一区二区三区乱码不卡18| 国产单亲对白刺激| 成人欧美大片| 色网站视频免费| 在线观看av片永久免费下载| 亚洲欧洲国产日韩| 色哟哟·www| 91久久精品国产一区二区成人| 欧美xxxx性猛交bbbb| 99热这里只有精品一区| 国产白丝娇喘喷水9色精品| 亚洲美女视频黄频| 1000部很黄的大片| 少妇丰满av| 激情 狠狠 欧美| 婷婷色综合www| 欧美潮喷喷水| 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 国产亚洲精品av在线| 国内精品美女久久久久久| 又大又黄又爽视频免费| 麻豆国产97在线/欧美| 久久韩国三级中文字幕| 成人亚洲精品av一区二区| 中文资源天堂在线| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 欧美成人一区二区免费高清观看| 国产精品伦人一区二区| 可以在线观看毛片的网站| 永久网站在线| 亚洲怡红院男人天堂| 搡老妇女老女人老熟妇| 99热6这里只有精品| 十八禁国产超污无遮挡网站| 免费无遮挡裸体视频| 亚洲精品久久久久久婷婷小说| 一级a做视频免费观看| 一本一本综合久久| 精品久久久久久久久久久久久| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 91久久精品国产一区二区三区| 人妻少妇偷人精品九色| 免费少妇av软件| 乱码一卡2卡4卡精品| 亚洲在久久综合| 国产精品无大码| 青青草视频在线视频观看| 97精品久久久久久久久久精品| 成人综合一区亚洲| 在线a可以看的网站| 国产伦精品一区二区三区视频9| 免费观看无遮挡的男女| 成年免费大片在线观看| 国产又色又爽无遮挡免| 久久久久九九精品影院| 久久99热6这里只有精品| 91精品一卡2卡3卡4卡| 亚洲精品视频女| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 日韩三级伦理在线观看| av国产免费在线观看| 一本久久精品| 国产日韩欧美在线精品| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 午夜免费激情av| 高清在线视频一区二区三区| h日本视频在线播放| 日本wwww免费看| 欧美日韩国产mv在线观看视频 | 只有这里有精品99| 欧美性感艳星| 超碰97精品在线观看| 国产伦一二天堂av在线观看| 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 成人二区视频| 国产探花极品一区二区| 婷婷色综合大香蕉| 色播亚洲综合网| 亚洲国产精品国产精品| 精品国产露脸久久av麻豆 | 男女视频在线观看网站免费| 高清毛片免费看| 夫妻性生交免费视频一级片| 精品久久久久久电影网| 亚洲综合精品二区| 丝袜喷水一区| 精品熟女少妇av免费看| 久久人人爽人人爽人人片va| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 国产高潮美女av| 2018国产大陆天天弄谢| 国产人妻一区二区三区在| 免费少妇av软件| 国产永久视频网站| 日韩强制内射视频| 女人被狂操c到高潮| 国产成人freesex在线| 精品国产三级普通话版| 能在线免费看毛片的网站| 日日啪夜夜爽| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 免费av毛片视频| 99久国产av精品国产电影| 国产淫语在线视频| 亚洲精品,欧美精品| 欧美激情在线99| 午夜久久久久精精品| av在线蜜桃| 舔av片在线| 久久久久久久国产电影| 熟女电影av网| 夫妻午夜视频| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 免费播放大片免费观看视频在线观看| 午夜老司机福利剧场| 成人一区二区视频在线观看| 国产av在哪里看| 色播亚洲综合网| 亚洲在线自拍视频| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| 观看免费一级毛片| 中文字幕av成人在线电影| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 亚洲欧美精品自产自拍| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| av福利片在线观看| 欧美精品国产亚洲| 三级国产精品片| 国产精品一区二区在线观看99 | 午夜免费激情av| 欧美变态另类bdsm刘玥| 欧美日韩精品成人综合77777| 好男人视频免费观看在线| 青春草视频在线免费观看| 日韩精品有码人妻一区| 亚洲国产精品成人久久小说| av在线亚洲专区| 精品国产三级普通话版| 在线 av 中文字幕| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 成年免费大片在线观看| 欧美日韩综合久久久久久| 国产精品三级大全| 国产精品蜜桃在线观看| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 天堂影院成人在线观看| 亚洲av中文av极速乱| 精品久久久久久久末码| 80岁老熟妇乱子伦牲交| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 高清视频免费观看一区二区 | 国产v大片淫在线免费观看| 国产一级毛片七仙女欲春2| 青青草视频在线视频观看| 真实男女啪啪啪动态图| 人人妻人人澡欧美一区二区| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 国产成人免费观看mmmm| 麻豆精品久久久久久蜜桃| 美女脱内裤让男人舔精品视频| 亚洲最大成人av| 真实男女啪啪啪动态图| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 91精品一卡2卡3卡4卡| 亚洲av免费在线观看| 婷婷色av中文字幕| 床上黄色一级片| 成年人午夜在线观看视频 | 国产三级在线视频| 国产淫片久久久久久久久| 国产毛片a区久久久久| 亚洲熟妇中文字幕五十中出| 欧美日韩亚洲高清精品| ponron亚洲| av国产久精品久网站免费入址| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 一级黄片播放器| 熟女电影av网| 天美传媒精品一区二区| 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜 | 简卡轻食公司| 免费av不卡在线播放| 青青草视频在线视频观看| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 人妻系列 视频| 亚洲av日韩在线播放| av卡一久久| kizo精华| 床上黄色一级片| 精品亚洲乱码少妇综合久久| 亚洲国产精品sss在线观看| 国产精品久久久久久精品电影小说 | 亚洲精品aⅴ在线观看| 久久午夜福利片| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 男人舔奶头视频| 亚洲最大成人手机在线| 熟妇人妻久久中文字幕3abv| 一级片'在线观看视频| 国产91av在线免费观看| 免费看a级黄色片| av女优亚洲男人天堂| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区四那| 免费av毛片视频| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 美女黄网站色视频| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 全区人妻精品视频| 天堂√8在线中文| 亚洲高清免费不卡视频| 国产老妇伦熟女老妇高清| 免费无遮挡裸体视频| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 麻豆av噜噜一区二区三区| 麻豆久久精品国产亚洲av| 能在线免费看毛片的网站| 欧美不卡视频在线免费观看| 国产亚洲最大av| 国产综合懂色| 亚洲欧美成人综合另类久久久| 超碰97精品在线观看| 日韩av不卡免费在线播放| 国产在视频线精品| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 国产探花在线观看一区二区| 亚洲av电影不卡..在线观看| 午夜福利高清视频| 毛片女人毛片| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 一个人免费在线观看电影| 免费av观看视频| 夫妻午夜视频| 午夜免费观看性视频| 国产国拍精品亚洲av在线观看| 伊人久久国产一区二区| 最新中文字幕久久久久| 极品教师在线视频| 亚洲成人中文字幕在线播放| 建设人人有责人人尽责人人享有的 | 久久久久免费精品人妻一区二区| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 亚洲成人一二三区av| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 欧美精品一区二区大全| 好男人在线观看高清免费视频| 99视频精品全部免费 在线| 六月丁香七月| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 中文字幕av在线有码专区| 色综合站精品国产| 免费看不卡的av| 有码 亚洲区| 亚洲丝袜综合中文字幕| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 高清毛片免费看| 婷婷六月久久综合丁香| 99热这里只有精品一区| 搡女人真爽免费视频火全软件| 国产91av在线免费观看| 国产精品无大码| 国产精品久久久久久久久免| 日韩中字成人| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 内地一区二区视频在线| 欧美bdsm另类| 日本三级黄在线观看| 国产精品一及| 精品久久久噜噜| 一级a做视频免费观看| av专区在线播放| 综合色av麻豆| 日韩成人伦理影院| 青青草视频在线视频观看| 国产伦一二天堂av在线观看| 国产综合精华液| 看十八女毛片水多多多| 午夜老司机福利剧场| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区 | 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| 又爽又黄a免费视频| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 男女国产视频网站| 高清视频免费观看一区二区 | 人妻一区二区av| 少妇裸体淫交视频免费看高清| 国内精品一区二区在线观看| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 人妻系列 视频|