• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lyapunov functions for studying global asymptotic stability of two rumor spreading models

    2023-10-11 08:35:24ManhTuanHoang
    Communications in Theoretical Physics 2023年10期

    Manh Tuan Hoang

    Department of Mathematics,FPT University,Hoa Lac Hi-Tech Park,Km29 Thang Long Blvd,Hanoi,Vietnam

    Abstract In a previous work (2018,Commun.Theor.Phys.70,795–802),a new compartment model for the spreading of rumors was introduced and analyzed.However,only the local asymptotic stability of this model was discussed.In the present work,we first provide a rigorous mathematical analysis for the global asymptotic stability (GAS) of the above-mentioned rumor spreading model.By constructing suitable Lyapunov candidate functions,we obtain the GAS of a rumor-free (boundary) equilibrium point and a unique rumor-spreading (positive) equilibrium point.After that,we utilize the approach based on the Lyapunov candidate functions to study the GAS of another rumor spreading model with control strategies,which was proposed in (2022,Physica A 606,128157).As an important consequence,the GAS of the rumor spreading model with control strategies is determined fully without resorting to technical hypotheses used in the benchmark work.Lastly,the theoretical findings are supported by a set of illustrative numerical examples.The obtained results not only improve the ones constructed in the two abovementioned benchmark papers but also can be extended to study the global dynamics of other rumor propagation models in the context of both integer-order and fractional-order derivatives.

    Keywords: rumor propagation models,global asymptotic stability,Lyapunov stability theory,control strategies,social networks

    1.Introduction

    It is well-known that controlling rumors is an important social issue,especially in the context of the rapidly evolving Internet and social media sites and platforms For this reason,many mathematicians and engineers have studied a broad range of mathematical models based on basic principles of compartment epidemiological models for describing the transmission of rumors (see,for example,[1–12]).These models have various useful applications in real-world situations and can suggest effective and suitable strategies to control the spreading of rumors.It is important to note that rumors are often spread in community and social networks;hence,there is a high similarity between the spreading of rumors and the transmission of infectious diseases (see,for instance,[13–15]).

    In a previous work[1],Dong and Huang proposed a new rumor spreading model,which is based on characteristics of the transmission of rumors in online social networks and can be considered as a modification of the well-known SIS epidemic models.In this model,the total population N is divided into two compartments according to their statuses with respect to rumors,namely the susceptible(health)class S that contains network users who are not under the influence of some rumor message at some time and the infected (transmission) class I containing network users who are in the influence of some rumor message at some time so that they involve in the message propagation.Then,the following model was formulated by using basic ideas of mathematical epidemiology and suitable technical hypotheses

    Here,all the parameters are assumed to be positive due to biological and epidemiological reasons.It is important to remark that the changing total user number N(t)in the online social networks was assumed to satisfy the logistic differential equation dN/dt=bN(1-N) since the network population grows but definitely has the global human population as its upper ceiling,where b is the net growth rate of users and is determined by the difference of the registration rate of new users and deactivation rate of users.We refer the readers to[1] for more details of the model (5) and its derivation.

    It was proved in [1] that the model (1) always has a rumor-free equilibrium point F0=(1,0)for all the values of the parameters and a unique (positive) rumor-spreading equilibrium point,which is given byF*=(S*,I*)=exists if β>b+σ.It should be emphasized that in [1] only local asymptotic stability of F* was established but numerical examples suggested that this equilibrium point may be not only locally asymptotically stable but also globally asymptotically stable (see section 4 in [1]).It is worth noting that the analysis of global asymptotic stability (GAS) of dynamical systems governed by differential equations is an important and prominent problem with many applications in both theory and practice [16–19].

    Motivated by the above reason,in the first part of this work,we provide a rigorous mathematical analysis for the GAS of the compartment model (1).By using suitable Lyapunov functions,we obtain the GAS of the rumor-free and rumor-spreading equilibrium points of the model (1).The obtained results improve the stability analysis performed in [1].

    After establishing the complete GAS of the model(1),we consider another rumor spreading model with discontinuous control strategies introduced in [12].This model is a combination of the model(1)with control strategies and is given by

    where φ(I) is called a control function and satisfies the following properties

    (i)φ:R+→R+and has a limited number of jump discontinuities in every compact interval;

    (ii) φ and is non-decreasing and φ(x)?[0,1] for all x ?[0,1].

    The derivation and practical meanings of the control function φ(I) were explained in [12].

    In[12],stability analysis of equilibrium points and global convergence in finite time of the model (2) were studied.In particular,it was shown that a rumor-free equilibrium E0=(1,0)always exists and it is globally asymptotically stable if σ0,then at least one rumor-spreading (positive)equilibrium point E*=(S*,I*) exists (see theorem 3.1 in [12])and it is globally asymptotically stable whenever (see theorem 4.2 in [12])

    Although the conditions (3) and (4) may be not difficult to be verified,they make the parameter space limited;moreover,stability analysis of many epidemic models suggested that positive equilibrium points are often globally asymptotically stable provided they exist (see,for instance,[20–22]).Therefore,it is reasonable to predict that conditions(3)and(4)may be technical hypotheses and can be released.

    By the above reason,in the second part of this work,we utilize the approach based on the Lyapunov functions,which was used to analyze the GAS of the model(1),to investigate the GAS of the equilibrium points of the model (2).As expected,we obtain the complete GAS of the model (2)without resorting to the technical hypotheses (3) and (4).Hence,the stability analysis in [12] is improved.

    As we mentioned above,the GAS analysis of dynamical systems is an essential problem with many useful applications in real-world situations but it is not a trivial task in general.It is well-known that the Lyapunov stability theory has been considered as one of the most successful approaches to this problem [16–19].However,an indispensable requirement of this approach is the construction of suitable Lyapunov function candidates but there is no general technique for constructing such Lyapunov functions.In the present work,by transforming the model(1)to the new system(5)and utilizing well-known Lyapunov functions suggested in previous works,namely linear Lyapunov functions and Voltera–Lyapunov functions (see,e.g.[23–27]),we construct appropriate Lyapunov functions to establish the GAS of the rumor spreading models (1)and also (2).Moreover,the constructed Lyapunov functions can be utilized to study the stability properties of extensions of the rumor spreading models in the context of fractional-order models.This is an important advantage of the used Lyapunov functions.

    Lastly,in the third part of this work,we report a set of illustrative numerical examples to support the theoretical findings.The obtained results indicate that the numerical examples are consistent with the theoretical assertions.

    The plan of this work is as follows:

    In section 2,we analyze the complete GAS of the model(1).The GAS analysis of the model (2) is performed in section 3.Section 4 reports a set of illustrative numerical examples.Some conclusions and discussions are presented in the last section.

    2.Stability analysis of the model (1)

    In this section,we analyze the GAS of the model (1).First,let us denote by N the total population,that is,N(t)=S(t)+I(t) for t ≥0.Then,the model (1) can be represented in the from

    Here,a feasible region of the model (5) is given by

    Lemma 1 (Local asymptotic stability).

    (i) The equilibrium pointE1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium pointE0=(1,0)is locally asymptotically stable ifσ+b>βand is unstable ifσ+b<β.

    (iii) The rumor-spreading equilibrium pointE* is locally asymptotically stable if it exists,i.e.whenσ+b<β.

    Proof.The Jacobian matrix of the system (5) is given by

    Hence,J(N,I) evaluating at E1is

    The matrixJ(E1) has two eigenvalues,which areλ1=b>0 andλ2=-σ.Hence,E1is unstable.

    Similarly,the Jacobian matrix evaluating at E0is given by

    Therefore,ifβ<σ+bthenJ(E0) has two negative eigenvalues,which implies that E0is locally asymptotically stable.Ifβ>σ+b,thenJ(E0) has one positive eigenvalueλ2=β-σ-b,which implies that E0is unstable.

    Lastly,the Jacobian matrix evaluating at E* is given by

    Remark 1.By transforming the model(1)to the form(5),the local stability analysis in the proof of lemma 1 is simpler than the analysis presented in [1].

    We now establish the GAS of E0and E* by using the Lyapunov stability theory [16–19].Note that if (N(0),I(0))=(0,0),then (N(t),I(t))=(0,0) for all t ≥0 and if I(0)=0,then I(t)=0 for t ≥0.On the other hand,if N(0)>0 and I(0)>0,then it follows from (5) that

    which implies that the set

    is a positively invariant set of the model (5).

    Theorem 1 (Global asymptotic stability analysis).

    (i) The rumor-free equilibrium point E0is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω - {(0,0)}whenσ+b>β.

    (ii) The rumor-spreading equilibrium point E* is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω*defined in(7)if it exists.

    Proof.Proof of Part (i) Consider a Lyapunov function candidateV0:Ω -{(0,0)}→R+given by

    where0τis a positive real number that will be chosen later.The time derivative of the function V0along solutions of the model (5) satisfies

    We deduce fromβ<σ+bandI≤ 1that

    Combining (9) and (10),we obtain

    Proof of Part (ii) Consider a Lyapunov function candidateV*: Ω*→R+defined by

    whereτ* is any positive real number satisfying

    Since(N*,I*) is the unique positive equilibrium point,the model (5) can be rewritten in the form

    This implies that the derivative of V*along trajectories of(5)satisfies

    Thus,we deduce from (13) and (14) that the function V*satisfies the Lyapunov stability theorem,which implies the GAS of E*.The proof of this part is complete. ?

    3.Stability analysis of the model (2)

    In this section,we examine the GAS of the rumor model with control strategies (2).

    3.1.Stability of the model with smooth control functions

    For the sake of convenience,we first consider the case when the control function φ is a smooth function.This makes the stability analysis of the equilibria of the model easier.In the case when φ is a function having a limited number of jump discontinuities in every compact interval,the analysis will be studied in a similar way.

    Assume that the control function φ is a smooth function,non-decreasing and φ(x)?[0,1] for all x ?[0,1].Let us denote by N(t)=S(t)+I(t) for t ≥0.Then,we obtain a new system from the system (2)

    The model (15) also admits the set Ω defined in (6) as a feasible region and positively invariant set.Then,it is easily seen that the model (15) always has two rumor-free equilibrium points,which are ?0=(N0,I0)=(1,0)and?1=(N1,I1)=(0,0).In the following lemma,we show that the model (15) can possess a unique (positive) rumorspreading equilibrium point.

    Lemma 2.Ifqφ(0)+a+b<σ,then the model(15)has?*=(N*,I*)=(1,I*),where I* is a unique solution of a unique (positive) rumor-spreading equilibrium point the equation

    Otherwise,ifφ(0)+a+b≥σthen the model has no rumor-spreading equilibrium points.

    Proof.To determine possible positive equilibrium points,we consider the following system of algebraic equations

    Hence,we obtain N=1 and

    It is easy to see that

    Therefore,the equationf(I)=0 has a unique solutionI?(0,1).Consequently,the existence of the unique rumorspreading equilibrium point is shown.The proof is completed.

    We first analyze the LAS of the model (15).

    Theorem 2 (Local asymptotic stability).

    (i) The equilibrium point ?1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium point ?0=(1,0)is locally asymptotically stable ifa+b+qφ(0)>σand is unstable ifa+b+qφ(0)<σ.

    (iii) The rumor-spreading equilibrium point?* is locally asymptotically stable if it exists.

    Proof.The Jacobian matrix of the system (15) is given by

    which implies that1? is unstable.

    Similarly,we have

    Therefore,ifa+b+qφ(0)>σthenJ(?0)has two negative eigenvalues and hence,E0is locally asymptotically stable.Ifa+b+qφ(0)<σ,thenJ(E0) has two eigenvalues of opposite sign,which implies that ?0is unstable.

    Lastly,the Jacobian matrix evaluating at?* is given by

    Hence,J(?*) has two eigenvalues,which areμ1=-a<0 and

    This implies that E* is locally asymptotically stable.

    In the following two theorems,the GAS of the model(15) is examined.

    Theorem 3 (GAS of the free-rumor equilibrium point).Ifa+b+qφ(0)>σ,then the rumor-free equilibrium point?0=(1,0)is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω -{?1}.

    Proof.We consider a Lyapunov function candidateL0:Ω -{ ?1}→R+given by

    where w0is a real number satisfying

    Note that N0=1.Then,the derivative of L0along solutions of (15) satisfies

    Note thatφ(I)≥φ(0)≥0andI≥I2forI?[0,1]andσ-(a+b+qφ(0))<0.Consequently,we have the following estimate for

    Thus,we deduce from (18) and (19) that the function L0satisfies the Lyapunov stability theorem and hence,the GAS of ?0is shown.The proof is complete.

    Theorem 4 (GAS of the rumor-spreading equilibrium point).The rumor-spreading equilibrium point?*is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω* given in (7) provided that it exists.

    Proof.We consider a Lyapunov candidate functionL*: Ω*→R+defined by

    where w* is a real number satisfying

    Since(N*,I*) is a unique positive equilibrium point,the model (15) can be represented in the form

    From (20) and (22) and due to the fact that φ is nondecreasing,the time derivative of the function L* along solutions of (15) satisfies:

    Hence,we deduce form (21) and (23) that the function L*satisfies the Lyapunov stability theorem and thus,the GAS of?* is obtained.The proof is complete.

    3.2.A note on stability analysis of the model with discontinuous control functions

    In[12],Zhu et al performed a complex and rigorous analysis of the global dynamics of the model(2)in the case the control function φ(I) is not necessarily smooth but has a limited number of jump discontinuities in every compact interval.It was proved that if σ-a-b-q>0,then the model (2) has at least one positive equilibrium E*=(S*,I*)(see theorem 3.1 in [12]).It is important to note that the condition σ-a-b-q>0 implies that σ-a-b-qφ(0)>0 since φ(0)≤φ(1)≤1.On the other hand,the GAS of the unique positive equilibrium point was established by using a Lyapunov function given by

    and β is a positive parameter.By using the Lyapunov function given in (24)–(25),it was proved in [12],theorem 3.2 that the positive equilibrium point is globally asymptotically stable if the conditions (3) and (4) hold.

    Fig. 1.Global dynamics of the model (5) in Case 1 of Example 1.

    Now,by using the approach used in section 3.1 with the help of the Lyapunov candidate function given by (20) and the arguments in the proof of theorem 4,we can conclude that the positive equilibrium point of the model (2) is globally asymptotically stable provided that it exists.As an important consequence,the conditions (3) and (4) are released.This provides an important improvement of theorem 3.2 in [12].

    4.Numerical examples

    In this section,we report some numerical examples to support the theoretical findings constructed before.In all numerical examples performed below,we will use the classical fourth stage Runge-Kutta (RK4) method (see [28]) using a small step size Δt,namely,Δt=10-5,to numerically simulate the models (5) and (15) over the time interval [0,100].

    Example 1 (Global dynamics of the model (5)).In this example,we investigate global dynamics of the model (5).For this purpose,consider the model (5) with the following set of the parameters

    In table 1,the term ‘GAS’ stands for the globally asymptotically stable equilibrium point.Figures 1 and 2 depict solutions of the model (5) generated by the RK4 method.In these figures,each blue curve is a trajectory corresponding to a specific initial data,the yellow arrowsshow the evolution of the model and the red circles indicate the position of the globally asymptotically stable equilibrium points.It is clear that the numerical results are strong evidence supporting the validity of the theoretical findings presented in section 2.

    Table 1.The set of the parameters used in Example 1.

    Example 2 (Global dynamics of the model (15)).In this example,we consider the model (15) with a smooth control function given byφ(I)=1-e-IforI≥0and the parameters given in Table 2.

    Figures 3 and 4 sketch phase planes corresponding to specific initial data of the model(15).It is clear that the GAS of the equilibrium points is confirmed.Hence,the assertions in section 3 are supported.

    5.Conclusions and discussions

    Fig. 2.Global dynamics of the model (5) in Case 2 of Example 1.

    Table 2.The set of the parameters used in Example 2.

    As the first and also the main conclusion of this work,we have provided a rigorous mathematical analysis for the GAS of the compartment models for the spreading of rumors (1)and (2).By using the Lyapunov candidate functions constructed in sections 2 and 3,the complete GAS of the two rumor spreading models has been determined fully.The obtained results in this work improve the ones constructed in[1] and [12].

    The GAS analysis of the two rumor spreading models implies that there are only two scenarios of the spreading of the rumors,the first one corresponding to the GAS of the rumor-free equilibrium point means that the rumors will be receded and extinguished and the second one corresponding to the GAS of the rumor-spreading equilibrium point implies that the rumors always appear.Hence,we are able to control the spreading of the rumors by adjusting the parameters in the models.This may be useful in real-world situations.

    In recent years,mathematical models described by fractional-order differential equations have been strongly developed and widely used to study complex systems arising in real-world applications,in which the stability problems of fractional-order systems is very important and prominent.The Lyapunov stability theory for fractional-order dynamical systems can be considered as one of the most successful approaches to this problem [26,29–32].Hence,it is reasonable to assume that the Lyapunov functions proposed in the present work can be utilized to analyze the global dynamics of the rumor spreading models (1) and (2) in the context of fractional-order derivatives.For example,we can consider the Lyapunov candidate functions in sections 2 and 3 with the help of the fractional-order Lyapunov theory in[26,29–32]to study stability properties of the following fractional-order versions

    Fig. 3.Global dynamics of the model with control strategies (15) in Case 1 of Example 2.

    The proposed Lyapunov functions in the present work may be only suitable with the two rumor spreading models under consideration.Hence,it is necessary to propose new Lyapunov function candidates or different approaches to study the stability properties of other rumor spreading models that are more complex in form or structure.This issue will be considered in future studies.

    In the near future,we will study stability properties and practical applications of the rumor spreading models (1) and(2) in the context of fractional-order derivative operators.Also,reliable numerical methods for solving the models (1)and (2) as well as their fractional-order versions will be considered.

    Acknowledgments

    We would like to thank the editor and anonymous referees for useful and valuable comments that led to a great improvement of the paper.

    Ethical approval

    Not applicable.

    Availability of supporting data

    The data supporting the findings of this study are available within the article [and/or] its supplementary materials.

    Conflicts of interest

    We have no conflicts of interest to disclose.

    Funding information

    Not available.

    Authors’ contributions

    Manh Tuan Hoang: Conceptualization,Methodology,Software,Formal analysis,Writing-Original draft preparation,Methodology,Writing—Review and Editing,Supervision.

    久久香蕉国产精品| 国产麻豆成人av免费视频| 99久国产av精品| 中文字幕久久专区| 国产亚洲精品久久久久久毛片| 亚洲av成人不卡在线观看播放网| 欧美一区二区国产精品久久精品| 欧美乱色亚洲激情| 999精品在线视频| 国产不卡一卡二| 成人特级av手机在线观看| tocl精华| 国产av麻豆久久久久久久| 全区人妻精品视频| 国产爱豆传媒在线观看| 最新中文字幕久久久久 | 国产欧美日韩一区二区三| 亚洲av电影在线进入| 亚洲av熟女| a级毛片在线看网站| 午夜福利视频1000在线观看| 亚洲成人久久爱视频| 成年女人毛片免费观看观看9| 国产高清videossex| 亚洲人成网站高清观看| 日日摸夜夜添夜夜添小说| 亚洲国产精品久久男人天堂| 99久久成人亚洲精品观看| 久久久久精品国产欧美久久久| 精品久久久久久久久久免费视频| 天堂网av新在线| 在线观看日韩欧美| 亚洲国产看品久久| 欧美午夜高清在线| 天天添夜夜摸| 婷婷六月久久综合丁香| 后天国语完整版免费观看| aaaaa片日本免费| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| av天堂中文字幕网| 不卡一级毛片| 最好的美女福利视频网| 老司机在亚洲福利影院| 欧美中文日本在线观看视频| xxxwww97欧美| 日韩有码中文字幕| 国产亚洲欧美98| 最新在线观看一区二区三区| 国产激情欧美一区二区| 曰老女人黄片| 此物有八面人人有两片| 亚洲av美国av| 99国产综合亚洲精品| 免费搜索国产男女视频| 成人鲁丝片一二三区免费| 久久久久精品国产欧美久久久| 一级毛片女人18水好多| 757午夜福利合集在线观看| 一个人看视频在线观看www免费 | 少妇熟女aⅴ在线视频| 搞女人的毛片| 变态另类成人亚洲欧美熟女| 人妻夜夜爽99麻豆av| 啦啦啦免费观看视频1| 国产成年人精品一区二区| 国内毛片毛片毛片毛片毛片| a在线观看视频网站| 美女 人体艺术 gogo| 国产久久久一区二区三区| 中文字幕高清在线视频| 亚洲欧美精品综合一区二区三区| 国语自产精品视频在线第100页| 两个人的视频大全免费| 日韩 欧美 亚洲 中文字幕| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 久久久久久久久免费视频了| 身体一侧抽搐| 日本免费a在线| 亚洲第一欧美日韩一区二区三区| 日本成人三级电影网站| 天堂√8在线中文| 成人av在线播放网站| 国产激情欧美一区二区| 精品久久久久久,| 一夜夜www| 国产成人av教育| 亚洲欧美激情综合另类| 黄色女人牲交| 天堂动漫精品| 舔av片在线| 一边摸一边抽搐一进一小说| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片免费观看直播| 99国产综合亚洲精品| 国产视频内射| 99精品在免费线老司机午夜| 国产精品1区2区在线观看.| 国产精品影院久久| 国产欧美日韩精品亚洲av| 色播亚洲综合网| 热99re8久久精品国产| 国产综合懂色| 99国产精品一区二区三区| 久久精品人妻少妇| 亚洲av美国av| 99久久无色码亚洲精品果冻| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 热99在线观看视频| 色播亚洲综合网| 久久久久性生活片| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看| 久久香蕉精品热| 亚洲国产看品久久| 嫩草影院精品99| 欧美色视频一区免费| 欧美日韩亚洲国产一区二区在线观看| 国产激情偷乱视频一区二区| 变态另类成人亚洲欧美熟女| 丁香欧美五月| 日韩三级视频一区二区三区| 国模一区二区三区四区视频 | 夜夜看夜夜爽夜夜摸| 午夜福利欧美成人| 日韩高清综合在线| 好看av亚洲va欧美ⅴa在| 午夜福利欧美成人| 久9热在线精品视频| 中文资源天堂在线| 丰满的人妻完整版| 亚洲欧美激情综合另类| 99视频精品全部免费 在线 | 白带黄色成豆腐渣| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 国产亚洲av高清不卡| 国产午夜精品久久久久久| 国产亚洲欧美98| 老司机在亚洲福利影院| 综合色av麻豆| 在线播放国产精品三级| 久久久久久九九精品二区国产| 叶爱在线成人免费视频播放| 九色国产91popny在线| 一进一出抽搐gif免费好疼| 极品教师在线免费播放| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 男插女下体视频免费在线播放| 一区二区三区国产精品乱码| 丰满的人妻完整版| 国产美女午夜福利| 欧美日韩综合久久久久久 | 欧美大码av| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放| 真实男女啪啪啪动态图| 日本五十路高清| 亚洲国产精品成人综合色| 欧美大码av| 男人舔奶头视频| 国产精品久久久久久人妻精品电影| 观看免费一级毛片| 少妇人妻一区二区三区视频| tocl精华| 国语自产精品视频在线第100页| 亚洲精品美女久久av网站| 日本黄色片子视频| 国内精品美女久久久久久| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 国产精品亚洲一级av第二区| 在线观看美女被高潮喷水网站 | 性色avwww在线观看| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区mp4| 久久精品综合一区二区三区| 国产精品 欧美亚洲| 男人舔女人的私密视频| 一边摸一边抽搐一进一小说| 超碰成人久久| 国产精品九九99| 欧美一级毛片孕妇| www.自偷自拍.com| 久久性视频一级片| 亚洲av五月六月丁香网| 国产一区二区三区在线臀色熟女| 欧美一级a爱片免费观看看| 日本五十路高清| 免费看十八禁软件| 亚洲最大成人中文| 日韩三级视频一区二区三区| 亚洲第一电影网av| 啦啦啦免费观看视频1| 久久久国产成人免费| 欧美日本视频| 亚洲18禁久久av| 久久草成人影院| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 久久久久久久久免费视频了| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 欧美日韩精品网址| 欧美一区二区国产精品久久精品| 两个人看的免费小视频| 男女下面进入的视频免费午夜| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 国内精品久久久久精免费| 日韩欧美精品v在线| 成年人黄色毛片网站| 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 黄片大片在线免费观看| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 天堂影院成人在线观看| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 悠悠久久av| 91久久精品国产一区二区成人 | 免费看光身美女| 九色成人免费人妻av| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 午夜a级毛片| 黄色片一级片一级黄色片| 免费av不卡在线播放| 国产精品精品国产色婷婷| 日本一本二区三区精品| 草草在线视频免费看| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 亚洲av电影在线进入| 国产高清三级在线| 亚洲av成人不卡在线观看播放网| 偷拍熟女少妇极品色| 亚洲成a人片在线一区二区| 久久久久免费精品人妻一区二区| 999精品在线视频| 18禁国产床啪视频网站| 国产亚洲精品久久久com| 欧洲精品卡2卡3卡4卡5卡区| 免费无遮挡裸体视频| 99久久精品热视频| 国模一区二区三区四区视频 | 宅男免费午夜| 国产真实乱freesex| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 91在线精品国自产拍蜜月 | 国产探花在线观看一区二区| 国产精品影院久久| 亚洲精品中文字幕一二三四区| svipshipincom国产片| 变态另类成人亚洲欧美熟女| 五月玫瑰六月丁香| 国产成人av教育| 国产乱人伦免费视频| 偷拍熟女少妇极品色| 国产av麻豆久久久久久久| 色吧在线观看| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站 | 久久国产乱子伦精品免费另类| 成人av在线播放网站| 99视频精品全部免费 在线 | 国产高潮美女av| 国产精品久久视频播放| 国产精品1区2区在线观看.| 男女之事视频高清在线观看| 国产熟女xx| 国产午夜精品久久久久久| 最新美女视频免费是黄的| 搡老岳熟女国产| 在线看三级毛片| 国产精品综合久久久久久久免费| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 成人无遮挡网站| 国产精品一区二区三区四区免费观看 | 亚洲乱码一区二区免费版| 国产淫片久久久久久久久 | 午夜精品一区二区三区免费看| 国产精品av视频在线免费观看| 狂野欧美激情性xxxx| 男人舔女人的私密视频| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 精品久久蜜臀av无| 人人妻人人看人人澡| 亚洲人成网站高清观看| 亚洲 欧美一区二区三区| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 97超视频在线观看视频| 欧美3d第一页| 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 99热这里只有是精品50| 黑人巨大精品欧美一区二区mp4| 国产精品av久久久久免费| 制服人妻中文乱码| 国产野战对白在线观看| 亚洲欧美日韩高清专用| 久久精品亚洲精品国产色婷小说| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 亚洲熟妇中文字幕五十中出| bbb黄色大片| 99国产精品一区二区三区| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 久久国产精品影院| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 中亚洲国语对白在线视频| 成人精品一区二区免费| 日本 av在线| 日韩有码中文字幕| 精品福利观看| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 999久久久国产精品视频| 91久久精品国产一区二区成人 | 一夜夜www| 成人午夜高清在线视频| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| www国产在线视频色| 此物有八面人人有两片| 青草久久国产| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 老司机午夜福利在线观看视频| ponron亚洲| 亚洲精华国产精华精| 麻豆一二三区av精品| www日本黄色视频网| 最近在线观看免费完整版| 日韩精品中文字幕看吧| 久久久久久大精品| 欧美中文综合在线视频| 国产三级中文精品| 中亚洲国语对白在线视频| netflix在线观看网站| 18禁国产床啪视频网站| 久久久国产成人精品二区| 成人av一区二区三区在线看| 91久久精品国产一区二区成人 | 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 国产高清三级在线| 国产一区二区在线观看日韩 | 男人的好看免费观看在线视频| 在线观看66精品国产| 国产精品久久视频播放| 午夜福利在线观看免费完整高清在 | 久久精品aⅴ一区二区三区四区| www.精华液| 国产伦精品一区二区三区视频9 | 亚洲国产日韩欧美精品在线观看 | 色综合欧美亚洲国产小说| 18禁黄网站禁片免费观看直播| 亚洲av电影不卡..在线观看| 他把我摸到了高潮在线观看| 国内精品久久久久精免费| 19禁男女啪啪无遮挡网站| 丁香六月欧美| 精品国产乱码久久久久久男人| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 999久久久精品免费观看国产| 给我免费播放毛片高清在线观看| 国产高潮美女av| 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 久久草成人影院| av欧美777| 级片在线观看| 亚洲精品美女久久久久99蜜臀| 丁香六月欧美| 制服丝袜大香蕉在线| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 国产高潮美女av| 国内精品久久久久久久电影| 中文字幕人成人乱码亚洲影| 国产综合懂色| 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲| 啪啪无遮挡十八禁网站| 亚洲电影在线观看av| 日韩有码中文字幕| 男人舔奶头视频| 国产精品美女特级片免费视频播放器 | 国产淫片久久久久久久久 | 久久久久久九九精品二区国产| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 天堂√8在线中文| 中文字幕最新亚洲高清| 久久久久久人人人人人| or卡值多少钱| 夜夜躁狠狠躁天天躁| 色在线成人网| 成人午夜高清在线视频| 在线国产一区二区在线| 男女床上黄色一级片免费看| 99久久成人亚洲精品观看| 搡老岳熟女国产| 久久久久性生活片| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| av视频在线观看入口| 欧美日韩国产亚洲二区| 国产亚洲欧美在线一区二区| 97碰自拍视频| 色播亚洲综合网| 免费看光身美女| 18美女黄网站色大片免费观看| 国产一区二区三区视频了| 午夜激情欧美在线| 亚洲国产看品久久| 日本一本二区三区精品| 久久久久久国产a免费观看| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 欧美日韩福利视频一区二区| 18禁黄网站禁片免费观看直播| av黄色大香蕉| 久久久国产精品麻豆| 免费在线观看视频国产中文字幕亚洲| www.www免费av| 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx| 欧美午夜高清在线| 少妇的逼水好多| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 中文字幕熟女人妻在线| 老司机在亚洲福利影院| 一级作爱视频免费观看| 搡老岳熟女国产| 最新美女视频免费是黄的| 成人特级av手机在线观看| 欧美日韩瑟瑟在线播放| 香蕉国产在线看| 亚洲精品一区av在线观看| 日韩欧美在线二视频| 久久久水蜜桃国产精品网| 无限看片的www在线观看| 成人无遮挡网站| 大型黄色视频在线免费观看| 亚洲欧美精品综合久久99| 免费电影在线观看免费观看| 亚洲av成人一区二区三| 国产精品 国内视频| 身体一侧抽搐| 亚洲精品456在线播放app | 日日夜夜操网爽| 免费大片18禁| 国产亚洲精品久久久久久毛片| 热99re8久久精品国产| 最新中文字幕久久久久 | 日韩欧美一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 两个人视频免费观看高清| 国产极品精品免费视频能看的| 97超级碰碰碰精品色视频在线观看| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 一个人观看的视频www高清免费观看 | 五月玫瑰六月丁香| 国产精品99久久久久久久久| 日本一二三区视频观看| 久久久国产欧美日韩av| 欧美大码av| 最近视频中文字幕2019在线8| 国产黄片美女视频| 亚洲成人久久爱视频| 色噜噜av男人的天堂激情| 免费观看精品视频网站| av视频在线观看入口| 人妻夜夜爽99麻豆av| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久v下载方式 | 亚洲精品美女久久久久99蜜臀| 级片在线观看| 美女大奶头视频| 国产麻豆成人av免费视频| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 不卡一级毛片| 久久久国产成人免费| 大型黄色视频在线免费观看| 国产成人一区二区三区免费视频网站| 午夜福利在线在线| 国产精品亚洲av一区麻豆| 精华霜和精华液先用哪个| 校园春色视频在线观看| 最新中文字幕久久久久 | 国产99白浆流出| 久9热在线精品视频| 91在线观看av| 亚洲真实伦在线观看| 叶爱在线成人免费视频播放| 怎么达到女性高潮| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 51午夜福利影视在线观看| 欧美不卡视频在线免费观看| 久久亚洲真实| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 亚洲国产高清在线一区二区三| 久久欧美精品欧美久久欧美| 国产日本99.免费观看| 美女大奶头视频| 青草久久国产| 国产99白浆流出| 狂野欧美白嫩少妇大欣赏| 成人国产一区最新在线观看| 国产视频内射| 亚洲真实伦在线观看| 久久草成人影院| 久久99热这里只有精品18| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 又黄又爽又免费观看的视频| 国产成人影院久久av| 悠悠久久av| 美女高潮的动态| 国产av在哪里看| 99久久综合精品五月天人人| 免费电影在线观看免费观看| 一级毛片精品| av在线天堂中文字幕| 99久久99久久久精品蜜桃| 日本免费a在线| 在线a可以看的网站| 精品熟女少妇八av免费久了| 午夜福利在线在线| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 久久天躁狠狠躁夜夜2o2o| 身体一侧抽搐| aaaaa片日本免费| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 久久久久久国产a免费观看| 搞女人的毛片| 中国美女看黄片| 欧美一区二区精品小视频在线| 色视频www国产| 久久精品aⅴ一区二区三区四区| 91老司机精品| 天天添夜夜摸| 国产乱人伦免费视频| 国产淫片久久久久久久久 | 欧美在线黄色| 色尼玛亚洲综合影院| 床上黄色一级片| 久久久久久久久中文| 色综合站精品国产| 国产精品野战在线观看| 欧美在线一区亚洲| 国产av在哪里看| 欧美最黄视频在线播放免费| 亚洲国产欧美一区二区综合| 日韩欧美精品v在线| 99久久精品一区二区三区|