• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled cyclic remote preparation

    2023-10-11 08:34:56LiGongSongyaMaandJunliJiang
    Communications in Theoretical Physics 2023年10期

    Li Gong,Songya Ma and Junli Jiang

    1 Information Security Center,State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2 School of Mathematics and Statistics,Henan University,Kaifeng 475004,China

    3 Institute of Mathematics,Henan Academy of Sciences,Zhengzhou 450046,China

    Abstract Multi-party quantum communication has gradually attracted widespread attention.To realize the perfect transmission of quantum states among multiple participants,a novel multi-party controlled cyclic remote preparation protocol for arbitrary single-qubit states with three senders is proposed.With the permission of one controller,each sender can transmit an arbitrary singlequbit state to its neighbor.In addition,we give a universal protocol for multi-party controlled cyclic remote preparation of arbitrary single-qubit states in the case of multiple senders,which can realize deterministic cyclic preparation of multiple quantum states in one direction.The scheme shows that the communication task can be successfully achieved only if all senders cooperate with the controller,and there is no need for the senders to employ information splitting and additional operations before performing measurements.Finally,we discuss the cyclic remote preparation protocol with three senders under five types of noisy environment,and the closeness between the output state and original state is measured by calculating fidelity.

    Keywords: controlled cyclic remote preparation,network coding,measurement basis,quantum noise,fidelity

    1.Introduction

    Quantum entanglement is one type of significant resource.Many kinds of quantum cryptographic protocols utilizing entanglement have been proposed,such as quantum secure direct communication [1],quantum network coding [2–5],and quantum operation sharing[6–8].As we all know,remote state preparation (RSP),as an important application of quantum entanglement,was first proposed by Lo [9] for the transmission of pure known states.In RSP,the information of the desired state is known to the sender,while it may cause information leakage in the process of information transmission.Therefore,multi-party RSP has been investigated to enhance security,such as joint remote state preparation[10–13] and controlled remote state preparation [14–17].In addition,bidirectional RSP [18–21],hierarchical RSP[22–24] and RSP in noisy environments [25,26] have been studied.

    To better satisfy the needs of quantum communication,Sang et al [27] proposed a protocol for controlled tripartite remote preparation by utilizing a seven-qubit entangled channel,in which three single-qubit states were prepared deterministically.Wang et al [28] then proposed a controlled cyclic remote state preparation(CCRSP) protocol of arbitrary-qubit states.Zha et al [29] presented a novel deterministic controlled tripartite remote preparation scheme for arbitrary single-qubit states via a seven-qubit entangled state.Peng et al [30] proposed a scheme for cyclic remote state preparation (CRSP) of arbitrary singlequbit states using a six-qubit entangled state,and it can also be extended to systems with n senders,allowing for the cyclic preparation of quantum states in different directions.Afterward,Zhang et al [31] presented a cyclic joint remote state preparation (CJRSP) protocol by using three Greenberger-Home-Zeilinger (GHZ) states,and further generalized it from three senders to n senders.They also discussed the protocol in amplitude-damping noisy environment.Sang[32]put forward a scheme of controlled CJRSP for arbitrary single-qubit states by sharing a ten-qubit entangled channel.Furthermore,Shi [33] proposed a scheme for unidirectional CCRSP of single-qutrit equatorial states via a seven-qutrit entangled state.Ma et al [34] also proposed a novel protocol for CCRSP of single-qutrit equatorial states.In addition to these mentioned protocols for cyclically preparing arbitrary single-qubit states,Sun et al [35] presented a protocol for cyclically preparing arbitrary two-qubit states and studied two-type quantum noises.Other protocols for cyclic remote preparation had been also proposed,such as multi-hop [36] and asymmetric [37] CRSP schemes.

    Inspired by the above works,we first propose a scheme for CCRSP of arbitrary single-qubit states among three senders by utilizing a seven-qubit entangled state.In the scheme,it is assumed that the senders cannot communicate with each other through a classical channel,but they just communicate with the controller.Under the assistance of the controller,one sender could prepare an arbitrary single-qubit state for another in one direction.Only if all the participants cooperate can the three single-qubit states be prepared successfully.It is worthwhile to say that all senders are not required to employ information splitting and additional unitary operations before making measurements,owing to the ingenious construction of the measurement basis.Moreover,we generalize the CCRSP from three senders to the case of n senders and propose a universal protocol for multi-party CCRSP that can transmit n arbitrary single-qubit states at one time in the quantum network.Furthermore,in light of the influence of the actual environment,we study the impact of five-type quantum noises on the proposed CCRSP scheme with three senders.To better analyze the influence of quantum noise,fidelity is utilized to describe the closeness between the output states and the original states.The result indicates that fidelity is related to the coefficients of the prepared states and the noise parameters.The higher the fidelity,the better the communication quality,and the less information is lost.

    The remainder of our paper is arranged as follows.In section 2,we propose a CCRSP protocol with three senders.In section 3,a universal multi-party CCRSP protocol with n senders is presented.We then offer some discussions and comparisons in section 4.In section 5,we study the effect of quantum noise on the proposed scheme in section 2.Last,we summarize our work in section 6.

    2.CCRSP scheme with three senders

    In this section,a protocol for cyclically preparing arbitrary single-qubit states in one direction among three senders is proposed.With the aid of one controller Charlie,the sender Alice1wants to help Alice2prepare an arbitrary single-qubit state |φ1〉,Alice2wishes to prepare an arbitrary single-qubit state|φ2〉for Alice3,and Alice3desires to prepare an arbitrary single-qubit state|φ3〉at Alice1?s site.Note that these senders are also receivers.For convenience,the arbitrary single-qubitstate is indicated as

    where αjdenotes a real number,βjdenotes a complex number,and they also obey the normalization condition|αj|2+|βj|2=1,j=1,2,3.The sender Alicejgrasps the coefficients of state|φj〉,but the receiverAlicej+1(mod3)knows nothing about it.

    Suppose that the three senders and the controller Charlie pre-share a seven-qubit entangled channel

    Step 1.The sender Alicej(j=1,2,3) introduces an auxiliary particle ∣0 〉(2j-1)′locally,and then employs a Controlled-Not (CNOT) operationC(2j-1),(2j-1)′,where the qubit(2j-1)works as the controlled qubit,and the qubit(2j-1)′as the goal qubit.Then the quantum channel |Ω〉 transforms into

    Alicejthen transmits the measurement result in the form of classical messages sjtj(sj,tj?{0,1}) to Charlie through the classical channel.

    where ⊕is an addition mod 2.

    Step 3.If Charlie desires to help Alicej,he is required to perform one single-qubit measurement under the Z basis{∣l〉,l?{0,1}}.Depending on the received classical messages,Charlie just transmits two-bit classical messages(sP(j+1),tP(j+1)⊕l) toAlicej+1(mod3)respectively by making use of network coding.Here P is the cycling permutation (1,2,3).

    If Charlie gets the measurement result |0〉,the state of qubits (2,4,6) will collapse into

    While if Charlie’s measurement result is |1〉,the collapsed state is expressed as

    Step 4.According to the classical messages received,Alicej+1(mod3)(j=1,2,3) executes the recovery operation

    on her qubit to obtain the goal state |φj〉.Here X and Z are Pauli operators,and X0=Z0=I.In a word,by employing suitable recovery operations of equation (9) on the collapsed state of equations (7) and (8),Alicejcan always be capable of recovering the desired state with unit success probability.

    If Charlie obtains the measurement outcome|1〉,thus the state of qubits (2,4,6) collapses into

    Alice1,Alice2and Alice3execute Pauli operations X6,Z2and I4on their qubits 6,2,4,respectively,thus the desired single-qubit states |φ3〉,|φ1〉 and |φ2〉 are reconstructed successfully.

    3.CCRSP scheme with multiple senders

    In this section,we present a deterministic multi-party CCRSP protocol of arbitrary single-qubit states for the case of n senders.

    Alice1wants to help Alice2prepare an arbitrary singlequbit state |φ1〉,Alice2wishes to help Alice3prepare an arbitrary single-qubit state |φ2〉,…,Alicendesires to prepare an arbitrary single-qubit state|φn〉for Alice1.The single-qubit state |φj〉 (j=1,2,…,n) is shown in equation (1),whereby the real numbers αjand complex numbers βjfollow the normalization condition |αj|2+|βj|2=1.

    Assume Alice1,Alice2,…,Alicenand Charlie pre-share a(2n+1)-qubit entangled channel

    Here Alicejprocesses qubits (2j-2,2j-1),j=2,3,…,n,and qubit 2n+1 belongs to Charlie.In particular,Alice1holds qubits (1,2n).The specific process of the protocol are described in the following steps.

    Step 1.Alicej(j=1,2,…,n) first introduces an auxiliary particle ∣0 〉(2j-1)′,and then employs a CNOT operationC(2j-1),(2j-1)′.The quantum channel |C2n+1〉 then becomes

    where the collapsed state of qubits (2,…,2n,2n+1) can be expressed as

    Step 3.To complete the task,Charlie employs a singlequbit measurement on his qubit under the Z basis.He then transmits two-bit classical messages(sP(j+1),tP(j+1)⊕l)to the receiverAlicej+1(modn).

    If Charlie obtains the measurement result as |0〉,the qubits (2,4,…,2n) will collapse into

    while if Charlie’s measurement result is |1〉,the collapsed state is

    Table 2.Comparison with previous protocols (n=6).

    Step 4The receiverAlicej+1(modn)(j=1,2,…,n) performs the appropriate recovery operationin equation (9) and acquires the goal state

    according to the classical messages they received,wherein P is the cycling permutation(1,n,n-1,…,2)-1.

    As a consequence,Alice1,Alice2,…,Alicencan deterministically construct n arbitrary single-qubit states|φn〉,|φ1〉,…,|φn-1〉.

    4.Discussions and comparisons

    In this part,we first discuss the intrinsic efficiency [38] and the necessary operations of our universal protocol.After,we provide some comparisons with other protocols.

    The intrinsic efficiency is a crucial factor for evaluating the performance of a protocol,which is defined by

    wherein qsrepresents the number of qubits teleported,qudenotes the number of particles used in the quantum channel,btacts for the classical bits that need to be transmitted.

    As mentioned above,we propose a CCRSP scheme to simultaneously and deterministically prepare n arbitrary single-qubit states by sharing a (2n+1)-qubit entangled channel.Alicej(j=1,2,…,n)respectively transmit two classical bits to Charlie.Charlie encodes his classical message corresponding to his measurement outcome with the classical messages that he received from Alicej,and then sends the encoded results toAlicej+1(modn).The total classical communication cost(CCC)is 4n classical bits.Thus,the intrinsic efficiency of our protocol is

    If network coding is not utilized,the total CCC is 5n bits.In this scenario,the intrinsic efficiency will be

    which is lower than the intrinsic efficiency in equation (20),so the intrinsic efficiency of CCRSP protocol with three senders isη=≈13.64%.It reveals that the utilization of network coding can effectively reduce the CCC and enhance the intrinsic efficiency.

    In the following,we present some comparisons with other CRSP protocols.To make the comparison convincing,we only choose a specific value n=6.The results of comparisons with previous protocols are given in table 2.A detailed explanation of the abbreviations is provided as follows:QC(quantum channel),ES(entangled state),BO(basic operation),RUO (recovery unitary operation),SQM (singlequbit measurement),TQM (two-qubit measurement),CNOT(Controlled-NOT),NTQ (number of the teleported qubits).

    From table 2,it can be seen that the intrinsic efficiency of[28,30,31] are all greater than ours.Besides their unfavorable aspects,our schemes also have advantages.In particular,adopting two-particle measurement instead of single-qubit measurement,the senders are not required to employ information splitting before performing measurements.The advantage is that two-qubit information can be obtained simultaneously in a single operation.Compared to the scheme in [28],their protocol failed in some cases of measurement results,but the success probability of ours can reach one,i.e.our protocol is deterministic.In comparison with the scheme in [30],our protocol has higher security,since the introduction of a controller can be effective in preventing a dishonest sender from not sending messages.Further,compared with the scheme in [31],five qubits are saved in the entangled channel,and fewer particles are exposed to noise during entanglement distribution.As a result,in comparison to other similar protocols,our protocol only increases the CCC but optimizes other aspects.Though it reduces the internal efficiency,the feasibility of our protocol is greatly improved.

    5.The CCRSP scheme subjects to noisy environment

    In real situations,however,quantum noise may have some influence on the quantum channel.It is general to assume that one of the participants is responsible for constructing the shared entanglement.The constructor then needs to send particles to each participant,and every particle to be transmitted will be inevitably affected by quantum noise during the distribution of entanglement.In what follows,we investigate the proposed CCRSP scheme in section 2 under five types of noises(bit-flip,phase-flip,bit-phase flip,amplitude-damping,and phase-damping noises).

    5.1.Density operator representation of the CCRSP scheme

    To better analyze the impact of quantum noise on the CCRSP protocol with three senders,it is convenient to redescribe the protocol in terms of density operators.Thus,the desired prepared states are denoted as |φ1〉|φ2〉|φ3〉〈φ3|〈φ2|〈φ1|,and the quantum channel is shown asρ=∣Ω′〉〈Ω′∣.Alicej?s(j=1,2,3) and Charlie’s measurement operators areandMC={∣0〉〈0∣,∣1〉1∣}.Hence,we redescribe the CCRSP scheme with three senders as follows.

    Step 1.Alicejfirst introduces an auxiliary particle∣0 〉(2j-1)′,and then executes a CNOT operationC(2j-1),(2j-1)′.

    Step 2.Alice1measures her qubits (1,1′) by measurement operatorsand the system of qubits(2,3,3′,4,5,5′,6,7) turns to

    Alice2measures her qubits (3,3′) by measurement operatorsand the system of qubits (2,4,5,5′,6,7)becomes

    Alice3measures her qubits (5,5′) by measurement operatorsMA3and the system of qubits (2,4,6,7) collapses into

    Step 3.Charlie selects measurement operators MCfor measuring his qubit 7,the system of qubits (2,4,6)becomes

    Step 4.Alicejperforms the unitary operationRAjdescribed in equation (9) and gets the output state

    5.2.Five types of quantum noises

    The bit-flip,phase-flip and bit-phase flip noises are known as Pauli noises.The bit-flip noise refers to changing a qubit from|0〉to|1〉or|1〉to|0〉with probability λ.Interestingly,the phase-flip noise only changes the phase of qubit |1〉 to-|1〉 with probability λ,while the phase of qubit |0〉remains unaffected.The bit-phase flip noise can be regarded as the combination of both the bit-flip and phase-flip noises,since σy=iσxσz.Their actions are denoted as Kraus operators [26]

    The amplitude-damping(AD)and phase-damping(PD)noises are two types of important decoherence noises.The AD noise refers to the dissipation of energy in a quantum system,while the PD noise refers to the loss of quantum information without any energy loss,and their actions are shown by a set of Kraus operators [26]

    where λ(0 ≤λ ≤1) indicates the decoherence rate of the five types of quantum noises.

    5.3.The output state and fidelity in a noisy environment

    Without losing generality,suppose that the controller Charlie prepares the quantum channel |Ω〉,then he distributes qubits(1,6) to Alice1,qubits (2,3) to Alice2,and qubits (4,5) to Alice3through the noisy environment.It is reasonable to introduce the auxiliary qubits locally via the senders,and they are not exposed to the noisy environment.Thus,we assume that the auxiliary particles used in local CNOT operations are not affected by quantum noise during the distribution of entanglement.Supposed that there is the same type of noise effect on each channel,the effect of noise on the shared channel ρ is expressed as

    where the subscripts j1,j2,j3denote the Kraus operator that is employed.In AD and Pauli noises,j1,j2,j3?{0,1},while in PD noise,j1,j2,j3?{0,1,2}.The superscripts 1,6,2,3,4,5 denote which qubit that operator E acts on.To calculate the fidelity of the output state,we replace ρ by ε(ρ) in equation (22),and we can obtain the fidelity as

    In the phase-flip noisy environment,the output state and fidelity are

    The output state and fidelity in the bit-phase flip noisy environment are

    In the amplitude-damping noisy environment,the output state and fidelity are

    Fig. 1.The plot of the function between fidelity and noise parameter λ.

    In the phase-damping noisy environment,the output state and fidelity are

    5.4.Analysis

    6.Conclusions

    In this paper,we put forward a protocol for cyclically preparing arbitrary single-qubit states in one direction simultaneously and deterministically.At first,we propose a CCRSP protocol with three senders to prepare three arbitrary singlequbit states by sharing a seven-qubit entangled state.Several simple operations of single-qubit measurement,two-qubit projective measurement and Pauli operations are needed to accomplish the task.One of the unique advantages of our solution is that the senders do not need to employ information splitting and additional unitary operations before making measurements.With the aid of network coding,allowing network nodes to encode and combine the received messages,n-bit CCC can be saved in our protocol.In addition,we consider the case of multiple senders and give a universal CCRSP protocol,which could better meet the requirements of future quantum network communication.Obviously,bidirectional controlled remote preparation is a specific case of the CCRSP with two senders.

    As widely known,quantum noise inevitably exists in the communication environment.We also discuss the impact of five types of quantum noises on the proposed CCRSP scheme with three senders,and fidelity is utilized to measure the quality of quantum communication.By calculating and analyzing,we can conclude that the fidelity is dependent on the coefficients of the prepared state and the noise parameters.The higher the fidelity,the better the communication and less information has been lost.Therefore,a quantum communication protocol with resistance to quantum noise will be a more interesting topic in our subsequent research.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.62 172 341,62 172 196,62 272 208).

    美女扒开内裤让男人捅视频| 免费观看人在逋| 国产乱人伦免费视频| 久久国产精品人妻蜜桃| 人妻久久中文字幕网| 一进一出抽搐动态| 一个人观看的视频www高清免费观看 | 69精品国产乱码久久久| 深夜精品福利| 91在线观看av| 成人国语在线视频| 午夜福利在线观看吧| 日日干狠狠操夜夜爽| 一级a爱片免费观看的视频| 国产精品国产高清国产av| xxxhd国产人妻xxx| 亚洲第一欧美日韩一区二区三区| 丝袜人妻中文字幕| 超色免费av| 国产黄色免费在线视频| 日韩av在线大香蕉| 最近最新中文字幕大全免费视频| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 国产成人系列免费观看| 国产又色又爽无遮挡免费看| 欧美日本亚洲视频在线播放| 一进一出抽搐gif免费好疼 | 黄色视频,在线免费观看| 在线观看免费视频网站a站| 亚洲 国产 在线| 激情视频va一区二区三区| 国产免费男女视频| 国内久久婷婷六月综合欲色啪| 国产精品秋霞免费鲁丝片| 久久久久九九精品影院| 亚洲人成77777在线视频| 国产欧美日韩精品亚洲av| 18禁国产床啪视频网站| 久久狼人影院| 亚洲国产看品久久| 欧美日本亚洲视频在线播放| 一区二区三区国产精品乱码| 欧美丝袜亚洲另类 | 国产精品av久久久久免费| av视频免费观看在线观看| 国产精品久久久av美女十八| 午夜免费成人在线视频| 亚洲专区中文字幕在线| 欧美日韩亚洲高清精品| 女性被躁到高潮视频| 热99国产精品久久久久久7| 国内久久婷婷六月综合欲色啪| 国产人伦9x9x在线观看| 国产av又大| 欧美在线一区亚洲| 交换朋友夫妻互换小说| 黑丝袜美女国产一区| 在线免费观看的www视频| 纯流量卡能插随身wifi吗| 女同久久另类99精品国产91| 亚洲五月婷婷丁香| 岛国视频午夜一区免费看| 国产一区在线观看成人免费| 一进一出抽搐gif免费好疼 | 亚洲精品国产区一区二| 看片在线看免费视频| 美女福利国产在线| 91精品国产国语对白视频| av国产精品久久久久影院| 国产精品 欧美亚洲| 成熟少妇高潮喷水视频| 色综合欧美亚洲国产小说| 精品熟女少妇八av免费久了| 成人手机av| 久久中文字幕人妻熟女| 国产成年人精品一区二区 | 欧美色视频一区免费| 久久中文字幕一级| 80岁老熟妇乱子伦牲交| 波多野结衣高清无吗| 亚洲人成网站在线播放欧美日韩| 国产成人精品久久二区二区免费| 美女福利国产在线| xxxhd国产人妻xxx| 亚洲av成人一区二区三| 韩国av一区二区三区四区| 中文字幕精品免费在线观看视频| 在线观看舔阴道视频| 美国免费a级毛片| 99精品在免费线老司机午夜| 亚洲情色 制服丝袜| 两个人看的免费小视频| 久久久久精品国产欧美久久久| 在线播放国产精品三级| 成人18禁在线播放| 久久伊人香网站| 国产片内射在线| 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址 | 夫妻午夜视频| 人人澡人人妻人| 黄色毛片三级朝国网站| 黑人操中国人逼视频| 久久久久国产精品人妻aⅴ院| 又黄又爽又免费观看的视频| 97人妻天天添夜夜摸| 精品少妇一区二区三区视频日本电影| 一边摸一边抽搐一进一出视频| 欧美精品亚洲一区二区| 老熟妇乱子伦视频在线观看| 一级黄色大片毛片| 国产精品综合久久久久久久免费 | 久久热在线av| 人人澡人人妻人| 丁香六月欧美| 亚洲午夜理论影院| 99国产精品99久久久久| www日本在线高清视频| 久久精品亚洲熟妇少妇任你| 国产精品亚洲一级av第二区| 激情视频va一区二区三区| 丝袜在线中文字幕| 天堂俺去俺来也www色官网| 亚洲欧美日韩另类电影网站| 欧美不卡视频在线免费观看 | 一边摸一边做爽爽视频免费| 午夜两性在线视频| 在线观看66精品国产| 日韩中文字幕欧美一区二区| 三上悠亚av全集在线观看| 少妇粗大呻吟视频| 三上悠亚av全集在线观看| 99久久人妻综合| 国产xxxxx性猛交| 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 97碰自拍视频| 亚洲第一av免费看| 三上悠亚av全集在线观看| 男女午夜视频在线观看| 在线视频色国产色| 国产精品免费视频内射| 99在线视频只有这里精品首页| 性少妇av在线| 女人精品久久久久毛片| 黑人猛操日本美女一级片| av电影中文网址| 亚洲熟女毛片儿| 精品一区二区三区视频在线观看免费 | 80岁老熟妇乱子伦牲交| 午夜福利一区二区在线看| 欧美老熟妇乱子伦牲交| 国产午夜精品久久久久久| 久久中文字幕人妻熟女| 91国产中文字幕| 在线观看免费日韩欧美大片| 人人妻人人澡人人看| 国产97色在线日韩免费| 多毛熟女@视频| 精品高清国产在线一区| 少妇 在线观看| 久久国产乱子伦精品免费另类| 国产精品免费一区二区三区在线| 18禁美女被吸乳视频| 久久午夜亚洲精品久久| 老司机午夜十八禁免费视频| 欧美乱妇无乱码| 久久这里只有精品19| 91麻豆av在线| 亚洲欧美日韩高清在线视频| 久久青草综合色| 免费av毛片视频| videosex国产| 亚洲av熟女| 男人的好看免费观看在线视频 | 久99久视频精品免费| 久久久国产一区二区| 夜夜躁狠狠躁天天躁| 亚洲自偷自拍图片 自拍| 一边摸一边做爽爽视频免费| 老熟妇乱子伦视频在线观看| 热re99久久精品国产66热6| 国产精品亚洲一级av第二区| 国产深夜福利视频在线观看| 婷婷六月久久综合丁香| 国产精品九九99| 亚洲黑人精品在线| 国产精华一区二区三区| 国产极品粉嫩免费观看在线| 国内久久婷婷六月综合欲色啪| 亚洲 欧美一区二区三区| 日日夜夜操网爽| 亚洲一区二区三区色噜噜 | 日本vs欧美在线观看视频| 国产1区2区3区精品| 国产乱人伦免费视频| 亚洲三区欧美一区| 亚洲伊人色综图| av视频免费观看在线观看| 国产精品九九99| 交换朋友夫妻互换小说| 在线观看免费午夜福利视频| 久久久国产成人精品二区 | 亚洲国产精品sss在线观看 | 制服诱惑二区| 久久草成人影院| 脱女人内裤的视频| 亚洲精品一卡2卡三卡4卡5卡| 中文亚洲av片在线观看爽| 伊人久久大香线蕉亚洲五| 久久狼人影院| 国产一区二区三区综合在线观看| 亚洲aⅴ乱码一区二区在线播放 | 三级毛片av免费| 国产精品 欧美亚洲| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 国产亚洲精品第一综合不卡| 视频区欧美日本亚洲| 一级,二级,三级黄色视频| 两人在一起打扑克的视频| 国产aⅴ精品一区二区三区波| 99久久99久久久精品蜜桃| 热re99久久精品国产66热6| 亚洲国产精品sss在线观看 | 色精品久久人妻99蜜桃| 99久久国产精品久久久| 9色porny在线观看| 又黄又粗又硬又大视频| 久久婷婷成人综合色麻豆| 精品一品国产午夜福利视频| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 色婷婷av一区二区三区视频| 9色porny在线观看| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 啦啦啦 在线观看视频| 亚洲黑人精品在线| 精品无人区乱码1区二区| 精品第一国产精品| 亚洲一区中文字幕在线| 国产av在哪里看| 成人亚洲精品一区在线观看| 丝袜人妻中文字幕| 精品久久久久久成人av| 国产精品免费视频内射| av视频免费观看在线观看| 久久九九热精品免费| 亚洲情色 制服丝袜| 久久国产精品人妻蜜桃| 又黄又粗又硬又大视频| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 国产av在哪里看| 国产精品久久久久久人妻精品电影| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线| 久久中文字幕人妻熟女| 老司机午夜福利在线观看视频| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 性少妇av在线| 亚洲人成伊人成综合网2020| 性少妇av在线| 国产精品久久久久成人av| av在线播放免费不卡| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 美女大奶头视频| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 超碰97精品在线观看| 精品久久久久久久毛片微露脸| 校园春色视频在线观看| 亚洲成人久久性| 欧美成人午夜精品| 亚洲,欧美精品.| 超色免费av| 日日夜夜操网爽| 国产三级在线视频| 亚洲欧美一区二区三区黑人| www.精华液| 激情视频va一区二区三区| 亚洲精品国产精品久久久不卡| 两人在一起打扑克的视频| www日本在线高清视频| 国产欧美日韩一区二区三| 波多野结衣一区麻豆| 亚洲av片天天在线观看| 日本黄色视频三级网站网址| 91麻豆精品激情在线观看国产 | 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 欧美日韩一级在线毛片| 中文字幕av电影在线播放| 亚洲欧美激情在线| 国产高清激情床上av| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 欧美精品啪啪一区二区三区| 成人三级黄色视频| 一级,二级,三级黄色视频| 搡老乐熟女国产| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 国内久久婷婷六月综合欲色啪| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 精品国产一区二区久久| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区三| 别揉我奶头~嗯~啊~动态视频| 91九色精品人成在线观看| 精品久久久久久,| 久久精品91无色码中文字幕| 啦啦啦在线免费观看视频4| 国产精品久久久av美女十八| 国产精品久久视频播放| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲一码二码三码区别大吗| 50天的宝宝边吃奶边哭怎么回事| 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲五月色婷婷综合| 天天添夜夜摸| 国产精品一区二区免费欧美| 国产亚洲精品第一综合不卡| 狠狠狠狠99中文字幕| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 美女大奶头视频| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 在线观看免费视频日本深夜| 天堂动漫精品| 亚洲成a人片在线一区二区| 一本大道久久a久久精品| 成人av一区二区三区在线看| 免费高清在线观看日韩| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| 国产在线观看jvid| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 人成视频在线观看免费观看| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 三级毛片av免费| 妹子高潮喷水视频| 亚洲精华国产精华精| 欧美性长视频在线观看| 露出奶头的视频| 亚洲 欧美一区二区三区| 亚洲激情在线av| 欧美中文综合在线视频| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 12—13女人毛片做爰片一| 大香蕉久久成人网| 久热爱精品视频在线9| 日本免费a在线| 精品高清国产在线一区| 国产精品一区二区三区四区久久 | 亚洲熟妇中文字幕五十中出 | 99热只有精品国产| 美女扒开内裤让男人捅视频| 婷婷精品国产亚洲av在线| 欧美日韩福利视频一区二区| 国产成人欧美在线观看| 一级毛片女人18水好多| 国产三级在线视频| 18美女黄网站色大片免费观看| 嫩草影视91久久| 欧美日韩乱码在线| 国产1区2区3区精品| 宅男免费午夜| 深夜精品福利| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久| 国产精品久久视频播放| av国产精品久久久久影院| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 国产日韩一区二区三区精品不卡| 欧美日本亚洲视频在线播放| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 露出奶头的视频| 国产1区2区3区精品| 欧美午夜高清在线| 精品久久蜜臀av无| 自线自在国产av| 久久久久国内视频| 午夜激情av网站| 极品教师在线免费播放| 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 国产成人一区二区三区免费视频网站| 午夜两性在线视频| 久久99一区二区三区| 一区二区三区国产精品乱码| 亚洲精品一二三| 夜夜夜夜夜久久久久| 久久婷婷成人综合色麻豆| 国产精品久久视频播放| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 国产av一区在线观看免费| 欧美av亚洲av综合av国产av| 国产极品粉嫩免费观看在线| 久久香蕉精品热| 亚洲一码二码三码区别大吗| 9191精品国产免费久久| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 男女午夜视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 老司机福利观看| 欧美日本亚洲视频在线播放| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 色精品久久人妻99蜜桃| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看 | 国产av一区在线观看免费| 亚洲第一av免费看| 亚洲欧美激情综合另类| ponron亚洲| 国产精品偷伦视频观看了| 国产有黄有色有爽视频| 麻豆av在线久日| 一级毛片精品| 19禁男女啪啪无遮挡网站| 人妻丰满熟妇av一区二区三区| 午夜免费观看网址| 色尼玛亚洲综合影院| av欧美777| 美女扒开内裤让男人捅视频| 日本欧美视频一区| 两人在一起打扑克的视频| 久久久久亚洲av毛片大全| 操出白浆在线播放| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 这个男人来自地球电影免费观看| a级毛片黄视频| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 国产一区二区三区在线臀色熟女 | 十八禁网站免费在线| 法律面前人人平等表现在哪些方面| 亚洲成人免费电影在线观看| 香蕉丝袜av| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 国产精品永久免费网站| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 中文字幕色久视频| 好男人电影高清在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 成人黄色视频免费在线看| 久久久久久免费高清国产稀缺| a在线观看视频网站| 九色亚洲精品在线播放| 久久久久久久精品吃奶| 一本大道久久a久久精品| 亚洲九九香蕉| 午夜福利影视在线免费观看| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 久久99一区二区三区| 在线观看www视频免费| 女警被强在线播放| 成人三级黄色视频| xxx96com| 国产有黄有色有爽视频| 亚洲熟女毛片儿| x7x7x7水蜜桃| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| av在线天堂中文字幕 | а√天堂www在线а√下载| 亚洲欧美激情在线| 97超级碰碰碰精品色视频在线观看| 久热这里只有精品99| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 一区二区三区激情视频| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三| 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 国产成人欧美| av福利片在线| 成人国产一区最新在线观看| av片东京热男人的天堂| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 天堂影院成人在线观看| 99国产精品免费福利视频| 亚洲在线自拍视频| 在线永久观看黄色视频| 精品久久久久久久久久免费视频 | 亚洲九九香蕉| 精品国内亚洲2022精品成人| 亚洲中文av在线| 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 日本三级黄在线观看| 久久中文看片网| 我的亚洲天堂| 99国产精品免费福利视频| 国产99久久九九免费精品| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 嫩草影院精品99| 又黄又粗又硬又大视频| 大型av网站在线播放| 一级a爱视频在线免费观看| 久久久久九九精品影院| 国产一区二区三区视频了| 两性夫妻黄色片| 老熟妇仑乱视频hdxx| bbb黄色大片| 精品国产一区二区三区四区第35| 国产99久久九九免费精品| 69av精品久久久久久| 亚洲一区二区三区色噜噜 | 高清欧美精品videossex| 欧美在线一区亚洲| 久久精品91蜜桃| 久久精品国产99精品国产亚洲性色 | 国产乱人伦免费视频| bbb黄色大片| 国产精品久久久人人做人人爽| 国产亚洲精品综合一区在线观看 | 亚洲精品一区av在线观看| 丰满迷人的少妇在线观看| 免费女性裸体啪啪无遮挡网站| 色哟哟哟哟哟哟| 亚洲avbb在线观看| 久久香蕉国产精品| 久久国产精品影院| 最新在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲一区中文字幕在线| 99久久国产精品久久久| 欧美午夜高清在线| 中文字幕精品免费在线观看视频| 欧美人与性动交α欧美精品济南到| 亚洲免费av在线视频| 丰满的人妻完整版| 亚洲一区二区三区不卡视频| 国产色视频综合| 日韩 欧美 亚洲 中文字幕| 麻豆一二三区av精品| 久久久久国内视频| 天天躁狠狠躁夜夜躁狠狠躁| 黄色怎么调成土黄色| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区蜜桃| 成人18禁高潮啪啪吃奶动态图| 天堂中文最新版在线下载| 一进一出抽搐gif免费好疼 | 国产亚洲欧美在线一区二区| 亚洲五月色婷婷综合| 久久久国产成人精品二区 | 色婷婷久久久亚洲欧美| 女警被强在线播放| 宅男免费午夜| 女性被躁到高潮视频| 无人区码免费观看不卡| 黄片小视频在线播放| 757午夜福利合集在线观看| 99久久国产精品久久久| 亚洲,欧美精品.| 亚洲国产精品合色在线| 人人妻人人澡人人看| 精品乱码久久久久久99久播| 日韩精品中文字幕看吧| 精品久久久久久电影网| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| 免费不卡黄色视频| 天堂√8在线中文| 在线观看66精品国产| 少妇的丰满在线观看| 黄色视频不卡| 精品少妇一区二区三区视频日本电影| 少妇的丰满在线观看| 亚洲av日韩精品久久久久久密| 久久精品91蜜桃| 法律面前人人平等表现在哪些方面| av在线天堂中文字幕 | 桃红色精品国产亚洲av| 亚洲国产看品久久| 欧美日韩国产mv在线观看视频| 欧美人与性动交α欧美精品济南到| 国产精品国产av在线观看|