• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-fractional Davey-Stewartson equation:Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions

    2023-10-11 08:34:42BaoyongGuoYongFangandHuanheDong
    Communications in Theoretical Physics 2023年10期

    Baoyong Guo,Yong Fang and Huanhe Dong

    College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,266590,China

    Abstract As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted.

    Keywords: time-fractional Davey–Stewartson equation,Lie symmetry analysis approach,Lie point symmetries,similarity reductions,conservation laws

    1.Introduction

    Nonlinear partial differential equations(NPDEs)usually play an indispensable role in revealing numerous physical phenomena in nature [1–9].In the last few decades,researchers have paid much attention to the study of NPDEs,including their dynamic properties and solutions.A number of methods were put forward to acquire the solutions of NPDEs,for example,the homogeneous balance method [10–13],inverse scattering transform [14–18],Darboux transformation[19–24],Hirota’s bilinear method [25–33],Riemann–Hilbert approach [34–43],nonlocal symmetry method and so on[44–49].However,for most NPDEs,the solutions are difficult to obtain due to their complex expressions.

    As a generalization of classical calculus,fractional calculus is proposed by many researchers.Fractional derivative is an important concept of fractional calculus.The order of a fractional derivative can be an integer or a fraction,whereas the order of a classical derivative can only be an integer.The fractional derivatives used widely are Riemann–Liouville,Caputo and Grünwald–Letnikov types.For many applied disciplines,especially in fluid mechanics and materials science,compared with integer-order NPDEs,nonlinear fractional partial differential equations (NFPDEs) can be better used to explain natural processes and phenomena.This is because the systems corresponding to NFPDEs possess good time memory and global correlation,which can better reflect the historically dependent process of the development of system functions.Thus,the performance of the systems is improved.

    The Lie symmetry analysis approach [50–59] is mainly used to find the similarity reductions and solutions of NPDEs.This method was originally utilized to investigate the continuous transformation groups in solving differential equations.This theory was proposed by Sophus Lie and has achieved fruitful development over the last few decades.Because this method can be used to find the group-invariant solutions of NPDEs,it has become a prominent approach to studying the properties of solutions of NPDEs.Since the Lie symmetry analysis approach is mainly used to study integerorder NPDEs,it has an important theoretical research value to extend the method to NFPDEs.Although this method is not widely used in NFPDEs,there are still many achievements in this respect [60–62].

    This paper aimed to investigate Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions for the time-fractional Davey–Stewartson (DS)equation.The DS equation is [63]

    where x and y are spatial coordinates;t is a temporal coordinate;u=u(x,y,t) is a complex analytic function that represents the amplitude of wave;and v=v(x,y,t) is a real analytic function that can be treated as a forcing effect on the wave as it propagates.

    The DS equation was proposed by Davey and Stewartson.It is a two-dimensional extension of the famous(1+1)-dimensional nonlinear Schr?dinger (NLS) equation.In fluid dynamics,the DS equation describes the evolution of wave envelope in water waves and has wide applications.

    If the Riemann–Liouville derivative operatoris introduced,the time-fractional DS equation reads as

    where 0<γ<1 is the order of the Riemann–Liouville derivative.

    This paper is organized as follows.In section 2,the definition and some properties of the Riemann–Liouville fractional derivative are described.In section 3,based on the Lie symmetry analysis method,the Lie point symmetries of the time-fractional DS equation are presented.In section 4,the similarity reductions of the time-fractional DS equation are obtained.Meanwhile,the original equation is converted to a system of fractional partial differential equations and two systems of fractional ordinary differential equations.In section 5,the conserved vectors and the conservation laws of the time-fractional DS equation are derived.In section 6,the traveling wave solutions are depicted and plotted.Finally,some main conclusions are presented.

    2.Riemann-Liouville fractional derivative

    Definition 1.Takex,yas spatial variables and t as a temporal variable,respectively,andn? N,γ?+R,then for functionf=f(x,y,t),its γth-order Riemann–Liouville fractional partial derivative is

    whereI γf(x,y,t)is the γth-order Riemann–Liouville fractional integral,and it is defined as

    where Γ(γ)is the gamma function.

    The properties of the Riemann–Liouville fractional derivative are

    3.Lie point symmetries of the time-fractional DS equation

    From equation (2),it can be seen that the time-fractional DS equation is a complex coupled system.To obtain the Lie point symmetries of the system,equation (2) needs to be transformed into a real coupled system.

    First,we substitute the transformation u(x,y,t)=p(x,y,t)+iq(x,y,t)into equation(2).Consequently,equation(2)is transformed to the system as follows:

    where p(x,y,t) and q(x,y,t) are real functions.

    The general form of equation (5) (system) is in the following:

    where 0<γ<1.

    The one-parameter Lie group of transformations for equation (5) has the following form:

    Taking vector field as follows:

    therefore,the second prolongation of vector field V can be

    By utilizing the Leibnitz rule of Riemann–Liouville derivative,equation (13) can be rewritten as

    According to the derivation rule for composite function,for functions f=f(x) and f=g(x),one obtains

    By utilizing the preceding results,one acquires

    Substituting equation (15) into equation (14),one achieves

    Substituting equations (12) and (16) into equation (11) and equating the coefficients of the partial derivatives and powers of the functions p,q and v with respect to the independent variables x,y and t be zero,then a system of determining equations is derived.Solving the determining equations,one has

    where C1,C2,C3and C4are arbitrary constants.Therefore,the vector field V can be presented as

    then the vector field V can be written as

    and from that the following theorem is presented.

    Theorem 1.The Lie algebraA,which is spanned byV1,V2,V3and V4,has the following commutation relations(table 1).

    Where [Vi,Vj]=ViVj-VjVi.It is obvious to see that the Lie algebraA is closed.Consequently,the Lie point symmetries of equation (5) are generated by vector field V.

    The symmetry groups can also be derived.The following theorem shows the result.

    Theorem 2.If[p=p(x,y,t),q=q(x,y,t),v=v(x,y,t)]is a solution of equation (5),then

    are also solutions of equation (5).

    Proof.Assuming symmetry group Gisatisfies:

    Consider initial value problem,which satisfies the conditions as follows:

    where ε is a parameter.Soving equation (22) results in

    Therefore,the solutions[p1,q1,v1],[p2,q2,v2],[p3,q3,v3]and[p4,q4,v4]can be derived. ?

    4.Similarity reductions of the time-fractional DS equation

    In the preceding section,the Lie point symmetries are presented.With the help of these results,similarity reductions can be provided.

    Table 1.Commutation relations of the Lie algebra A.

    Taking similarity variables ξ=-lx+ky,η=t,and the group-invariant solutions

    Substituting equation (24) into equation (5),one has

    Selecting similarity variableand the groupinvariant solutions

    Substituting equation (26) into equation (5),one has

    III: The Erdélyi–Kober fractional integro-differential operators are powerful techniques for reducing fractional partial differential equations.In this part,the Erdélyi–Kober fractional integro-differential operators are utilized to reduce equation (5).

    Choosing variable transformation

    Therefore,equation (29) leads to

    Repeating the preceding process n-1 times,one has

    where the Erdélyi–Kober fractional integral operator is

    and the Erdélyi–Kober fractional differential operator is

    Substituting equations (31) and (32) into equation (5),one has

    5.Nonlinear self-adjointness and conservation laws of the time-fractional DS equation

    The conservation law is closely related to the integrability of NPDEs;therefore,it is an important aspect in the study of NPDEs.As is known to all,if an NPDE has N-soliton(N ≥3)solutions,it is integrable.This equation has infinitely many conservation laws.In addition,conservation laws can be used to reveal a number of physical laws.The three famous physical laws in nature,namely conservation of mass,conservation of momentum and conservation of energy,are all important representations of conservation laws.From this perspective,conservation laws link mathematical representations to physical laws skillfully.In recent decades,conservation laws have been studied widely by many researchers,and a large number of new natural laws and phenomena are explained.Many methods of constructing conservation laws have been presented.Among these achievements,Noether’s theorem and Ibragimov’s new conservation theorem are extensively used[64,65].In addition,making use of pairs of symmetries and adjoint symmetries,a general one-to-one correspondence between conservation laws and non-Lagrangian equations is established and has been applied to the computation of conservation densities of the nonlinear evolution equations,including heat equations,Burgers equation and Korteweg–de Vries equation [66].

    5.1.Nonlinear self-adjointness of the time-fractional DS equation

    Introducing new dependent variables α=α(x,y,t),β=β(x,y,t) and ζ=ζ(x,y,t) and taking

    whereF is called formal Lagrangian.The action integral of equation (34) is

    where (x,y,t)?Ω1×Ω2×T.For equation (5),the adjoint equation is

    where Γ(γ) is the gamma function.Introducing dependent variables Ξ1,Ξ2,Ξ3such that

    Equation (36) is nonlinear self-adjoint if Ξ1,Ξ2,Ξ3are not all zeros,and there exists cij(1 ≤i,j ≤3) so that the following equation holds:

    Combining equations (36),(37) and (38) leads to

    Solving equation (39) results in

    where F(t) is an arbitrary function of t.Consequently,equation (5) is nonlinear self-adjoint.

    5.2.Conservation laws of the time-fractional DS equation

    Next,on the basis of the presented results,the conservation vectors and the conservation laws of equation (5) can be constructed.

    Definition 2.TakingV△=(Vx,V y,Vt),ifV△satisfies the following equation:

    then V△is called the conservation vector of equation(5),and equation(41)is called the conservation law equation,where Dx,Dyand Dtare denoted as the total derivatives with respect to x,y and t,respectively.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vector can be obtained as

    It is verified that equations(43)–(46)all satisfy equation(41).

    6.Traveling wave solutions of the time-fractional DS equation

    In this section,the traveling wave solutions of equation (5)can be provided.

    For variable transformation

    where n is a nonzero constant.Taking

    where F and G are two real-valued functions,and

    where k1,k2,k3,k4,k5and k6are nonzero real-valued constants to be determined.Equation (49) leads to

    where the subscripts are denoted as the derivatives with respect to ξ.Substituting equation (50) into equation (5),one obtains

    From the third equality of equation (52),one acquires

    Substituting equation (53) into equation (52) comes

    Integrating equation (55) with respect to ξ,one obtains

    Equation (56) derives

    Solving equation (57),one achieves

    Fig. 1.(a) Three-dimensional drawing of the traveling wave solution p,(b) sectional drawing of p,(c) three-dimensional drawing of the traveling wave solution q,(d)sectional drawing of q,(e)three-dimensional drawing of the traveling wave solution v and(f)sectional drawing of v.The parameter values are taken as t=2,k1 =k2 =k3 =k4=k5 =k6=1,n=1 andγ=.

    Fig. 2.(a) Three-dimensional drawing of the traveling wave solution p,(b) sectional drawing of p,(c) three-dimensional drawing of the traveling wave solution q,(d)sectional drawing of q,(e)three-dimensional drawing of the traveling wave solution v and(f)sectional drawing of v.The parameter values are taken as t=200,k1 =k2 =k3 =k4=k5 =k6=1,n=1 andγ=.

    where k1,k2,k3,k4,k5and k6are nonzero real-valued constants.

    Figure 1 shows the traveling wave solutions of p,q and v when the parameter values are taken ast=2,k1=k2=k3=k4=k5=k6=1,n=1 andγ=.In figure 2,t=200,and the values of the other parameters are the same as those in figure 1.It can be observed that when the waves of p,q and v propagate,their shapes and amplitudes remain the same.From sectional drawings(b),(d)and(f)in figures 1 and 2,it can be seen that the wave shapes of p,q and v have symmetry properties.It can also be seen that when x →∞or y →∞,the solutions p →0,q →0 and v →0.

    7.Conclusions

    In this paper,on the basis of the Riemann–Liouville fractional derivative,the time-fractional DS equation was investigated.By making use of the Lie symmetry analysis approach,the Lie point symmetries,symmetry groups,similarity reductions and traveling wave solutions were presented.For the first symmetry,the time-fractional DS equation was converted to a(1+1)-dimensional system of fractional partial differential equations.For the second symmetry,the equation was transformed into a system of fractional ordinary differential equations.Meanwhile,the equation can also be converted to a system of fractional ordinary differential equations in the sense of the Erdélyi–Kober fractional integro-differential operators.By application of Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and conservation laws were derived.Finally,the traveling wave solutions were deduced.The results profoundly revealed that the Lie symmetry analysis approach can be effectively applied to the theoretical research for NFPDEs.It should also be interesting to see if traveling wave solutions could be similarly determined for nonlocal integrable equations,for example,nonlocal NLS models [67].

    Acknowledgments

    The authors would like to thank all editors and reviewers for their comments to the improvement of this paper.

    Funding

    This work was supported by the National Natural Science Foundation of China (Grant No.11975143).

    Declaration of interest

    The authors declare that they have no conflicts of interest.

    午夜福利影视在线免费观看| 欧美日韩瑟瑟在线播放| √禁漫天堂资源中文www| 国产单亲对白刺激| √禁漫天堂资源中文www| 一进一出抽搐gif免费好疼| 人妻丰满熟妇av一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品永久免费网站| 91大片在线观看| 我的亚洲天堂| 少妇 在线观看| 午夜视频精品福利| 国产亚洲欧美在线一区二区| x7x7x7水蜜桃| 99精品在免费线老司机午夜| 97碰自拍视频| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 成人18禁高潮啪啪吃奶动态图| 欧美国产精品va在线观看不卡| 大型黄色视频在线免费观看| 亚洲av日韩精品久久久久久密| 亚洲aⅴ乱码一区二区在线播放 | 国产成年人精品一区二区| 久久精品人人爽人人爽视色| 性少妇av在线| 最新美女视频免费是黄的| 国产精品1区2区在线观看.| 久热爱精品视频在线9| 自线自在国产av| 婷婷六月久久综合丁香| videosex国产| 欧美黄色淫秽网站| 亚洲一区二区三区不卡视频| 亚洲国产看品久久| 宅男免费午夜| 欧美人与性动交α欧美精品济南到| 两个人看的免费小视频| 亚洲精品一卡2卡三卡4卡5卡| 99久久久亚洲精品蜜臀av| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 九色国产91popny在线| 在线观看免费视频日本深夜| 天堂动漫精品| 一级,二级,三级黄色视频| √禁漫天堂资源中文www| 国产乱人伦免费视频| 亚洲精品久久成人aⅴ小说| 极品教师在线免费播放| 午夜福利成人在线免费观看| 国产亚洲av高清不卡| 精品人妻在线不人妻| 两个人视频免费观看高清| 亚洲第一欧美日韩一区二区三区| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 露出奶头的视频| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 99国产极品粉嫩在线观看| 久久久久久大精品| 精品久久蜜臀av无| 国产亚洲精品综合一区在线观看 | 欧美激情久久久久久爽电影 | 我的亚洲天堂| 婷婷精品国产亚洲av在线| 久久久久久大精品| 色综合欧美亚洲国产小说| 国产精品乱码一区二三区的特点 | 久久久久久久久免费视频了| 99久久久亚洲精品蜜臀av| 国产一区二区在线av高清观看| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 欧美成狂野欧美在线观看| www.精华液| 国产亚洲精品av在线| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 日韩高清综合在线| 午夜福利,免费看| 亚洲av成人av| 男女之事视频高清在线观看| 女人被狂操c到高潮| 高潮久久久久久久久久久不卡| 老熟妇乱子伦视频在线观看| 国产在线观看jvid| 亚洲狠狠婷婷综合久久图片| 免费搜索国产男女视频| 日韩有码中文字幕| 99久久国产精品久久久| 日韩大尺度精品在线看网址 | 色综合站精品国产| 午夜精品在线福利| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 欧美乱色亚洲激情| 日韩免费av在线播放| 欧美激情极品国产一区二区三区| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 麻豆av在线久日| 亚洲人成伊人成综合网2020| 一级毛片女人18水好多| 岛国在线观看网站| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av香蕉五月| 露出奶头的视频| 精品欧美国产一区二区三| 可以免费在线观看a视频的电影网站| 国产激情欧美一区二区| 成人欧美大片| 亚洲av五月六月丁香网| 97碰自拍视频| 长腿黑丝高跟| 黄频高清免费视频| 精品国产一区二区久久| 夜夜躁狠狠躁天天躁| 一级a爱视频在线免费观看| www.自偷自拍.com| 香蕉久久夜色| 亚洲欧美日韩另类电影网站| 天天躁夜夜躁狠狠躁躁| 午夜福利一区二区在线看| 欧美日韩乱码在线| 操出白浆在线播放| 精品国产乱子伦一区二区三区| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av高清不卡| 变态另类丝袜制服| 后天国语完整版免费观看| 中文字幕av电影在线播放| 亚洲伊人色综图| 满18在线观看网站| 精品国产乱子伦一区二区三区| 国产精品久久久久久亚洲av鲁大| 免费搜索国产男女视频| 成人精品一区二区免费| 男女做爰动态图高潮gif福利片 | 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀| 国产麻豆69| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 制服诱惑二区| 91九色精品人成在线观看| 欧美在线黄色| 桃红色精品国产亚洲av| 免费在线观看日本一区| 男女午夜视频在线观看| 日本 欧美在线| 啦啦啦观看免费观看视频高清 | 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 欧美激情极品国产一区二区三区| 多毛熟女@视频| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 久久久水蜜桃国产精品网| 在线av久久热| 国产高清视频在线播放一区| 色精品久久人妻99蜜桃| 国产熟女xx| 婷婷六月久久综合丁香| 女人精品久久久久毛片| 亚洲一区二区三区色噜噜| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| av天堂久久9| 男人舔女人的私密视频| 欧美成人一区二区免费高清观看 | 亚洲av熟女| 久久久久精品国产欧美久久久| 久久久久久人人人人人| 国产成人精品久久二区二区91| 亚洲第一电影网av| 亚洲国产毛片av蜜桃av| 桃红色精品国产亚洲av| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 伦理电影免费视频| av中文乱码字幕在线| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久视频播放| 超碰成人久久| 久久久久久国产a免费观看| 精品欧美一区二区三区在线| 亚洲成人久久性| 亚洲av电影在线进入| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久 | 日本免费a在线| 最近最新中文字幕大全电影3 | 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 18禁裸乳无遮挡免费网站照片 | 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 夜夜爽天天搞| 免费搜索国产男女视频| 宅男免费午夜| videosex国产| 国产成人一区二区三区免费视频网站| 人妻丰满熟妇av一区二区三区| 精品不卡国产一区二区三区| 亚洲av成人av| 操出白浆在线播放| www日本在线高清视频| 老汉色∧v一级毛片| 他把我摸到了高潮在线观看| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面| 两性午夜刺激爽爽歪歪视频在线观看 | 此物有八面人人有两片| 亚洲无线在线观看| x7x7x7水蜜桃| 无限看片的www在线观看| 美女免费视频网站| 亚洲黑人精品在线| 国产av一区在线观看免费| 亚洲欧美激情在线| АⅤ资源中文在线天堂| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| 久久人妻av系列| 亚洲专区中文字幕在线| 91av网站免费观看| 成年女人毛片免费观看观看9| 亚洲熟女毛片儿| 51午夜福利影视在线观看| 精品久久久久久久久久免费视频| av视频免费观看在线观看| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲| 19禁男女啪啪无遮挡网站| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 男人操女人黄网站| 亚洲精品国产一区二区精华液| 精品不卡国产一区二区三区| 男女下面插进去视频免费观看| 国产1区2区3区精品| 在线永久观看黄色视频| 性欧美人与动物交配| 久久婷婷成人综合色麻豆| 日本 欧美在线| 精品久久久精品久久久| 成人免费观看视频高清| 啦啦啦观看免费观看视频高清 | 精品国产乱子伦一区二区三区| 日本 av在线| 国产97色在线日韩免费| 日本五十路高清| 麻豆国产av国片精品| 在线观看66精品国产| 精品国产乱码久久久久久男人| 免费观看精品视频网站| 在线免费观看的www视频| 亚洲精品国产一区二区精华液| 亚洲精品一区av在线观看| 午夜免费激情av| 咕卡用的链子| 久久久久久大精品| 中文字幕高清在线视频| 免费高清视频大片| 久久人人爽av亚洲精品天堂| 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| 丁香欧美五月| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 午夜福利在线观看吧| 99国产精品一区二区三区| 亚洲av电影在线进入| 精品国产乱子伦一区二区三区| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 欧美乱妇无乱码| 变态另类成人亚洲欧美熟女 | 国产精品一区二区精品视频观看| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利影视在线免费观看| 俄罗斯特黄特色一大片| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 制服人妻中文乱码| 一进一出好大好爽视频| 伦理电影免费视频| 国产私拍福利视频在线观看| 国产高清videossex| 午夜福利18| 男人操女人黄网站| 12—13女人毛片做爰片一| 日韩大码丰满熟妇| 一区二区三区激情视频| www.www免费av| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 免费观看精品视频网站| 在线天堂中文资源库| 精品一区二区三区av网在线观看| 久久中文看片网| 国产片内射在线| 国产在线观看jvid| 国产麻豆成人av免费视频| 精品国产亚洲在线| 好男人在线观看高清免费视频 | 亚洲av美国av| 久久久久久久久免费视频了| 亚洲久久久国产精品| 国产片内射在线| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 日本三级黄在线观看| 一区福利在线观看| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 日本欧美视频一区| 性欧美人与动物交配| 国产精品综合久久久久久久免费 | 一边摸一边抽搐一进一出视频| 久久中文字幕人妻熟女| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影 | 999精品在线视频| 久久性视频一级片| 黄色 视频免费看| 制服诱惑二区| 日本免费一区二区三区高清不卡 | 午夜影院日韩av| 国产区一区二久久| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 无遮挡黄片免费观看| av片东京热男人的天堂| 亚洲成人精品中文字幕电影| 婷婷丁香在线五月| 久久精品国产亚洲av香蕉五月| 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 给我免费播放毛片高清在线观看| 色老头精品视频在线观看| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 免费人成视频x8x8入口观看| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 亚洲少妇的诱惑av| 久久久国产成人精品二区| 亚洲国产精品999在线| 操美女的视频在线观看| 国产在线观看jvid| 国产精品 欧美亚洲| 国产精品久久久久久精品电影 | 亚洲精品国产区一区二| 国产av又大| 久久久久久免费高清国产稀缺| 制服诱惑二区| 黑人巨大精品欧美一区二区蜜桃| 女人被狂操c到高潮| 美女免费视频网站| 亚洲第一电影网av| 91精品三级在线观看| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 日韩国内少妇激情av| 国产成人精品久久二区二区91| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 成人特级黄色片久久久久久久| 午夜福利视频1000在线观看 | 国产97色在线日韩免费| 国产一区在线观看成人免费| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 99国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲色图av天堂| 欧美成人一区二区免费高清观看 | 一个人观看的视频www高清免费观看 | 国产欧美日韩一区二区三| 两个人看的免费小视频| 国产三级黄色录像| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 亚洲美女黄片视频| 精品日产1卡2卡| 久久亚洲精品不卡| 九色国产91popny在线| АⅤ资源中文在线天堂| 精品国产国语对白av| 久久人妻熟女aⅴ| 亚洲色图av天堂| 日韩高清综合在线| 午夜精品国产一区二区电影| 日韩一卡2卡3卡4卡2021年| 免费看a级黄色片| 性欧美人与动物交配| 精品一品国产午夜福利视频| 91老司机精品| 亚洲av电影在线进入| 欧美绝顶高潮抽搐喷水| av超薄肉色丝袜交足视频| 亚洲成人免费电影在线观看| 在线观看日韩欧美| 日韩欧美国产一区二区入口| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 久久国产精品人妻蜜桃| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 久久中文字幕一级| 两性午夜刺激爽爽歪歪视频在线观看 | 给我免费播放毛片高清在线观看| 久久香蕉精品热| 久久亚洲真实| 亚洲一区中文字幕在线| 国产精华一区二区三区| 大型黄色视频在线免费观看| 大码成人一级视频| 国产精品久久久久久精品电影 | 男人舔女人的私密视频| 大码成人一级视频| 国产精品,欧美在线| 窝窝影院91人妻| 免费看美女性在线毛片视频| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 国产精品影院久久| 欧洲精品卡2卡3卡4卡5卡区| 91精品三级在线观看| 亚洲国产欧美网| 欧美成人性av电影在线观看| 久久精品91蜜桃| 非洲黑人性xxxx精品又粗又长| 美女免费视频网站| 91麻豆av在线| 岛国视频午夜一区免费看| 亚洲 欧美一区二区三区| 极品教师在线免费播放| 亚洲专区国产一区二区| 国产欧美日韩综合在线一区二区| 国产xxxxx性猛交| 制服人妻中文乱码| 露出奶头的视频| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 91麻豆av在线| 在线免费观看的www视频| 看黄色毛片网站| 亚洲欧美一区二区三区黑人| 亚洲电影在线观看av| x7x7x7水蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 正在播放国产对白刺激| 国产一区二区激情短视频| 欧美国产精品va在线观看不卡| 午夜免费激情av| 国产精品久久久久久亚洲av鲁大| 欧美中文综合在线视频| 天堂动漫精品| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 欧美成人午夜精品| 日韩有码中文字幕| 免费少妇av软件| www.熟女人妻精品国产| 亚洲无线在线观看| 九色亚洲精品在线播放| 99久久国产精品久久久| 一区二区日韩欧美中文字幕| 91精品国产国语对白视频| 日本a在线网址| 亚洲五月色婷婷综合| 国产成人一区二区三区免费视频网站| 日本 av在线| 窝窝影院91人妻| 国产高清有码在线观看视频 | 国产99久久九九免费精品| 久久中文字幕人妻熟女| 亚洲成人免费电影在线观看| 女人精品久久久久毛片| 欧美激情 高清一区二区三区| 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 波多野结衣高清无吗| 亚洲avbb在线观看| 国产三级黄色录像| 国产乱人伦免费视频| 操出白浆在线播放| 久久精品aⅴ一区二区三区四区| 免费在线观看日本一区| 69av精品久久久久久| 国产一级毛片七仙女欲春2 | 9热在线视频观看99| 99精品久久久久人妻精品| 亚洲国产看品久久| 免费在线观看日本一区| 69av精品久久久久久| 欧美一区二区精品小视频在线| 亚洲欧美精品综合久久99| 长腿黑丝高跟| 欧美不卡视频在线免费观看 | 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 国产精品一区二区免费欧美| 一夜夜www| 国产成人欧美| 欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 亚洲一区中文字幕在线| 可以在线观看的亚洲视频| 亚洲精品久久成人aⅴ小说| 91精品国产国语对白视频| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区蜜桃| 正在播放国产对白刺激| 丝袜美腿诱惑在线| 成人特级黄色片久久久久久久| 女人被狂操c到高潮| 99国产精品免费福利视频| 国产免费男女视频| 大香蕉久久成人网| 91成人精品电影| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液| 久久久久久久午夜电影| av免费在线观看网站| aaaaa片日本免费| 在线永久观看黄色视频| av电影中文网址| 成年人黄色毛片网站| 中文字幕人成人乱码亚洲影| 国产成人免费无遮挡视频| 亚洲国产欧美一区二区综合| 午夜免费成人在线视频| 两个人看的免费小视频| 两个人视频免费观看高清| 天天躁夜夜躁狠狠躁躁| 天堂影院成人在线观看| 国产精品av久久久久免费| 国产一级毛片七仙女欲春2 | 一级黄色大片毛片| 99久久国产精品久久久| 欧美激情 高清一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩一级在线毛片| 丰满的人妻完整版| 搞女人的毛片| 可以在线观看的亚洲视频| 精品国产美女av久久久久小说| 女人爽到高潮嗷嗷叫在线视频| 午夜精品在线福利| 久久亚洲精品不卡| 好看av亚洲va欧美ⅴa在| 波多野结衣一区麻豆| 在线观看免费视频网站a站| 精品国产国语对白av| 国产色视频综合| avwww免费| 9191精品国产免费久久| 两性夫妻黄色片| 久久亚洲精品不卡| 香蕉久久夜色| av福利片在线| 国产私拍福利视频在线观看| 国产精品乱码一区二三区的特点 | 在线观看免费视频网站a站| netflix在线观看网站| 给我免费播放毛片高清在线观看| 男女下面进入的视频免费午夜 | 国产精品亚洲一级av第二区| 中出人妻视频一区二区| 国产一区二区在线av高清观看| 侵犯人妻中文字幕一二三四区| 国产97色在线日韩免费| 亚洲精品粉嫩美女一区| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 久热这里只有精品99| 国产精品电影一区二区三区|