• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-fractional Davey-Stewartson equation:Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions

    2023-10-11 08:34:42BaoyongGuoYongFangandHuanheDong
    Communications in Theoretical Physics 2023年10期

    Baoyong Guo,Yong Fang and Huanhe Dong

    College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,266590,China

    Abstract As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted.

    Keywords: time-fractional Davey–Stewartson equation,Lie symmetry analysis approach,Lie point symmetries,similarity reductions,conservation laws

    1.Introduction

    Nonlinear partial differential equations(NPDEs)usually play an indispensable role in revealing numerous physical phenomena in nature [1–9].In the last few decades,researchers have paid much attention to the study of NPDEs,including their dynamic properties and solutions.A number of methods were put forward to acquire the solutions of NPDEs,for example,the homogeneous balance method [10–13],inverse scattering transform [14–18],Darboux transformation[19–24],Hirota’s bilinear method [25–33],Riemann–Hilbert approach [34–43],nonlocal symmetry method and so on[44–49].However,for most NPDEs,the solutions are difficult to obtain due to their complex expressions.

    As a generalization of classical calculus,fractional calculus is proposed by many researchers.Fractional derivative is an important concept of fractional calculus.The order of a fractional derivative can be an integer or a fraction,whereas the order of a classical derivative can only be an integer.The fractional derivatives used widely are Riemann–Liouville,Caputo and Grünwald–Letnikov types.For many applied disciplines,especially in fluid mechanics and materials science,compared with integer-order NPDEs,nonlinear fractional partial differential equations (NFPDEs) can be better used to explain natural processes and phenomena.This is because the systems corresponding to NFPDEs possess good time memory and global correlation,which can better reflect the historically dependent process of the development of system functions.Thus,the performance of the systems is improved.

    The Lie symmetry analysis approach [50–59] is mainly used to find the similarity reductions and solutions of NPDEs.This method was originally utilized to investigate the continuous transformation groups in solving differential equations.This theory was proposed by Sophus Lie and has achieved fruitful development over the last few decades.Because this method can be used to find the group-invariant solutions of NPDEs,it has become a prominent approach to studying the properties of solutions of NPDEs.Since the Lie symmetry analysis approach is mainly used to study integerorder NPDEs,it has an important theoretical research value to extend the method to NFPDEs.Although this method is not widely used in NFPDEs,there are still many achievements in this respect [60–62].

    This paper aimed to investigate Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions for the time-fractional Davey–Stewartson (DS)equation.The DS equation is [63]

    where x and y are spatial coordinates;t is a temporal coordinate;u=u(x,y,t) is a complex analytic function that represents the amplitude of wave;and v=v(x,y,t) is a real analytic function that can be treated as a forcing effect on the wave as it propagates.

    The DS equation was proposed by Davey and Stewartson.It is a two-dimensional extension of the famous(1+1)-dimensional nonlinear Schr?dinger (NLS) equation.In fluid dynamics,the DS equation describes the evolution of wave envelope in water waves and has wide applications.

    If the Riemann–Liouville derivative operatoris introduced,the time-fractional DS equation reads as

    where 0<γ<1 is the order of the Riemann–Liouville derivative.

    This paper is organized as follows.In section 2,the definition and some properties of the Riemann–Liouville fractional derivative are described.In section 3,based on the Lie symmetry analysis method,the Lie point symmetries of the time-fractional DS equation are presented.In section 4,the similarity reductions of the time-fractional DS equation are obtained.Meanwhile,the original equation is converted to a system of fractional partial differential equations and two systems of fractional ordinary differential equations.In section 5,the conserved vectors and the conservation laws of the time-fractional DS equation are derived.In section 6,the traveling wave solutions are depicted and plotted.Finally,some main conclusions are presented.

    2.Riemann-Liouville fractional derivative

    Definition 1.Takex,yas spatial variables and t as a temporal variable,respectively,andn? N,γ?+R,then for functionf=f(x,y,t),its γth-order Riemann–Liouville fractional partial derivative is

    whereI γf(x,y,t)is the γth-order Riemann–Liouville fractional integral,and it is defined as

    where Γ(γ)is the gamma function.

    The properties of the Riemann–Liouville fractional derivative are

    3.Lie point symmetries of the time-fractional DS equation

    From equation (2),it can be seen that the time-fractional DS equation is a complex coupled system.To obtain the Lie point symmetries of the system,equation (2) needs to be transformed into a real coupled system.

    First,we substitute the transformation u(x,y,t)=p(x,y,t)+iq(x,y,t)into equation(2).Consequently,equation(2)is transformed to the system as follows:

    where p(x,y,t) and q(x,y,t) are real functions.

    The general form of equation (5) (system) is in the following:

    where 0<γ<1.

    The one-parameter Lie group of transformations for equation (5) has the following form:

    Taking vector field as follows:

    therefore,the second prolongation of vector field V can be

    By utilizing the Leibnitz rule of Riemann–Liouville derivative,equation (13) can be rewritten as

    According to the derivation rule for composite function,for functions f=f(x) and f=g(x),one obtains

    By utilizing the preceding results,one acquires

    Substituting equation (15) into equation (14),one achieves

    Substituting equations (12) and (16) into equation (11) and equating the coefficients of the partial derivatives and powers of the functions p,q and v with respect to the independent variables x,y and t be zero,then a system of determining equations is derived.Solving the determining equations,one has

    where C1,C2,C3and C4are arbitrary constants.Therefore,the vector field V can be presented as

    then the vector field V can be written as

    and from that the following theorem is presented.

    Theorem 1.The Lie algebraA,which is spanned byV1,V2,V3and V4,has the following commutation relations(table 1).

    Where [Vi,Vj]=ViVj-VjVi.It is obvious to see that the Lie algebraA is closed.Consequently,the Lie point symmetries of equation (5) are generated by vector field V.

    The symmetry groups can also be derived.The following theorem shows the result.

    Theorem 2.If[p=p(x,y,t),q=q(x,y,t),v=v(x,y,t)]is a solution of equation (5),then

    are also solutions of equation (5).

    Proof.Assuming symmetry group Gisatisfies:

    Consider initial value problem,which satisfies the conditions as follows:

    where ε is a parameter.Soving equation (22) results in

    Therefore,the solutions[p1,q1,v1],[p2,q2,v2],[p3,q3,v3]and[p4,q4,v4]can be derived. ?

    4.Similarity reductions of the time-fractional DS equation

    In the preceding section,the Lie point symmetries are presented.With the help of these results,similarity reductions can be provided.

    Table 1.Commutation relations of the Lie algebra A.

    Taking similarity variables ξ=-lx+ky,η=t,and the group-invariant solutions

    Substituting equation (24) into equation (5),one has

    Selecting similarity variableand the groupinvariant solutions

    Substituting equation (26) into equation (5),one has

    III: The Erdélyi–Kober fractional integro-differential operators are powerful techniques for reducing fractional partial differential equations.In this part,the Erdélyi–Kober fractional integro-differential operators are utilized to reduce equation (5).

    Choosing variable transformation

    Therefore,equation (29) leads to

    Repeating the preceding process n-1 times,one has

    where the Erdélyi–Kober fractional integral operator is

    and the Erdélyi–Kober fractional differential operator is

    Substituting equations (31) and (32) into equation (5),one has

    5.Nonlinear self-adjointness and conservation laws of the time-fractional DS equation

    The conservation law is closely related to the integrability of NPDEs;therefore,it is an important aspect in the study of NPDEs.As is known to all,if an NPDE has N-soliton(N ≥3)solutions,it is integrable.This equation has infinitely many conservation laws.In addition,conservation laws can be used to reveal a number of physical laws.The three famous physical laws in nature,namely conservation of mass,conservation of momentum and conservation of energy,are all important representations of conservation laws.From this perspective,conservation laws link mathematical representations to physical laws skillfully.In recent decades,conservation laws have been studied widely by many researchers,and a large number of new natural laws and phenomena are explained.Many methods of constructing conservation laws have been presented.Among these achievements,Noether’s theorem and Ibragimov’s new conservation theorem are extensively used[64,65].In addition,making use of pairs of symmetries and adjoint symmetries,a general one-to-one correspondence between conservation laws and non-Lagrangian equations is established and has been applied to the computation of conservation densities of the nonlinear evolution equations,including heat equations,Burgers equation and Korteweg–de Vries equation [66].

    5.1.Nonlinear self-adjointness of the time-fractional DS equation

    Introducing new dependent variables α=α(x,y,t),β=β(x,y,t) and ζ=ζ(x,y,t) and taking

    whereF is called formal Lagrangian.The action integral of equation (34) is

    where (x,y,t)?Ω1×Ω2×T.For equation (5),the adjoint equation is

    where Γ(γ) is the gamma function.Introducing dependent variables Ξ1,Ξ2,Ξ3such that

    Equation (36) is nonlinear self-adjoint if Ξ1,Ξ2,Ξ3are not all zeros,and there exists cij(1 ≤i,j ≤3) so that the following equation holds:

    Combining equations (36),(37) and (38) leads to

    Solving equation (39) results in

    where F(t) is an arbitrary function of t.Consequently,equation (5) is nonlinear self-adjoint.

    5.2.Conservation laws of the time-fractional DS equation

    Next,on the basis of the presented results,the conservation vectors and the conservation laws of equation (5) can be constructed.

    Definition 2.TakingV△=(Vx,V y,Vt),ifV△satisfies the following equation:

    then V△is called the conservation vector of equation(5),and equation(41)is called the conservation law equation,where Dx,Dyand Dtare denoted as the total derivatives with respect to x,y and t,respectively.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vector can be obtained as

    It is verified that equations(43)–(46)all satisfy equation(41).

    6.Traveling wave solutions of the time-fractional DS equation

    In this section,the traveling wave solutions of equation (5)can be provided.

    For variable transformation

    where n is a nonzero constant.Taking

    where F and G are two real-valued functions,and

    where k1,k2,k3,k4,k5and k6are nonzero real-valued constants to be determined.Equation (49) leads to

    where the subscripts are denoted as the derivatives with respect to ξ.Substituting equation (50) into equation (5),one obtains

    From the third equality of equation (52),one acquires

    Substituting equation (53) into equation (52) comes

    Integrating equation (55) with respect to ξ,one obtains

    Equation (56) derives

    Solving equation (57),one achieves

    Fig. 1.(a) Three-dimensional drawing of the traveling wave solution p,(b) sectional drawing of p,(c) three-dimensional drawing of the traveling wave solution q,(d)sectional drawing of q,(e)three-dimensional drawing of the traveling wave solution v and(f)sectional drawing of v.The parameter values are taken as t=2,k1 =k2 =k3 =k4=k5 =k6=1,n=1 andγ=.

    Fig. 2.(a) Three-dimensional drawing of the traveling wave solution p,(b) sectional drawing of p,(c) three-dimensional drawing of the traveling wave solution q,(d)sectional drawing of q,(e)three-dimensional drawing of the traveling wave solution v and(f)sectional drawing of v.The parameter values are taken as t=200,k1 =k2 =k3 =k4=k5 =k6=1,n=1 andγ=.

    where k1,k2,k3,k4,k5and k6are nonzero real-valued constants.

    Figure 1 shows the traveling wave solutions of p,q and v when the parameter values are taken ast=2,k1=k2=k3=k4=k5=k6=1,n=1 andγ=.In figure 2,t=200,and the values of the other parameters are the same as those in figure 1.It can be observed that when the waves of p,q and v propagate,their shapes and amplitudes remain the same.From sectional drawings(b),(d)and(f)in figures 1 and 2,it can be seen that the wave shapes of p,q and v have symmetry properties.It can also be seen that when x →∞or y →∞,the solutions p →0,q →0 and v →0.

    7.Conclusions

    In this paper,on the basis of the Riemann–Liouville fractional derivative,the time-fractional DS equation was investigated.By making use of the Lie symmetry analysis approach,the Lie point symmetries,symmetry groups,similarity reductions and traveling wave solutions were presented.For the first symmetry,the time-fractional DS equation was converted to a(1+1)-dimensional system of fractional partial differential equations.For the second symmetry,the equation was transformed into a system of fractional ordinary differential equations.Meanwhile,the equation can also be converted to a system of fractional ordinary differential equations in the sense of the Erdélyi–Kober fractional integro-differential operators.By application of Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and conservation laws were derived.Finally,the traveling wave solutions were deduced.The results profoundly revealed that the Lie symmetry analysis approach can be effectively applied to the theoretical research for NFPDEs.It should also be interesting to see if traveling wave solutions could be similarly determined for nonlocal integrable equations,for example,nonlocal NLS models [67].

    Acknowledgments

    The authors would like to thank all editors and reviewers for their comments to the improvement of this paper.

    Funding

    This work was supported by the National Natural Science Foundation of China (Grant No.11975143).

    Declaration of interest

    The authors declare that they have no conflicts of interest.

    麻豆av噜噜一区二区三区| 国产一级毛片七仙女欲春2| 日本a在线网址| 亚洲国产欧洲综合997久久,| 美女免费视频网站| 中文在线观看免费www的网站| 日韩欧美精品免费久久 | 日韩av在线大香蕉| 18禁黄网站禁片免费观看直播| 成人高潮视频无遮挡免费网站| 又黄又爽又刺激的免费视频.| 成年免费大片在线观看| 欧美精品国产亚洲| 麻豆久久精品国产亚洲av| 国产综合懂色| 亚洲欧美精品综合久久99| 国产一区二区三区在线臀色熟女| 亚洲美女黄片视频| 国产精品98久久久久久宅男小说| 午夜久久久久精精品| 桃红色精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 日韩欧美一区二区三区在线观看| 精品国产亚洲在线| 亚洲最大成人中文| 中文字幕人妻熟人妻熟丝袜美| 久久久色成人| 超碰av人人做人人爽久久| 成人三级黄色视频| 国产视频一区二区在线看| 欧美色欧美亚洲另类二区| 嫩草影院新地址| 国产精品亚洲一级av第二区| 国产激情偷乱视频一区二区| 欧美成人免费av一区二区三区| 国产真实乱freesex| 老鸭窝网址在线观看| 免费大片18禁| 久久精品国产亚洲av香蕉五月| 成人毛片a级毛片在线播放| 亚洲国产日韩欧美精品在线观看| 老司机福利观看| 久久久国产成人免费| 51午夜福利影视在线观看| www.999成人在线观看| 亚洲成人精品中文字幕电影| 怎么达到女性高潮| 别揉我奶头 嗯啊视频| 噜噜噜噜噜久久久久久91| 男女做爰动态图高潮gif福利片| av天堂中文字幕网| 色5月婷婷丁香| 免费观看精品视频网站| 一级作爱视频免费观看| av视频在线观看入口| 舔av片在线| 床上黄色一级片| 少妇高潮的动态图| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av嫩草精品影院| 欧美zozozo另类| 我要看日韩黄色一级片| 91麻豆精品激情在线观看国产| 三级男女做爰猛烈吃奶摸视频| 脱女人内裤的视频| 乱码一卡2卡4卡精品| 色视频www国产| 午夜老司机福利剧场| 丝袜美腿在线中文| 最近视频中文字幕2019在线8| 日本精品一区二区三区蜜桃| 欧美日本亚洲视频在线播放| 免费av不卡在线播放| 免费在线观看日本一区| 十八禁国产超污无遮挡网站| 国产精品亚洲av一区麻豆| 一个人免费在线观看电影| 女生性感内裤真人,穿戴方法视频| 亚洲精品日韩av片在线观看| 少妇人妻一区二区三区视频| 99精品在免费线老司机午夜| 欧美黄色淫秽网站| 少妇人妻精品综合一区二区 | 久久久久亚洲av毛片大全| 757午夜福利合集在线观看| 99热精品在线国产| 免费看日本二区| 欧美日韩福利视频一区二区| 亚洲精品久久国产高清桃花| 淫秽高清视频在线观看| 男女床上黄色一级片免费看| 精品久久久久久,| 久久精品人妻少妇| 在线天堂最新版资源| 欧美不卡视频在线免费观看| netflix在线观看网站| 欧美最黄视频在线播放免费| 直男gayav资源| 久久精品国产99精品国产亚洲性色| 最近在线观看免费完整版| 精品久久久久久久末码| 亚洲av一区综合| 国产成人福利小说| 精品一区二区免费观看| 国产精品久久久久久亚洲av鲁大| 搞女人的毛片| 日韩欧美在线乱码| 怎么达到女性高潮| 99热这里只有是精品在线观看 | 亚洲中文日韩欧美视频| 窝窝影院91人妻| 免费在线观看日本一区| 精品人妻一区二区三区麻豆 | 欧美潮喷喷水| 一级作爱视频免费观看| 亚洲综合色惰| 午夜两性在线视频| 三级男女做爰猛烈吃奶摸视频| 成人国产综合亚洲| 国产精品野战在线观看| 蜜桃久久精品国产亚洲av| 成人亚洲精品av一区二区| 亚洲人成网站在线播| 好男人在线观看高清免费视频| 一本久久中文字幕| 色精品久久人妻99蜜桃| 午夜亚洲福利在线播放| 在线观看美女被高潮喷水网站 | 一级毛片久久久久久久久女| 有码 亚洲区| 中文字幕久久专区| 成熟少妇高潮喷水视频| 97超级碰碰碰精品色视频在线观看| 麻豆国产av国片精品| 一进一出抽搐动态| 日韩欧美精品免费久久 | av在线老鸭窝| 国产在视频线在精品| 国产大屁股一区二区在线视频| 乱码一卡2卡4卡精品| 国产在线精品亚洲第一网站| 国产色爽女视频免费观看| 国产av一区在线观看免费| 欧美另类亚洲清纯唯美| 亚洲美女搞黄在线观看 | 精品国产三级普通话版| 免费电影在线观看免费观看| 精品乱码久久久久久99久播| 黄色女人牲交| 日韩欧美一区二区三区在线观看| 久久99热这里只有精品18| 热99在线观看视频| 亚洲美女视频黄频| 亚洲片人在线观看| 色综合站精品国产| 有码 亚洲区| 国产黄色小视频在线观看| 欧美午夜高清在线| 欧美午夜高清在线| 五月玫瑰六月丁香| 亚洲av.av天堂| 亚洲国产欧美人成| 九九热线精品视视频播放| 亚洲av一区综合| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 久久久国产成人免费| 久久6这里有精品| 两个人视频免费观看高清| 免费搜索国产男女视频| 桃红色精品国产亚洲av| 久99久视频精品免费| 一进一出抽搐动态| 国产麻豆成人av免费视频| 国产单亲对白刺激| 久久久久性生活片| 蜜桃亚洲精品一区二区三区| 亚洲欧美激情综合另类| 精品99又大又爽又粗少妇毛片 | 在现免费观看毛片| 麻豆国产av国片精品| 久99久视频精品免费| 亚洲欧美激情综合另类| 乱码一卡2卡4卡精品| 在线国产一区二区在线| 老司机深夜福利视频在线观看| 看黄色毛片网站| 国产亚洲精品av在线| 日韩精品中文字幕看吧| 久久香蕉精品热| 中文字幕av成人在线电影| 此物有八面人人有两片| 婷婷精品国产亚洲av在线| 亚洲精品日韩av片在线观看| 他把我摸到了高潮在线观看| 亚洲国产欧洲综合997久久,| 国产一区二区激情短视频| 深爱激情五月婷婷| 免费大片18禁| 夜夜爽天天搞| www.www免费av| 嫩草影院入口| a在线观看视频网站| 毛片女人毛片| 精品一区二区三区视频在线| 99热6这里只有精品| 成年免费大片在线观看| 欧美3d第一页| 国产精品久久电影中文字幕| 日本一本二区三区精品| 午夜视频国产福利| 国产免费男女视频| 国产黄片美女视频| 国产极品精品免费视频能看的| ponron亚洲| 美女大奶头视频| 国产伦精品一区二区三区视频9| 亚洲,欧美精品.| 国产一区二区激情短视频| 国产伦人伦偷精品视频| 色精品久久人妻99蜜桃| 嫩草影院入口| 很黄的视频免费| 欧洲精品卡2卡3卡4卡5卡区| 国产精品不卡视频一区二区 | 亚洲激情在线av| 亚洲内射少妇av| 国产精品爽爽va在线观看网站| 成人无遮挡网站| 午夜福利在线观看免费完整高清在 | 欧美性猛交╳xxx乱大交人| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 麻豆国产av国片精品| 久久精品国产99精品国产亚洲性色| 国产av一区在线观看免费| 在线国产一区二区在线| 亚洲国产高清在线一区二区三| 日韩成人在线观看一区二区三区| 精品一区二区免费观看| 亚洲av日韩精品久久久久久密| 成人无遮挡网站| 51国产日韩欧美| 亚洲美女搞黄在线观看 | 香蕉av资源在线| 一边摸一边抽搐一进一小说| 女人被狂操c到高潮| 国内精品久久久久精免费| 757午夜福利合集在线观看| 国产免费一级a男人的天堂| 五月伊人婷婷丁香| 久久久久久久午夜电影| 色播亚洲综合网| bbb黄色大片| 国产精品一区二区免费欧美| 日韩国内少妇激情av| 又紧又爽又黄一区二区| 欧美日韩黄片免| 悠悠久久av| 久久这里只有精品中国| а√天堂www在线а√下载| 一个人观看的视频www高清免费观看| 久久九九热精品免费| 国产成人欧美在线观看| 天堂网av新在线| 亚洲av二区三区四区| 午夜福利在线在线| 深夜精品福利| 嫩草影院新地址| 色精品久久人妻99蜜桃| 精品人妻熟女av久视频| 内地一区二区视频在线| 国产在线男女| 欧美日韩综合久久久久久 | 亚洲第一欧美日韩一区二区三区| 成人美女网站在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| av福利片在线观看| 自拍偷自拍亚洲精品老妇| 亚洲av免费在线观看| 国产高清有码在线观看视频| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 欧美一级a爱片免费观看看| 欧美不卡视频在线免费观看| 国产一级毛片七仙女欲春2| 亚洲片人在线观看| 日本免费a在线| 欧美黄色淫秽网站| 日本一本二区三区精品| 国产亚洲精品综合一区在线观看| 欧美区成人在线视频| 国产精品影院久久| 国产国拍精品亚洲av在线观看| 十八禁人妻一区二区| 精品午夜福利视频在线观看一区| 国产精品电影一区二区三区| 老熟妇乱子伦视频在线观看| 最好的美女福利视频网| 欧美精品国产亚洲| 日韩欧美精品免费久久 | 婷婷精品国产亚洲av| 国产野战对白在线观看| 国产精品一区二区三区四区久久| 久久午夜福利片| 久久精品国产亚洲av天美| 欧美日韩瑟瑟在线播放| 一区二区三区激情视频| 深夜a级毛片| 丰满人妻一区二区三区视频av| 亚洲欧美日韩卡通动漫| 99在线视频只有这里精品首页| 免费观看精品视频网站| 国产高清视频在线播放一区| 亚洲无线在线观看| 在线看三级毛片| 国产精品不卡视频一区二区 | 91久久精品国产一区二区成人| xxxwww97欧美| 亚洲午夜理论影院| 国产乱人视频| 99在线人妻在线中文字幕| 精品欧美国产一区二区三| 成人欧美大片| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 色播亚洲综合网| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 欧美在线黄色| 亚洲国产精品成人综合色| 一进一出抽搐动态| 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| 精品乱码久久久久久99久播| 18禁裸乳无遮挡免费网站照片| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| av欧美777| 国产精品久久久久久人妻精品电影| 内地一区二区视频在线| 久久久精品大字幕| 亚洲成人久久性| 长腿黑丝高跟| 欧美成人a在线观看| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 国产三级中文精品| 琪琪午夜伦伦电影理论片6080| 精品欧美国产一区二区三| 九色国产91popny在线| 欧美日韩综合久久久久久 | 亚洲不卡免费看| 婷婷亚洲欧美| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 欧美绝顶高潮抽搐喷水| 村上凉子中文字幕在线| 亚洲无线在线观看| 久久久久性生活片| 亚洲,欧美,日韩| 一a级毛片在线观看| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 亚洲中文字幕一区二区三区有码在线看| 国产精品,欧美在线| 久久午夜亚洲精品久久| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 99久久久亚洲精品蜜臀av| 久久久久久久久久黄片| 男人和女人高潮做爰伦理| 在线播放国产精品三级| 日本黄大片高清| 亚洲无线在线观看| 久久草成人影院| 伊人久久精品亚洲午夜| 一a级毛片在线观看| 欧美成狂野欧美在线观看| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 国产三级黄色录像| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 亚洲综合色惰| 一级作爱视频免费观看| 日日摸夜夜添夜夜添av毛片 | 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 色视频www国产| .国产精品久久| 天堂动漫精品| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 99久久成人亚洲精品观看| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 精品熟女少妇八av免费久了| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 日本在线视频免费播放| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 国产毛片a区久久久久| 美女黄网站色视频| 国产美女午夜福利| 国产免费男女视频| 日本 av在线| 一级作爱视频免费观看| 国产午夜精品论理片| 婷婷色综合大香蕉| 精品久久久久久久末码| 夜夜躁狠狠躁天天躁| 亚洲精品亚洲一区二区| 制服丝袜大香蕉在线| 亚洲第一电影网av| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲| 99热这里只有精品一区| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 九九热线精品视视频播放| 老司机福利观看| 欧美区成人在线视频| 亚洲av电影在线进入| 国产久久久一区二区三区| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| 亚洲精品亚洲一区二区| 男女视频在线观看网站免费| 国产探花在线观看一区二区| 久久国产乱子免费精品| 亚洲成av人片免费观看| 99久久99久久久精品蜜桃| 丁香欧美五月| 免费观看的影片在线观看| 91九色精品人成在线观看| 九九久久精品国产亚洲av麻豆| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 亚洲国产欧美人成| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 美女xxoo啪啪120秒动态图 | 欧美区成人在线视频| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 不卡一级毛片| 亚洲av熟女| 日本一本二区三区精品| 亚洲国产精品999在线| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 免费看a级黄色片| 中国美女看黄片| 欧美日本视频| 亚洲,欧美精品.| 网址你懂的国产日韩在线| 波多野结衣高清无吗| 超碰av人人做人人爽久久| 国产高清三级在线| 久久国产乱子免费精品| 亚洲欧美日韩高清专用| 亚洲国产精品合色在线| 国产一区二区亚洲精品在线观看| 老司机福利观看| 91字幕亚洲| a在线观看视频网站| 特级一级黄色大片| 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 国产老妇女一区| 国产精品精品国产色婷婷| av黄色大香蕉| 最好的美女福利视频网| 十八禁人妻一区二区| 久久久久免费精品人妻一区二区| 国产欧美日韩一区二区三| 老司机午夜十八禁免费视频| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲| 久久久久精品国产欧美久久久| 国产精品影院久久| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av免费在线观看| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 亚洲五月婷婷丁香| 欧美最新免费一区二区三区 | 91久久精品国产一区二区成人| 亚洲在线观看片| av欧美777| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 日日干狠狠操夜夜爽| 麻豆一二三区av精品| 亚洲综合色惰| 色视频www国产| 两个人的视频大全免费| 老鸭窝网址在线观看| 91九色精品人成在线观看| 天堂动漫精品| 国产久久久一区二区三区| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看| 久久久久国产精品人妻aⅴ院| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 亚洲国产精品sss在线观看| 久99久视频精品免费| 欧美区成人在线视频| 99国产精品一区二区蜜桃av| 日韩欧美在线乱码| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 自拍偷自拍亚洲精品老妇| 欧美日韩福利视频一区二区| 国产精品98久久久久久宅男小说| 国产高清有码在线观看视频| 中文字幕高清在线视频| 天堂动漫精品| 精品人妻一区二区三区麻豆 | 美女xxoo啪啪120秒动态图 | 美女黄网站色视频| 国产精品久久电影中文字幕| av在线观看视频网站免费| 亚洲国产色片| .国产精品久久| av视频在线观看入口| 久久久久久久久久成人| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 日韩中字成人| 成年免费大片在线观看| 日本黄大片高清| 性色avwww在线观看| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 亚洲中文字幕日韩| 日韩欧美精品免费久久 | 天美传媒精品一区二区| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 人人妻人人看人人澡| 亚洲精品粉嫩美女一区| 看免费av毛片| 久久人人爽人人爽人人片va | 九九在线视频观看精品| 国产精品久久视频播放| 亚洲经典国产精华液单 | 国产成+人综合+亚洲专区| 我要看日韩黄色一级片| 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密| av专区在线播放| 有码 亚洲区| 欧美潮喷喷水| 久久精品影院6| 脱女人内裤的视频| 久久人人爽人人爽人人片va | 小说图片视频综合网站| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 超碰av人人做人人爽久久| 久久久久免费精品人妻一区二区| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看 | 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 日韩大尺度精品在线看网址| 美女高潮喷水抽搐中文字幕| 国产成人a区在线观看| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 色吧在线观看| 亚洲在线观看片| 99在线人妻在线中文字幕| 窝窝影院91人妻| 午夜福利免费观看在线| 在线国产一区二区在线| 99国产综合亚洲精品| 内射极品少妇av片p| 日本免费一区二区三区高清不卡| 露出奶头的视频| 99久久精品一区二区三区| 有码 亚洲区| 日韩欧美在线乱码| 99国产综合亚洲精品| 国产午夜精品论理片| 在线观看美女被高潮喷水网站 | 精品一区二区三区视频在线观看免费| 男插女下体视频免费在线播放| 一区二区三区激情视频| 午夜精品在线福利| 国内精品美女久久久久久| 国产真实乱freesex| 亚洲精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 日韩成人在线观看一区二区三区|