• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices

    2023-10-10 03:32:12GUOZiqiJIAOCancanWUSiminMENGLingxianSUNYannaKEXinWANXiangjianCHENYongsheng
    關(guān)鍵詞:永勝烷基器件

    GUO Ziqi, JIAO Cancan, WU Simin, MENG Lingxian, SUN Yanna, KE Xin, WAN Xiangjian*, CHEN Yongsheng*

    Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices

    GUOZiqi1, JIAOCancan1, WUSimin1, MENGLingxian2*, SUNYanna1, KEXin1, WANXiangjian1*, CHENYongsheng1*

    (,,,,300071,;,,450001,)

    Two isomeric small molecule donors, C2-C-F and C2-M-F, with only the different substitution positions of the alkyl chains on the intermediate bridged trithiophene units, were designed and synthesized. It was found that the alkyl chain substitution position has little effect on their absorptions and energy levels, but has a significant impact on the morphology of the active layers when blended with the acceptor BTP-4F-12. Better morphology was obtained for the active layer based on small molecule donor C2-C-F, and an efficiency of 12.84% was achieved for the C2-C-F-based photovoltaic device. This result indicates that the morphology of the active layer can be finely regulated through the alkyl substitution positions, providing a useful avenue for the design of efficient small molecule donors.

    All-small-molecule organic solar cell; Alkyl chain; Small molecule donor

    Organic solar cells(OSCs) have attracted significant attention due to their excellent properties such as low cost, light weight, flexibility, etc.[1—3]. Recently, with the emergence of Y6 and so on[4,5], power conversion efficiencies(PCEs) over 19% have been achieved for the polymer-based devices with active layer mate- rials designing and devices engineering[6—10]. However, polymer-based OSCs generally suffer from the batch-to-batch issue of polymers and thus the variation of device performance[11—13]. In contrast, small molecules exhibit unique advantages of definite chemical structures, less batch-to-batch variation and better device performance repeatability[14—16]. However, the PCEs of all-small-molecule organic solar cells(ASM-OSCs) still lag behind those of polymer-based OSCs[17—20]. Compared with polymer-based OSCs, the morphology of ASM-OSCs is difficult to regulate since small molecules are hard to form pre-aggregation in the solution and most of efficient small molecule donors and acceptors have the similar acceptor-donor-acceptor(A-D-A) architecture.

    Among various methods for regulating morphology, alkyl chains engineering, such as the length of side chains, straight or branched chains and halogenation on the alkyl chains, have proved to be an effective strategy. The fine-tuning of alkyl chain could adjust the molecular planarity and solubility, optimize the aggregation and crystallinity. For example, Wei’s group[21]achieved a PCE of 14.78% by adjusting the branch points of side chain to control the crystallinity and miscibility of ZR2-C3. Hou’s group[22]increased the length of end-group alkyl chains to investigate the molecular orientation and intermolecular aggregation behavior. After optimizing, the devices based on DRTB-T-C4 obtained the highest PCE, which is mainly attributed to the better short-circuit current density(sc) and fill factor(FF). Ge’s group[23]reported two donors by fluorinating the donor DCAO3TBDTT to further optimize the blend morphology. After fluorinating, the devices based on BTEC-2F obtained a PCE of 13.34%, which is mainly attributed to the enhanced phase separation and compact molecular stacking of active layers.

    In our previous works, we have designed a series of acceptor-donor-acceptor(A-D-A) type small-molecule donors based on benzodithiophene(BDT) and studied the impact of alkyl chains at central core and end groups on device performance[24,25]. Based on these, in this work, two A-D-A type small-molecule donors, C2-C-F and C2-M-F, were synthesized and blended with the acceptor BTP-4F-12[26]to investigate the influence on photovoltaic properties caused by changing the alkyl chain substitution position at-bridges. It was found that the alkyl chain substitution position has little effect on their absorptions and energy levels, but has a significant impact on the morphology of the active layers. The blend film with C2-C-F∶BTP-4F-12 possessed denser packing and stronger crystallinity. After optimizing, the device based on C2-C-F achieved a PCE of 12.84% with an FF of 62.32% and ascof 23.68 mA/cm2, higherthan the devices based on C2-M-F with a PCE of 11.84% with an FF of 59.51% andscof 21.57 mA/cm2.

    1 Experimental

    All the reactions and manipulations were carried out under argon atmosphere with the use of standard schlenk techniques. All starting materials were purchased from commercial suppliers and used without further purification unless indicated otherwise. The experimental details were provided in the Supporting Information, including the synthetic route and structural characterization of the molecules, fabrication of the devices, the measurements of cyclic voltammogram(CV), the UV-Visible spectroscopy, photoluminescence spectroscopy, the space-charge-limited current(SCLC) mobility, atomic force microscope(AFM) and grazing incidence wide angle X-ray scattering(GIWAXS).

    2 Results and Discussion

    The materials used to fabricate the ASM-OSCs were depicted in Fig.1(A). The synthetic routes of C2-C-F and C2-M-F are showed in the Supporting Information of this paper and the characterization data are also provided. The energy level of two donors were measured by means of cyclic voltammetry[27]. Fig.1(B) showed the corresponding energy level diagram of two donors. The HOMO and LUMO energy levels were calculated by onset oxidation(Ox) and reduction(Red) potentials from the equationHOMO/LUMO=-e[Ox/Red+(4.8 -Fc/Fc+)], whereFc/Fc+is the redox potential of Fc/Fc+. According to the equation and as shown in Fig.S1(see the Supporting Information of this paper), the HOMO/LUMO energy levels of C2-C-F and C2-M-F were calculated as ?5.29/?3.62 eV and ?5.33/?3.67 eV, corresponding to the band gap of 1.67 and 1.66 eV, respectively. Density functional theory(DFT) was performed to calculate the energy levels and optimal geometries of two donors, as shown in Fig.S2(see the Supporting Information of this paper), and the DFT-calculated HOMO and LUMO energy level of C2-C-F and C2-M-F are ?5.06/?2.87 and ?5.03/?2.85 eV. As shown in Fig.S3(see the Supporting Information of this paper), compared with the C2-M-F, the optimal geometries of C2-C-F shows better planarity with smaller dihedral angles of 3.13°, 9.98°, 7.12° and 3.19° between the bridged trithiophene units, which were favorable for the ordered packing and better carrier transport.

    Fig.1 Chemical structures(A), energy level diagrams(B), normalized UV?Vis absorption spectra(C) and 2D GIWAXS of neat film(D) of C2?C?F, C2?M?F and 1D plots of the neat films in the in?plane and out?of?plane direction(F)

    Fig.1(C) depicted the normalized absorption spectra of two donors in chloroform solution and neat films. Both C2-C-F and C2-M-F showed good absorption in short wavelength range(450—690 nm). Compared with the absorption in solution, the maximum absorption peaks of C2-C-F and C2-M-F in neat film showed obvious redshifts to 582 and 578 nm, respectively. Besides, the shoulder peaks were located at 633 and 627 nm, which indicates strong intermolecular interaction and aggregation in these two films[28,29]. The absorption onsets of the C2-C-F and C2-M-F were 719 and 727 nm, and the corresponding optical bandgaps were 1.73 and 1.71 eV, respectively[Table S1(see the Supporting Information of this paper)].

    In order to investigate the difference of molecular packing information between two donors, the GIWAXS measurements were employed. The two-dimensional(2D) diffraction images of two donors’ neat films and the corresponding out-of-plane(OOP) and in-plane(IP) curves were depicted in Fig.1(D) and (E). As can be seen, both neat films showed strong-stacking diffraction peaks(010) in OOP direction and multiple lamellar packing diffraction(100, 200 and 300) in IP direction, implying a high degree of molecular ordering and a predominant edge-on orientation. In addition, the film of C2-C-F showed the more compact-stacking at 17.8 nm?1(=0.353 nm) than the film of C2-M-F at 17.6 nm?1(=0.357 nm), indicating that the C2-C-F had a closer-stacking, which may be ascribed to its better planarity and was beneficial to accelerate the hole transport behaviour.

    The narrow bandgap material BTP-4F-12[Fig.2(A)] was selected as acceptor to blend with the donors for fabricating the ASM-OSCs. The devices with conventional structure[Fig.2(B)] of indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT∶PSS)/active layer/perylene diimide functionalized with amino N-oxide(PDINO)/Al were fabricated to investigate the effect of different position of side chains on photovoltaic properties. Current density-voltage(-) characteristic curves of the two ASM-OSCs were depicted in Fig.2(C) and the detailed photovoltaic performance data were listed in Table 1 for a clear comparison. The optimized device based on C2-C-F∶BTP-4F-12 obtained a PCE of 12.84% with aocof 0.871 V, ascof 23.68 mA/cm2and an FF of 62.32%, while the devices based on C2-M-F∶BTP-4F-12 attained a PCE of 11.41% with aocof 0.889 V, ascof 21.57 mA/cm2and an FF of 59.51%.

    Fig.2 Chemical structure of BTP?4F?12(A), conventional device structure of ASM?OSCs(B), J?V curves of optimized ASM?OSCs based on C2?C?F and C2?M?F with TA treatment at 120 ℃ for 5 min under one sun illumination(AM 1.5 G 100 mW/cm2)(C) and EQE spectra of the corresponding devices(D)

    The external quantum efficiency(EQE) curves of the optimal devices based on C2-C-F∶BTP-4F-12 and C2-M-F∶BTP-4F-12 are shown in Fig.2(D). The integral current densities obtained for devices based on C2-C-F and C2-M-F are 22.91 and 20.98 mA/cm2which consistent with thescvalue from the solar simulator(within 5% errors) and displayed in Table 1. As can be seen from Fig.2(D), the devices based on C2-C-F exhibited a stronger photo-response than that of the C2-M-F-based devices in 450—850 nm, which could be attributed to the stronger-interactions and improved morphology, indicating more effective exciton separation, higher charge transport and collection efficiency in C2-C-F-based device[30].

    Table 1 Optimized photovoltaic data of C2-C-F and C2-M-F based devices under the illumination of AM 1.5G(100 mW·cm?2)

    * The PCE value was calculated from 15 devices.

    In order to study the exciton dissociation and charge transfer behaviors in blend films, photoluminescence(PL)-quenching experiment was performed. As depicted in Fig.3(A) and (B), when exciting donors at 540 nm, the PL-quenching efficiencies of the optimized blend films of C2-C-F∶BTP-4F-12 and C2-M-F∶BTP-4F-12 were 99.56% and 92.41%, respectively. When exciting acceptor at 780 nm, the PL- quenching efficiencies of two blend films based on C2-C-F and C2-M-F were 90.68% and 88.66%, respectively. The higher PL quenching efficiency of the C2-C-F∶BTP-4F-12 blend film was consistent with the higherscand EQE response, which indicated more efficient exciton dissociation and photoinduced electron charge transfer between C2-C-F and BTP-4F-12[31,32].

    Fig.3 PL spectra of neat films of two donors and blend films excited at 540 nm (A) and neat film of BTP?4F?12 and blend films exited at 780nm(B), Jphvs.Veff measurement of the devices(C), dependence of Voc(D) and Jsc(E) on light intensity(Plight) of two optimized ASM?OSCs

    In order to investigate the exciton dissociation and charge extraction processes, the dependence of photocurrent density(ph)the effective voltage(eff) of these two devices were measured[Fig.3(C)][33].phwas defined asph=L-D, whereLandDrepresented the photocurrent density under illumination and dark conditions, respectively. The effective voltageeffwas defined aseff=0-bias, where0was the voltage at whichphwas zero andbiaswas the applied external voltage bias. The value of(E,T)[(E,T)=ph/sat, wheresatwas the saturation photocurrent density] represented the charge dissociation(diss) and collection probability. Under the short-circuit condition, thedissof devices based on C2-C-F∶BTP-4F-12 and C2-M-F∶BTP-4F-12 were 94.25% and 91.68%, respectively. Efficient exciton dissociation and charge extraction process contributes to the highscandin C2-C-F∶BTP-4F-12 device.

    To further study the morphological characteristics of the active layer, the atomic force microscopy(AFM) and grazing-incidence wide-angle X-ray scattering(GIWAXS) measurements were carried out. The AFM images of C2-C-F and C2-M-F blended with BTP-4F-12 were showed in Fig.4(A) and (B). The roughness value decreased from 2.33 to 2.14 nm when the alkyl chain close to the end group(C2-M-F) moving to the middle thiophene(C2-C-F). The smaller roughness value indicated the smoother surface morphology of C2-C-F∶BTP-4F-12 film. As show in Fig.4(C)—(E), both blend films exhibited-stacking diffraction (010) peaks in OOP and a lamellar diffraction (100) peaks in IP direction, implying both blend films preferred face-on orientation. Furthermore, the blend film with C2-C-F has a smaller-stacking distance of 0.349 nm(-diffraction peak at 18.0 nm?1) compared to 0.351 nm of blend film with C2-M-F, demonstra-ting that the C2-C-F-based blend film lead to stronger-stacking, which is beneficial for transport carriers and exciton extraction, supporting the higherJand FF values[38,39].

    Fig.4 AFM images for the blend films based on optimal C2?C?F∶BTP?4F?12(A) and C2?M?F∶BTP?4F?12(B), 2D?GIWAXD diffraction images of C2?C?F∶BTP?4F?12(C) and C2?M?F∶BTP?4F?12(D) blend films and 1D plots of the blend films in the in?plane and out of plane direction(E)

    3 Conclusions

    In summary, two small-molecule donors C2-C-F and C2-M-F were synthesized to investigate the effect of alkyl chain substitution position at the-bridge on the molecular properties and photovoltaic performance. It was found that, the C2-C-F-based devices shows better planarity and closer-stacking, leading to more efficient charge transfer, less charge recombination and higher carrier mobility than C2-M-F-based device. This work demonstrates a facile strategy to fine-tune the molecular structure for achieving suitable morphology and high efficiency ASM-OCSs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20230180.

    [1] Zhou Z., Liu W., Zhou G., Zhang M., Qian D., Zhang J., Chen S., Xu S., Yang C., Gao F., Zhu H., Liu F., Zhu X.,.,2020,(4), 1906324

    [2] Sun Y., Meng L., Wan X., Guo Z., Ke X., Sun Z., Zhao K., Zhang H., Li C., Chen Y.,.,2021,(16), 2010000

    [3] Chen S., Wang Y., Zhang L., Zhao J., Chen Y., Zhu D., Yao H., Zhang G., Ma W., Friend R. H., Chow P. C. Y., Gao F., Yan H.,.,2018,(45), 1804215

    [4] Nie Q., Tang A., Guo Q., Zhou E.,,2021,, 106174

    [5] Guo Q., Guo Q., Geng Y., Tang A., Zhang M., Du M., Sun X., Zhou E.,,2021,(8), 3257—3280

    [6] Meng L., Liang H., Song G., Li M., Huang Y., Jiang C., Zhang K., Huang F., Yao Z., Li C., Wan X., Chen Y.,.,2023,(3), 808—815

    [7] Chen T., Li S., Li Y., Chen Z., Wu H., Lin Y., Gao Y., Wang M., Ding G., Min J., Ma Z., Zhu H., Zuo L., Chen H.,.,2023,(21), 2300400

    [8] Xu X.,Jing W., Meng H., Guo Y., Yu L., Li R., Peng Q.,.,2023, 2208997

    [9] Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F.,.,2022,(6), 656—663

    [10] Zheng Z., Wang J., Bi P., Ren J., Wang Y., Yang Y., Liu X., Zhang S., Hou J.,,2022,(1), 171—184

    [11] Zhou R., Jiang Z., Yang C., Yu J., Feng J., Adil M. A., Deng D., Zou W., Zhang J., Lu K., Ma W., Gao F., Wei Z.,.,2019,(1), 5393

    [12] Jiang M., Bai H., Zhi H., Yan L., Woo H. Y., Tong L., Wang J., Zhang F., An Q.,.,2021,(7), 3945—3953

    [13] Huo Y., Gong X. T., Lau T. K., Xiao T., Yan C., Lu X., Lu G.,Zhan X., Zhang H. L.,.,2018,(23), 8661—8668

    [14] Hu D., Yang Q., Chen H., Wobben F., Le Corre V. M., Singh R., Liu T., Ma R., Tang H., Koster L. J. A., Duan T., Yan H., Kan Z., Xiao Z., Lu S.,.,2020,(7), 2134—2141

    [15] Bin H., Yao J., Yang Y., Angunawela I., Sun C., Gao L., Ye L., Qiu B., Xue L., Zhu C., Yang C., Zhang Z. G., Ade H., Li Y.,.,2018,(27), 1706361

    [16] Li H., Wu Q., Zhou R., Shi Y., Yang C., Zhang Y., Zhang J., Zou W., Deng D., Lu K., Wei Z.,.,2018,(6), 1803175

    [17] Meng L., Li M., Lu G., Shen Z., Wu S., Liang H., Li Z., Lu G., Yao Z., Li C., Wan X., Chen Y.,,2022,(21), 2201400

    [18] Zhang L., Sun R., Zhang Z., Zhang J., Zhu Q., Ma W., Min J., Wei Z., Deng D.,.,2022,(50), 2207020

    [19] Ma K., Feng W., Liang H., Chen H., Wang Y., Wan X., Yao Z., Li C., Kan B., Chen Y.,.,2023,(19), 2214926

    [20] Sun Y., Nian L., Kan Y., Ren Y., Chen Z., Zhu L., Zhang M., Yin H., Xu H., Li J., Hao X., Liu F., Gao K., Li Y.,,2022,(12), 2835—2848

    [21] Zhou R., Jiang Z., Shi Y., Wu Q., Yang C., Zhang J., Lu K., Wei Z.,.,2020,(51), 2005426

    [22] Yang L., Zhang S., He C., Zhang J., Yang Y., Zhu J., Cui Y., Zhao W., Zhang H., Zhang Y., Wei Z., Hou J.,.,2018,(6), 2129—2134

    [23] Ge J., Xie L., Peng R., Fanady B., Huang J., Song W., Yan T., Zhang W., Ge Z.,.,2020,(7), 2808—2815

    [24] Zhou J., Zuo Y., Wan X., Long G., Zhang Q., Ni W., Liu Y., Li Z., He G., Li C., Kan B., Li M., Chen Y.,.,2013,(23), 8484—8487

    [25] Kan B., Zhang Q., Li M., Wan X., Ni W., Long G., Wang Y., Yang X., Feng H., Chen Y.,.,2014,(44), 15529—15532

    [26] Hong L., Yao H., Wu Z., Cui Y., Zhang T., Xu Y., Yu R., Liao Q., Gao B., Xian K., Woo H. Y., Ge Z., Hou J.,.,2019,(39), 1903441

    [27] Kan B., Zhang J., Liu F., Wan X., Li C., Ke X., Wang Y., Feng H., Zhang Y., Long G., Friend R. H., Bakulin A. A., Chen Y.,.,2018,(3), 1704904

    [28] Wang Y., Wang Y., Zhu L., Liu H., Fang J., Guo X., Liu F., Tang Z., Zhang M., Li Y.,.,2020,(5), 1309—1317

    [29] Zhou R., Jiang Z., Shi Y., Wu Q., Yang C., Zhang J., Lu K., Wei Z.,.,2020,(51), 2005426

    [30] Gao J., Ge J., Peng R., Liu C., Cao L., Zhang D., Fanady B., Hong L., Zhou E., Ge Z.,,2020,(15), 7405—7411

    [31] Chen Y., Bai F., Peng Z., Zhu L., Zhang J., Zou X., Qin Y., Kim H. K., Yuan J., Ma L. K., Zhang J., Yu H., Chow P. C. Y., Huang F., Zou Y., Ade H., Liu F., Yan H.,.,2020,(3), 2003141

    [32] Yan T., Ge J., Lei T., Zhang W., Song W., Fanady B., Zhang D., Chen S., Peng R., Ge Z.,,2019,(45), 25894—25899

    [33] Wang Y., Zhang Y., Qiu N., Feng H., Gao H., Kan B., Ma Y., Li C., Wan X., Chen Y.,.,2018,(15), 1702870

    [34] Ke X., Meng L., Wan X., Li M., Sun Y., Guo Z., Wu S., Zhang H., Li C., Chen Y.,,2020,(19), 9726—9732

    [35] Ge J., Xie L., Peng R., Fanady B., Huang J., Song W., Yan T., Zhang W., Ge Z.,.,2020,(7), 2808—2815

    [36] Jiao C., Guo Z., Sun B., Yi Y. Q. Q., Meng L., Wan X., Zhang M., Zhang H., Li C., Chen Y.,,2020,(18), 6293—6298

    [37] Zhang Y., Feng H., Meng L., Wang Y., Chang M., Li S., Guo Z., Li C., Zheng N., Xie Z., Wan X., Chen Y.,.,2019,(45), 1902688

    [38] Wu J., Fan Q., Xiong M., Wang Q., Chen K., Liu H., Gao M., Ye L., Guo X., Fang J., Guo Q., Su W., Ma Z., Tang Z., Wang E., Ade H., Zhang M.,,2021,, 105679

    [39] Xu Y., Cui Y., Yao H., Zhang T., Zhang J., Ma L., Wang J., Wei Z., Hou J.,.,2021,(22), 2101090

    小分子給體橋聯(lián)單元烷基鏈取代位置對(duì)光伏器件性能的影響

    郭子琦1,焦?fàn)N燦1,吳思敏1,孟令賢2,孫延娜1,柯鑫1,萬(wàn)相見(jiàn)1,陳永勝1

    (1. 南開大學(xué)化學(xué)學(xué)院, 功能高分子材料教育部重點(diǎn)實(shí)驗(yàn)室, 天津 300071; 2. 鄭州大學(xué)材料科學(xué)與工程學(xué)院, 鄭州 450001)

    設(shè)計(jì)合成了2個(gè)同分異構(gòu)體小分子給體C2-C-F和C2-M-F, 二者僅中間橋聯(lián)三噻吩單元上烷基鏈的取代位置不同. 研究結(jié)果表明, 烷基鏈取代位置對(duì)其吸光性能和能級(jí)影響較小, 但對(duì)與受體BTP-4F-12共混后的活性層形貌具有較大影響. 其中, 小分子給體C2-C-F與受體BTP-4F-12共混的薄膜獲得了較好的形貌, 光伏器件效率達(dá)到12.84%. 研究結(jié)果表明, 可以通過(guò)烷基取代的位置來(lái)精細(xì)調(diào)控活性層的形貌, 為高效小分子給體的設(shè)計(jì)提供了有益的參考.

    全小分子有機(jī)太陽(yáng)能電池;烷基鏈;小分子給體

    O649.5

    A

    10.7503/cjcu20230180

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-29.

    聯(lián)系人簡(jiǎn)介:陳永勝, 男, 博士, 教授, 主要從事碳納米材料、有機(jī)光電功能材料及其在能源轉(zhuǎn)化與存儲(chǔ)等方面的研究. E-mail: yschen99@nankai.edu.cn

    萬(wàn)相見(jiàn), 男, 博士, 教授, 主要從事有機(jī)光電功能材料設(shè)計(jì)、合成與器件制備方面的研究. E-mail: xjwan@nankai.edu.cn

    孟令賢, 女, 博士, 講師, 主要從事有機(jī)光電功能器件制備方面的研究. E-mail: lxmeng@zzu.edu.cn

    2023-04-07

    國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 52025033, 21935007, 52203245)和中國(guó)博士后創(chuàng)新人才支持計(jì)劃(批準(zhǔn)號(hào): BX20220274)資助.

    Supported by the National Natural Science Foundation of China(Nos.52025033, 21935007 and 52203245) and the China Postdoctoral Innovative Talent Support Program(No.BX20220274).

    (Ed.: L, H, W, K)

    猜你喜歡
    永勝烷基器件
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    唱一首祖國(guó)的贊歌
    一種兩級(jí)雙吸管道輸油泵
    烷基胺插層蒙脫土的陽(yáng)離子交換容量研究
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    高分辨率遙感相機(jī)CCD器件精密熱控制
    五種小麥麩皮烷基酚類化合物體外抗腫瘤作用及初步的機(jī)制研究
    最新在线观看一区二区三区 | av视频免费观看在线观看| 日本欧美视频一区| 亚洲伊人色综图| 纯流量卡能插随身wifi吗| 天天影视国产精品| 成年av动漫网址| 免费看av在线观看网站| 精品人妻在线不人妻| 丝袜美腿诱惑在线| 亚洲av男天堂| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 午夜福利乱码中文字幕| 99国产精品一区二区蜜桃av | 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 各种免费的搞黄视频| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久毛片微露脸 | 一区二区av电影网| 亚洲,一卡二卡三卡| 一区二区三区激情视频| 在线观看免费视频网站a站| 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 国产精品 国内视频| 狂野欧美激情性xxxx| 王馨瑶露胸无遮挡在线观看| 午夜免费成人在线视频| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产欧美日韩在线播放| a级片在线免费高清观看视频| 国产成人精品久久二区二区91| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 国产爽快片一区二区三区| 久久精品国产亚洲av涩爱| 视频在线观看一区二区三区| 青青草视频在线视频观看| 午夜激情av网站| 国产在线观看jvid| 成年动漫av网址| 国产一区二区激情短视频 | 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 欧美日韩黄片免| 午夜免费男女啪啪视频观看| 免费看十八禁软件| 国产日韩一区二区三区精品不卡| 悠悠久久av| 欧美激情 高清一区二区三区| 又大又爽又粗| 久久国产精品人妻蜜桃| 亚洲欧美日韩另类电影网站| h视频一区二区三区| 满18在线观看网站| 伦理电影免费视频| 国产成人欧美| 90打野战视频偷拍视频| 日韩制服骚丝袜av| 不卡av一区二区三区| tube8黄色片| 精品免费久久久久久久清纯 | 免费看不卡的av| 一级,二级,三级黄色视频| 国产精品三级大全| 老汉色∧v一级毛片| 99re6热这里在线精品视频| 99精国产麻豆久久婷婷| 亚洲成人免费av在线播放| 国产高清videossex| 夫妻午夜视频| 我的亚洲天堂| 亚洲国产最新在线播放| 2021少妇久久久久久久久久久| a 毛片基地| 水蜜桃什么品种好| 国产精品国产三级国产专区5o| 黑人巨大精品欧美一区二区蜜桃| 免费观看av网站的网址| www.精华液| 亚洲欧美一区二区三区国产| 国产精品九九99| 亚洲欧洲国产日韩| 亚洲一区中文字幕在线| 777久久人妻少妇嫩草av网站| 免费日韩欧美在线观看| av有码第一页| 亚洲人成网站在线观看播放| 国产精品久久久av美女十八| 在线亚洲精品国产二区图片欧美| 久久久久久久大尺度免费视频| 天天影视国产精品| 亚洲精品美女久久久久99蜜臀 | 男女高潮啪啪啪动态图| 高清不卡的av网站| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 亚洲视频免费观看视频| 国产成人精品久久久久久| 女警被强在线播放| 精品一区在线观看国产| 不卡av一区二区三区| 亚洲人成77777在线视频| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 亚洲av成人不卡在线观看播放网 | 亚洲精品自拍成人| 国产成人欧美在线观看 | 一区二区三区四区激情视频| 曰老女人黄片| 国产淫语在线视频| 满18在线观看网站| 极品人妻少妇av视频| 丁香六月欧美| 蜜桃国产av成人99| 午夜免费成人在线视频| h视频一区二区三区| 日韩,欧美,国产一区二区三区| videosex国产| 美女大奶头黄色视频| 精品福利永久在线观看| 中文欧美无线码| 国产亚洲精品久久久久5区| 一区二区三区精品91| 婷婷丁香在线五月| 天堂8中文在线网| 9191精品国产免费久久| 亚洲精品国产色婷婷电影| 久久 成人 亚洲| 一边摸一边做爽爽视频免费| 国产男女超爽视频在线观看| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网 | 久久久久视频综合| 亚洲精品日本国产第一区| 午夜福利一区二区在线看| 十八禁人妻一区二区| 久久久久久久精品精品| 国产日韩欧美在线精品| 亚洲色图 男人天堂 中文字幕| 热re99久久国产66热| 国产在线观看jvid| 美女主播在线视频| 老司机在亚洲福利影院| 国产精品.久久久| 少妇的丰满在线观看| 亚洲精品第二区| 啦啦啦 在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 热99国产精品久久久久久7| 考比视频在线观看| 少妇人妻 视频| 夜夜骑夜夜射夜夜干| 日韩一区二区三区影片| 亚洲国产日韩一区二区| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 亚洲少妇的诱惑av| 只有这里有精品99| 无限看片的www在线观看| 午夜免费观看性视频| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 美女中出高潮动态图| 只有这里有精品99| 欧美国产精品va在线观看不卡| 免费看不卡的av| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 色94色欧美一区二区| √禁漫天堂资源中文www| 久久热在线av| 天天影视国产精品| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 热re99久久国产66热| 婷婷色麻豆天堂久久| 久久久亚洲精品成人影院| bbb黄色大片| av网站在线播放免费| 天天躁日日躁夜夜躁夜夜| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀 | 一级毛片我不卡| 婷婷成人精品国产| 国产欧美日韩一区二区三 | 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频 | 女性被躁到高潮视频| 精品亚洲成国产av| 制服诱惑二区| 久久国产精品影院| 亚洲欧美精品自产自拍| 精品少妇内射三级| 精品人妻在线不人妻| 亚洲欧洲国产日韩| 妹子高潮喷水视频| 日韩av在线免费看完整版不卡| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲 | 免费不卡黄色视频| 色综合欧美亚洲国产小说| 精品国产国语对白av| 婷婷成人精品国产| 亚洲成人国产一区在线观看 | 亚洲欧美一区二区三区国产| 久热这里只有精品99| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 五月天丁香电影| 一区福利在线观看| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 热99国产精品久久久久久7| 免费少妇av软件| 亚洲av日韩在线播放| 国产成人av激情在线播放| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 亚洲欧美一区二区三区国产| 色视频在线一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 男女边摸边吃奶| 精品少妇内射三级| 欧美日本中文国产一区发布| 国产高清videossex| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 老司机影院成人| 亚洲精品美女久久久久99蜜臀 | 在线精品无人区一区二区三| 久久久久精品国产欧美久久久 | 另类亚洲欧美激情| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| 国产片内射在线| 91成人精品电影| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 狠狠精品人妻久久久久久综合| 亚洲国产欧美一区二区综合| 婷婷色综合www| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网 | 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲| 婷婷色综合大香蕉| 国产亚洲一区二区精品| 中国美女看黄片| 美国免费a级毛片| 国产在线视频一区二区| 欧美大码av| 欧美在线黄色| 中文字幕色久视频| 日本五十路高清| 欧美精品一区二区免费开放| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 亚洲第一av免费看| 亚洲av男天堂| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在| 成人亚洲欧美一区二区av| 黑人欧美特级aaaaaa片| 国产午夜精品一二区理论片| 国产激情久久老熟女| 亚洲成人免费av在线播放| 欧美日韩一级在线毛片| 免费看av在线观看网站| 国产精品成人在线| 性色av一级| 久久久亚洲精品成人影院| 国产精品久久久久成人av| www.av在线官网国产| 伦理电影免费视频| 赤兔流量卡办理| 精品欧美一区二区三区在线| 亚洲欧美色中文字幕在线| 国产欧美日韩综合在线一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲美女黄色视频免费看| a 毛片基地| 久久人妻熟女aⅴ| 好男人视频免费观看在线| 欧美黑人欧美精品刺激| 久久影院123| 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 极品少妇高潮喷水抽搐| 国产麻豆69| 国产精品久久久久久精品古装| 国产精品 国内视频| 日本欧美国产在线视频| 少妇裸体淫交视频免费看高清 | 日韩一区二区三区影片| 丝袜人妻中文字幕| 国产视频一区二区在线看| 满18在线观看网站| 国产片特级美女逼逼视频| 久久人妻福利社区极品人妻图片 | 最近最新中文字幕大全免费视频 | 丝袜人妻中文字幕| 欧美成人午夜精品| 超色免费av| 欧美日韩精品网址| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 90打野战视频偷拍视频| 国产免费一区二区三区四区乱码| 精品久久久久久久毛片微露脸 | 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 久久免费观看电影| 亚洲精品一卡2卡三卡4卡5卡 | 观看av在线不卡| 麻豆乱淫一区二区| 久久99精品国语久久久| 午夜两性在线视频| 欧美日韩成人在线一区二区| 性色av一级| 欧美日韩成人在线一区二区| 啦啦啦啦在线视频资源| 只有这里有精品99| 婷婷色av中文字幕| 制服诱惑二区| 中文字幕制服av| 国产熟女午夜一区二区三区| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 亚洲欧美激情在线| 只有这里有精品99| 婷婷成人精品国产| 日韩伦理黄色片| 久久久久久久大尺度免费视频| 男人操女人黄网站| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看av| 成人国产一区最新在线观看 | 国产成人系列免费观看| 啦啦啦在线观看免费高清www| 欧美精品高潮呻吟av久久| 亚洲av男天堂| 免费少妇av软件| av又黄又爽大尺度在线免费看| av在线app专区| 亚洲av成人精品一二三区| 嫩草影视91久久| 午夜老司机福利片| 精品亚洲成国产av| 一级片'在线观看视频| 国产xxxxx性猛交| 日韩中文字幕视频在线看片| avwww免费| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级| 亚洲第一青青草原| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| 欧美少妇被猛烈插入视频| 国产av一区二区精品久久| 国产精品三级大全| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 成年人免费黄色播放视频| av在线播放精品| 国产精品.久久久| 亚洲国产欧美网| 国产精品一区二区在线观看99| 99久久综合免费| 久久精品人人爽人人爽视色| 最近手机中文字幕大全| 欧美在线一区亚洲| 狂野欧美激情性bbbbbb| 十八禁人妻一区二区| 性色av一级| 一区在线观看完整版| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 新久久久久国产一级毛片| 爱豆传媒免费全集在线观看| 欧美黑人精品巨大| 国产精品一区二区免费欧美 | 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 一级毛片黄色毛片免费观看视频| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 老司机靠b影院| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一区蜜桃| 成人三级做爰电影| 两个人免费观看高清视频| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 精品少妇久久久久久888优播| 成年人免费黄色播放视频| 中文字幕高清在线视频| 免费观看av网站的网址| 狂野欧美激情性bbbbbb| 男人操女人黄网站| 97在线人人人人妻| 日韩av免费高清视频| 一区二区日韩欧美中文字幕| 欧美日韩视频高清一区二区三区二| 国产精品二区激情视频| 亚洲av片天天在线观看| 免费观看av网站的网址| 久久国产精品影院| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 国产精品国产av在线观看| 亚洲av电影在线观看一区二区三区| 精品人妻熟女毛片av久久网站| 精品高清国产在线一区| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 国产色视频综合| 男人舔女人的私密视频| 国产精品亚洲av一区麻豆| 国产免费又黄又爽又色| 亚洲av电影在线观看一区二区三区| 久久久久精品人妻al黑| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| 精品少妇一区二区三区视频日本电影| 婷婷色综合大香蕉| 波多野结衣av一区二区av| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| netflix在线观看网站| 久久人妻熟女aⅴ| 日韩 亚洲 欧美在线| 制服诱惑二区| 国产野战对白在线观看| av一本久久久久| 深夜精品福利| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 亚洲精品第二区| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 国产视频首页在线观看| 19禁男女啪啪无遮挡网站| 一本久久精品| 18在线观看网站| 亚洲精品国产av蜜桃| 国产视频一区二区在线看| 亚洲精品第二区| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 久久中文字幕一级| 啦啦啦在线免费观看视频4| 18禁国产床啪视频网站| 伦理电影免费视频| 成人国产一区最新在线观看 | 午夜日韩欧美国产| av有码第一页| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲 | 在线亚洲精品国产二区图片欧美| 欧美日韩视频精品一区| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯 | 久久国产精品影院| 国产福利在线免费观看视频| 99九九在线精品视频| 成人亚洲精品一区在线观看| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 国产日韩欧美在线精品| 两人在一起打扑克的视频| 悠悠久久av| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 久久久久久久久久久久大奶| 欧美性长视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| www.999成人在线观看| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 精品一区在线观看国产| 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产 | av天堂在线播放| 黑人猛操日本美女一级片| 老汉色av国产亚洲站长工具| www日本在线高清视频| 在线观看免费日韩欧美大片| 丁香六月天网| 国产精品一区二区免费欧美 | xxx大片免费视频| 欧美激情 高清一区二区三区| 99九九在线精品视频| 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 一边亲一边摸免费视频| 亚洲中文av在线| 欧美日韩精品网址| 亚洲欧洲国产日韩| 欧美变态另类bdsm刘玥| 精品卡一卡二卡四卡免费| 色精品久久人妻99蜜桃| 国产在线一区二区三区精| 久久久久精品国产欧美久久久 | 免费看十八禁软件| 十八禁高潮呻吟视频| 欧美另类一区| 成人亚洲精品一区在线观看| 侵犯人妻中文字幕一二三四区| 99热国产这里只有精品6| h视频一区二区三区| 91精品国产国语对白视频| 久久久久久久久久久久大奶| 丝瓜视频免费看黄片| 国产片内射在线| 黑丝袜美女国产一区| 日韩一区二区三区影片| 成人国语在线视频| 91精品三级在线观看| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 日韩 欧美 亚洲 中文字幕| 婷婷色综合大香蕉| 丁香六月天网| 50天的宝宝边吃奶边哭怎么回事| 精品人妻熟女毛片av久久网站| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品999| 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 悠悠久久av| 国产一区二区在线观看av| tube8黄色片| 2018国产大陆天天弄谢| 国产精品久久久人人做人人爽| 黄片播放在线免费| 欧美日本中文国产一区发布| 午夜日韩欧美国产| 亚洲欧美精品自产自拍| 亚洲专区国产一区二区| 亚洲色图 男人天堂 中文字幕| 成人国产一区最新在线观看 | 久久精品久久久久久久性| 免费在线观看黄色视频的| 精品亚洲成国产av| √禁漫天堂资源中文www| 高清视频免费观看一区二区| 美女福利国产在线| 欧美xxⅹ黑人| 少妇 在线观看| 国产熟女午夜一区二区三区| av天堂在线播放| 大片电影免费在线观看免费| 91麻豆精品激情在线观看国产 | 视频在线观看一区二区三区| 美女视频免费永久观看网站| 性少妇av在线| 搡老岳熟女国产| 色视频在线一区二区三区| 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| 久久国产精品人妻蜜桃| 国产福利在线免费观看视频| 亚洲图色成人| 久久人人爽av亚洲精品天堂| 欧美在线一区亚洲| 极品少妇高潮喷水抽搐| 免费在线观看日本一区| 美女大奶头黄色视频| 男女午夜视频在线观看| 亚洲情色 制服丝袜| 亚洲黑人精品在线| 国产野战对白在线观看| 亚洲,一卡二卡三卡| 又大又爽又粗| 美女午夜性视频免费| 好男人视频免费观看在线| 欧美成狂野欧美在线观看| 久热这里只有精品99| 夜夜骑夜夜射夜夜干| 免费在线观看黄色视频的| 欧美老熟妇乱子伦牲交| 男人爽女人下面视频在线观看| 色婷婷av一区二区三区视频| 日本黄色日本黄色录像| 女性被躁到高潮视频| 免费不卡黄色视频|