李小玲,曹寒問(wèn)
(南昌工程學(xué)院理學(xué)院,江西 南昌 330099)
1967年Browder[1]和Kato[2]分別獨(dú)立提出了增生映射及與之有關(guān)的偽壓縮映射。增生映射早期的基本結(jié)果是Browder研究的初值問(wèn)題
其中,A是增生且局部Lipschitz的。因增生映射在工程和物理中大量存在,自提出時(shí)起,該問(wèn)題就引起許多學(xué)者的廣泛關(guān)注,見(jiàn)[3-8]
定義1.1映射A:D(A)?X→X稱為增生的。如果對(duì)?x,y∈D(A),存在j(x-y)∈J(x-y),使得
〈Ax-Ay,j(x-y)〉≥0
(1)
定義1.2映射A:D(A)?X→X稱為強(qiáng)增生的。如果對(duì)?x,y∈D(A),存在j(x-y)∈J(x-y)及一實(shí)數(shù)k>0,使得
〈Ax-Ay,j(x-y)〉≥k‖x-y‖2
(2)
定義1.3映射A:D(A)?X→X稱為φ-強(qiáng)增生的。如果對(duì)?x,y∈D(A),存在j(x-y)∈J(x-y)及一嚴(yán)格遞增函數(shù)φ:R+→R+且φ(0)=0,使得
〈Ax-Ay,j(x-y)〉≥
φ(‖x-y‖)‖x-y‖
(3)
定義1.4映射A增生且對(duì)?λ>0,(I+λE)D(A)=X,則稱A為m-增生,其中I為單位映射。
比較早期的迭代程序是由Mann[9]及Ishikawa[10]提出的.對(duì)于非線性強(qiáng)增生映射,Liu[11]在1995年提出了帶誤差的Mann迭代和帶誤差的Ishikawa迭代,迭代如下:
設(shè)X是實(shí)Banach空間,K是X的非空子集,T:K→X,x0∈K,序列{xn}定義為:
xn+1=(1-αn)xn+αnTyn+un
yn=(1-βn)xn+βnTxn+vn,n≥0
(a)
其中:{αn},{βn}?(0,1);∑‖un‖<∞,∑‖vn‖<∞,稱(a)為帶誤差的Ishikawa迭代。
在(a)式中序列{xn}定義為:
xn+1=(1-αn)xn+αnTxn+un,n≥0
(b)
其它T,K,X,{αn},{un}同(a)式,稱(b)式為帶誤差的Mann迭代。對(duì)于Liu提出的帶誤差的Mann迭代和Ishikawa迭代,由于∑‖un‖<∞,∑‖vn‖<∞,從而誤差項(xiàng)一定要求趨于零。1998年,Xu[12]使用了下列形式的帶誤差的Ishikawa和Mann迭代。
設(shè)X是實(shí)Banach空間,K是X的非空凸子集,T:K→K,x0∈K,序列{xn}定義為:
xn+1=anxn+bnTyn+cnun,
(c)
稱(c)為帶誤差的Ishikawa迭代。
在(c)式中序列{xn}定義為:
xn+1=anxn+bnTxn+cnun,n≥0
(d)
關(guān)于增生類映射及偽壓縮類映射在帶誤差的迭代序列方面的研究非常豐富,見(jiàn)[13-15]。本文研究的是Xu提出的帶誤差的Ishikawa迭代。
設(shè)X為一實(shí)Banach空間,‖·‖與X*分別為范數(shù)和對(duì)偶空間,正規(guī)對(duì)偶映射J:X→2X*定義如下:
J(x)={f∈X*:〈x,f〉=
‖x‖‖f‖,‖x‖=‖f‖},?x∈X
其中〈.,.〉為其對(duì)偶對(duì)。若X*為嚴(yán)格凸,則J是單值的;若X*為一致凸,則J在X的有界子集上一致連續(xù)。
引理2.1[16]設(shè)X為實(shí)Banach空間,J是正規(guī)對(duì)偶映射,對(duì)?j(x-y)∈J(x-y),有
‖x+y‖2≤‖x‖2+
2〈y,j(x+y)〉,?x,y∈X
條件(Ⅰ)增生映射A稱為滿足條件(Ⅰ),若對(duì)N(A)={x|Ax=0,x∈D(A)}≠?,?x∈D(A),?p∈N(A),?j(x-p)∈J(x-p),有〈Ax,j(x-p)〉=0成立當(dāng)且僅當(dāng)Ax=Ap=0。
Chidume,Zegeye及Ntatin在[3]中研究了下列最速下降逼近程序的收斂性:
xn+1=Qpn
pn=anxn+bn(I-A)yn+cnun
(4)
其中Q:X→clD(A)稱為非擴(kuò)張保核收縮的。在[3]中證明了下述定理。
〈Ayn-Ax*,j(yn-x*)〉≥
φ(‖yn-x*‖)‖yn-x*‖
(5)
對(duì)于上述,我們指出三點(diǎn):
(a) 該定理的結(jié)論是正確的;
(b) 該定理的證明過(guò)程過(guò)于冗長(zhǎng)(P54-P63);
(c) 關(guān)于{xn}有界的證明不完全。在{xn}有界的證明中,文[3]是這樣證明的:“若‖xn0+1-x*‖>a0,則由前面的結(jié)論,我們有‖xn0+2-x*‖≤‖xn0+1-x*‖”(見(jiàn)[3]中P59第20行)。但是前面的結(jié)論是“若‖xn0-x*‖>a0,‖xn0-1-x*‖≤a0,則‖xn0+1-x*‖≤‖xn0-x*‖”(見(jiàn)[3]中P57-P59)。因此,若我們僅有‖xn0+1-x*‖>a0,而沒(méi)有‖xn0-1-x*‖≤a0,那么就不知道不等式‖xn0+2-x*‖≤‖xn0+1-x*‖是否成立。
因此,我們?cè)诒疚膶?duì)定理CZN給出一種新且比較簡(jiǎn)短的證明。
xn+1=Qpn
pn=xn-αnAyn-Un
(6)
必要性 必要性的證明同[3]中必要性證明。
充分性 第一種情況:對(duì)?n≥0,Ayn=0時(shí),與[3]中同樣證明,可以得到{xn}收斂于x*∈D(A)且x*是唯一的。
第二種情況 若存在n,使得Ayn≠0。不失一般性,我們不妨假設(shè)Ay0≠0。由(6)及(5),我們可以得到‖y0-x*‖≤φ-1(‖Ay0‖)及
‖x0-x*‖≤‖x0-y0‖+‖y0-x*‖≤
‖x0‖+m+φ-1(‖Ay0‖)
(7)
其中m:=max{sup{‖vn‖},sup{‖un‖}},且設(shè)
a0=‖x0‖+m+φ-1(‖Ay0‖)
M(x0)=sup{‖Au‖:‖u-x0‖≤
4(a0+r(a0))},R(x0)=4{M(x0)+
r(a0)+m+a0+‖x0‖}
(8)
‖j(x)-j(y)‖<ε
設(shè)
(9)
第一步證明 若‖xn-x*‖ ‖yn-x*‖≤a0+2r(a0), ‖pn-x*‖≤a0+2r(a0) (10) 由(6),我們有 a0+r(a0) 通過(guò)(8)(9),可得到 ‖yn‖≤‖yn-x*‖+‖x0-x*‖+ ‖x0‖≤a0+r(a0)+a0+‖x0‖≤ 2a0+r(a0)+‖x0‖≤ 3a0+r(a0),‖Ayn‖≤M(x0) ‖Un‖= m)≤cn(4a0+3r(a0)+M(x0)+2m+ 因此 ‖pn-x*‖=‖xn-x*‖+ αn‖Ayn‖+‖Un‖≤a0+r(a0)+ αn(M(x0)+r(a0))≤a0+2r(a0) 從而第一步得證。 第二步證明 對(duì)?n≥0,‖xn-x*‖≤a0。 下面用歸納法做證明。由(7)知,當(dāng)n=0時(shí),成立。假設(shè)為n時(shí),有‖xn-x*‖≤a0。下面證明‖xn+1-x*‖≤a0。假設(shè)不成立,即‖xn+1-x*‖>a0。因‖xn-x*‖≤a0,故 ‖xn‖≤‖xn-x*‖+‖x*-x0‖+ ‖x0‖≤2a0+‖x0‖ 通過(guò)(10),(8),得到 ‖yn-x0‖≤‖yn-x*‖+‖x*-x0‖≤ a0+2r(a0)+a0≤2(a0+r(a0)) ‖Ayn‖≤M(x0) 由(5),(6)及[16]再結(jié)合上面關(guān)系式,我們有 ‖xn+1-x*‖2≤‖pn-x*‖2= ‖xn-x*-αnAyn-Un‖2≤‖xn-x*‖2- 2αn〈Ayn-Ax*,j(pn-x*)-j(yn-x*)〉- 2αn〈Ayn-Ax*,j(yn-x*)〉- 2〈Un,j(pn-x*)〉≤‖xn-x*‖2+ 2αnM(x0)‖j(pn-x*)-j(yn-x*)‖- 2αnφ(‖yn-x*‖)‖yn-x*‖+ 2‖Un‖‖pn-x*‖ (11) 注意到(6),條件(ⅱ)及(9) ‖yn-x*‖≥‖xn+1-x*‖-‖yn-xn+1‖≥ ‖xn+1-x*‖-‖yn-pn‖=‖xn+1-x*‖- ‖x0‖+m))≥a0-(αnM(x0)+r(a0)+2a0+ (12) 運(yùn)用(8),(6),(9)及條件(ⅲ) ‖xn+1-x*‖2≤‖pn-x*‖2= ‖xn-x*-αnAyn-Un‖2≤ 由于pn-x*,yn-x*∈B(0,4(a0+r(a0))),結(jié)合X的有界子集上映射j一致連續(xù),得到 (13) 將(12),(13)代入(11),有 a0<‖xn+1-x*‖2≤‖xn-x*‖2+ 矛盾。從而對(duì)?n≥0,‖xn-x*‖≤a0,即{xn}有界。 第三步證明 {xn}收斂于x*∈D(A)。 因{xn},{yn},{pn}有界,結(jié)合已知條件,有 ‖xn+1-x*‖2≤‖xn-x*‖2- 2αn〈Ayn-Ax*,j(pn-x*)-j(yn-x*)〉- 2αn〈Ayn-Ax*,j(yn-x*)〉-2〈Un,j(pn- x*)〉≤‖xn-x*‖2-2αn〈Ayn-Ax*,j(yn- x*)〉+o(αn) (14) φ(‖yn-x*‖)‖yn-x*‖> (15) 又存在整數(shù) (16) 因此,通過(guò)(15),(16),對(duì)?n≥N1,由(14)可得 由上式,有 ‖xnj-x*‖<ε 類似{xn}有界性的證明,我們可以證明到‖xnj+m-x*‖<ε,?m≥1。即n→∞時(shí),xn→x*。該定理的充分性證完。 本文主要是對(duì)Chidume,Zegeye,Ntatin中的定理1進(jìn)行探討,首先是通過(guò)新的方法證明了迭代序列{xn}的有界性;然后是通過(guò)一種比較簡(jiǎn)短的方式對(duì)定理1進(jìn)行了證明;由于同樣的方法可以證明文獻(xiàn)[3]中的定理2,所以本文推廣和改進(jìn)了相關(guān)結(jié)果。3 結(jié)論