• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact millimeter-wave air-filled substrate-integrated waveguide crossover employing homogeneous cylindrical lens*#

    2023-09-21 06:31:18ChunGENGJiweiLIANDazhiDING
    關鍵詞:前沿性教學大綱知識結構

    Chun GENG ,Jiwei LIAN ,Dazhi DING

    1Qian Xuesen College, Nanjing University of Science and Technology, Nanjing 210094, China

    2School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China

    3State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

    We propose a new method to design crossovers by employing an embedded homogeneous cylindrical lens (HCL).Compared with traditional crossover designs,this strategy introduces an HCL within the air-filled substrate-integrated waveguide (SIW) crossover cavity to direct the incident waves in the desired direction.According to ray-tracing analysis,the added HCL can efficiently concentrate the electromagnetic wave propagating from the input to the output without increasing the fabrication complexity or footprint.The operating mechanism of this method is elaborated in detail,and is further verified by E-field distributions.Using the air-filled SIW technology,two-,three-,and four-channel crossovers operating at the millimeterwave are developed and fabricated to demonstrate the practical feasibility of the proposed method.Some transitional structures are designed for experimental purposes.It is found that the simulated fractional bandwidths (FBWs) related to two-,three-,and four-channel air-filled SIW crossovers are 33%,14%,and 10%,respectively;the dimensions of their core areas are 0.74λ×0.74λ,1.43λ×1.43λ,and 1.90λ×1.90λ,respectively.Comparisons between our method and similar approaches in the literature illustrate the advantages of our method.

    1 Introduction

    Most reported crossovers operating at the microwave frequency are based on microstrip technology because of its merits of planar structure and ease of integration (Feng et al.,2016;Jiao et al.,2018;Tajik et al.,2018;Yu and Sun,2019).Recently,millimeterwave and terahertz applications have attracted great interest due to the higher availability of unallocated frequency spectrum resources.In this situation,some close or quasi-close structures are preferable in crossover designs,which include waveguide (Cheng et al.,2021),substrate-integrated waveguide (SIW) (Djerafi and Wu,2009;Hesari and Bornemann,2017;Sun et al.,2020;Qi et al.,2021),and printed ridge gap waveguide (Ali and Sebak,2018).

    Traditional crossovers usually comprise four ports and deal with the intersections between two channels.As the circuit complexity increases,intersections among more than two channels appear and they should be taken into account in circuit designs.One feasible alternative is to cascade multiple two-channel crossovers.For instance,three two-channel crossovers can be combined into a three-channel crossover,or six two-channel crossovers can cooperatively build a four-channel crossover.However,apparently too many two-channel crossovers are required and cascaded in these cases,which can lead to larger sizes and increased losses (Li and Luk,2016).

    Facing this issue,the design of crossovers dealing with more than two channels simultaneously has become a significant and challenging research topic.Tang and Chuang (2015) used double rings in the microstrip to construct a three-channel crossover,which was later extended to a four-channel crossover (Chu and Tang,2018).Wu et al.(2014) proposed a different three-channel crossover by using lumped inductors.Subsequently,a microstrip three-channel crossover with the filtering property was developed (Wu and Mao,2016).However,for reasons explained above,these crossovers in the microstrip technology are not suitable for millimeter-wave or above millimeter-wave applications.

    Some crossovers have been proposed that use close or quasi-close transmission lines.Using a cavity for excitation TE011,TE101,and TM110modes (Lin et al.,2019),a three-channel waveguide filtering crossover was reported at the expense of a large size.Lian et al.(2020) designed a four-channel crossover using SIW technology by adding a power divider to each port,which eventually led to a larger footprint.When resorting to TE102and TE201modes,four-,five-,and sixchannel SIW filtering crossovers have been realized.To support the TE102and TE201modes simultaneously,the whole design is formed by cascaded rectangular cavities,while it suffers from a relatively large footprint (Zhan et al.,2020;Zhou and Wu,2020).

    Given the state-of-the-art development of crossovers,a new method to design air-filled SIW crossovers using an embedded homogeneous cylindrical lens (HCL) was proposed by Geng et al.(2022).In previous studies,HCLs (two-dimensional case) or homogeneous spherical lenses (three-dimensional case) have been widely applied and explored in antenna designs (Bekefi and Farnell,1956;Gunderson,1972;Schoenlinner et al.,2002;Boriskin et al.,2008;Costa et al.,2009;Zhang et al.,2011).As for the antenna design,the introduced HCL enables the conversion from spherical or cylindrical wave to planar wave,so that a high-directivity radiation can be achieved.Meanwhile,the feasibility of such lens in crossover designs is still questionable.In the proposed crossover design,the introduced HCL helps concentrate the electromagnetic wave and suppress the wave scattering within the airfilled SIW crossover cavity.Compared with previously published designs,the proposed method has mainly three salient merits.Firstly,this method drills an airfilled area to build an HCL without increasing the crossover footprint.Secondly,it is applicable to the two-channel crossover and can be extended to three-,four-channel crossovers,etc.Thirdly,it can be applied in single-layer SIW technology,which serves as an attractive candidate for low-loss and highly-integrated millimeter-wave applications.

    2 Air-filled SIW crossover design

    2.1 Operation principle

    Fig.1 depicts the topology of the proposed method for two-,three-,and four-channel crossovers.For the simplest case,it is composed of four ports (two channels).Different from traditional crossover designs,an extra HCL is inserted at the intersection.As a result,the electromagnetic wave coming from port 1 as an example will exclusively propagate toward port 3,while satisfactory isolation is observed between port 1 and port 2 (port 4).This two-channel topology can be extended to three-and four-channel cases by adjusting the diameters of the crossover cavity and the inserted HCL.

    Fig.1 Topologies of two-channel (a),three-channel (b),and four-channel (c) crossovers

    Fig.2a describes the design parameters from both the top view and side view.The width of the open air-filled SIW is denoted bywand the thickness of the substrate ish;ais the radius of the HCL,whiler0is the distance between the input air-filled SIW and the center of the HCL.The relative dielectric constants inside and outside the HCL are indicated byεr2andεr1,respectively.

    Fig.2 Design parameters of the HCL (a) and ray-tracing analysis of the crossover with HCL (b)

    Fig.3 E-field distribution with (a) and without (b) HCL at 30 GHz (T is the period of the electromagnetic field)

    To further reveal the operation mechanism of the proposed method,the ray-tracing analysis of the crossover with HCL is displayed in Fig.2b.Lian et al.(2020) demonstrated that concentrating the incoming electromagnetic wave is an effective method to design crossovers,which introduces a power divider at each port,so that the electromagnetic wave is concentrated.At the same time,the added power dividers lead to a larger footprint.In contrast,the proposed topology with an embedded HCL has the merit of better compactness,which is an alternative to concentrating the electromagnetic wave.In this case,the ray escaping out of the HCL should be parallel to thex-axis,as shown in Fig.2b.In contrast,when designing a crossover,each ray encountering two refractions is expected to arrive at the position mirrored to the source point,as shown in Fig.2b.

    按照“厚基礎、強應用、有特色”的原則,精簡課程體系,設置實用性、前沿性強的專業(yè)課程,補齊短板,增加關聯(lián)大、交叉多的基礎課程開設,打破專業(yè)與學科之間的橫向壁壘,積極開發(fā)綜合性特色課程。通過調(diào)研學生對知識的多層次需求,適當增加選修課數(shù)量,滿足學生全面發(fā)展的需要。從全面提升和完善學生的科學文化素養(yǎng)、合理的知識結構和創(chuàng)新創(chuàng)業(yè)實踐能力出發(fā),制訂符合社會需要的教學大綱和教學計劃,確定教學內(nèi)容,[5]鼓勵教師將最新學術動態(tài)、技術成果和創(chuàng)新經(jīng)驗融入課堂教學。

    The above is a brief description of the operation mechanism of the proposed method,and a more detailed description can be found in Section 1 of the supplementary materials.More details about this result can be found in (Gunderson,1972).

    To give a clearer view of the impact brought by the HCL,we compute the model using the High-Frequency Structure Simulator (HFSS) and show the E-field distribution,and the results contains two open air-filled SIWs with or without an HCL.As depicted in Figs.3a and 3b,it is observed that the E-field is bound in the HCL and most of the incoming energy propagates toward the other port.In contrast,if the HCL was removed,the energy would scatter outward and severe energy leakage would appear.

    2.2 Design process

    Derived from the abovementioned topology,a two-channel air-filled SIW crossover is designed,as shown in Fig.4a,wherea1is the radius of the HCL of the two-channel crossover,d1is the distance between the centers of two adjacent metal holes,andd2is the diameter of the metal holes.The first step of the design procedure is to determine the relative dielectric constants inside and outside the HCL.To simplify the fabrication,an air-filled area is built by drilling the substrate.In this way,one can obtain an interface between two materials within a single substrate.Here,a Rogers RT/duroid 5880 substrate with a thickness of 0.787 mm is applied.Then,we haveεr1=1.0 andεr2=2.2.Secondly,the width of the open air-filled SIWwshould be large enough to support the dominant mode within the interested frequency spectrum.In this work,w=7.2 mm is chosen.Then,one open air-filled SIW should be duplicated to four and placed clockwise to build a closed cavity.Finally,an HCL is inserted at the center and its diameter is optimized to achieve the minimum reflection and isolation.

    Fig.4 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the two-channel SIW crossover (d1=0.80 mm,d2=0.40 mm, a1=2.00 mm,and w=7.20 mm)

    The E-field distribution of the designed twochannel crossover at 30 GHz is displayed in Fig.4b,in which a crossed transmission is observed.The simulatedS-parameters of the designed two-channel crossover are plotted in Fig.4c,whereS11is the reflection coefficient of port 1,S21is the isolation coefficient of port 1 and port 2,andS31is the isolation coefficient of port 1 and port 3.From 25.8 to 38.3 GHz,the reflection coefficient and the isolation coefficients are lower than -15 dB,indicating a fractional bandwidth (FBW) of 39%.Within this frequency range,the insertion loss varies from 0.1 to 0.5 dB.

    To describe the design process more clearly,parametric study is given in Section 2 of the supplementary materials.In the above,the design details of the twochannel air-filled SIW crossover have been elaborated.Interestingly,the proposed method can be directly extended to crossovers with more channels.As shown in Fig.5a,a three-channel air-filled SIW crossover is designed using the proposed topology.Since the design process and operation principle are similar to those in the two-channel case,only the final model and simulation results are provided here.The E-field distribution at 34 GHz is displayed in Fig.5b,in which a crosspassing property is observed.The optimalS-parameters are plotted in Fig.5c.Due to the symmetry of the configuration,S51andS61are omitted.From 31.9 to 36.6 GHz,both the reflection and isolation coefficients are less than -15 dB;i.e.,the FBW is 14%.Within this frequency range,the minimum and maximum transmission losses are 0.1 dB and 0.7 dB,respectively.

    Fig.5 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the three-channel SIW crossover (a2=2.10 mm,w=7.20 mm)

    Similarly,a four-channel counterpart is designed (Fig.6a),and its E-field distribution is shown (Fig.6b).Indicated by theS-parameters in Fig.6c,the FBW is 7.5% (32.0 to 34.5 GHz).The minimum insertion loss is 0.2 dB,while the maximum insertion loss is 0.7 dB.

    Fig.6 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the four-channel SIW crossover (a3=4.00 mm,w=7.20 mm)

    3 Results and discussion

    3.1 Simulation and measurement

    For the experiments,transitions from SIW to airfilled SIW and coplanar waveguide (CPW) to SIW are designed,as shown in Fig.7a (Parment et al.,2015).The simulated reflection and transmission coefficients are plotted in Fig.7b.From 25.9 to 41.6 GHz,the reflection coefficient is below -15 dB,corresponding to a maximum insertion loss of 0.8 dB and a minimum insertion loss of 0.4 dB.The fabricated prototypes of the two-,three-,and four-channel air-filled SIW crossovers are shown in Fig.8.The interior,top,and bottom views are illustrated in Figs.8a-8c.Two aluminum plates are added on the top and bottom of the substrate to act as ground planes.The design parameters of the crossover are listed in Table 1.

    Table 1 Design parameters and values

    Table 2 Comparisons between the designed two-channel crossovers and similar designs

    Fig.7 Simulated HFSS model (a) and S-parameters (b) of the transition

    Fig.8 Interior (a),top (b),and bottom (c) views of the fabricated prototypes (two-channel,three-channel,and four-channel crossovers from left to right)

    To describe the experimental results more clearly,an analysis based on the simulated and measured results of the crossovers is given in Section 3 of the supplementary materials for a detailed description.It can be concluded that the largest difference between the simulation and the measurement is in the insertion loss,about 1.7 dB.This discrepancy comes mainly from the insertion loss of the connectors,that of the connection between the connectors and the CPW,and the fabrication tolerance.The additional insertion loss mentioned above can be calibrated by using a thru-reflect-line (TRL) calibration to correct the effects of connectors and transitions,to correct characterize the demonstrator.The details of the calibration process are demonstrated in Doghri et al.(2015).

    3.2 Discussion

    The comparisons between the proposed air-filled SIW crossovers and similar designs with two or more channels are summarized in Tables 2 and 3,respectively.It is concluded that using microstrip line can build extraordinarily compact two-channel crossover (Tajik et al.,2018).However,the microstrip line as an open structure would lead to increased loss operating at higher frequencies.Considering designs in the literature (Djerafi and Wu,2009;Hesari and Bornemann,2017;Ali and Sebak,2018;Sun et al.,2020),it is noted that all of them suffer from relatively small bandwidth and large footprint when using either SIW or printed ridge gap waveguide technology.This brings the advantage of the proposed method in two-channel crossover designs;that is,the two-channel air-filled SIW crossover has a large FBW of 33% in the simulation and a reduced size of 0.74λ×0.74λ(λis the freespace wavelength at the center frequency).For fair comparisons,the FBW result is extracted from the complete model in the simulation including the SIW crossover and the transitions from air-filled SIW to CPW,and the size is related to the coupling area,which is surrounded by the open air-filled SIWs.

    Table 3 describes crossovers with more than two channels.It can be seen that using a microstrip can build similar compact crossovers (Wu et al.,2014;Tang and Chuang,2015;Chu and Tang,2018).However,SIW technologies usually suffer from a larger footprint (Lian et al.,2020;Zhou and Wu,2020).The designed three-and four-channel crossovers effectively reduce the occupied areas while maintaining sufficient FBWs.

    Table 3 Comparisons between the designed multi-channel crossovers and similar designs

    4 Conclusions

    In this work,a new method of crossover designs is presented by introducing an HCL in the middle of the air-filled SIW crossover cavity.According to raytracing analysis,the introduced HCL can concentrate and direct the electromagnetic wave in the desired direction and suppress the scattering within the cavity.Two-,three-,and four-channel air-filled SIW crossovers are designed and fabricated successively to demonstrate the feasibility of the proposed method.The corresponding FBWs of these cases in the simulation are 33%,14%,and 10%,separately.The dimensions of their core areas are only 0.74λ×0.74λ,1.43λ×1.43λ,and 1.90λ×1.90λ,separately.Compared with similar approaches,the designed crossovers show the merits of simple structure,compactness,and wide FBWs.

    Contributors

    Chun GENG and Jiwei LIAN designed the research.Chun GENG processed the data.Chun GENG and Jiwei LIAN drafted the paper.Dazhi DING revised and finalized the paper.

    Compliance with ethics guidelines

    Chun GENG,Jiwei LIAN,and Dazhi DING declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    List of supplementary materials

    1 Supplement to the operation principle

    2 Supplement to the design process

    3 Supplement to the experiment

    猜你喜歡
    前沿性教學大綱知識結構
    把握核心概念 優(yōu)化知識結構
    物理之友(2020年12期)2020-07-16 05:39:18
    以綱為要,創(chuàng)新課程體系建設
    ——上海老年大學教學大綱建設實踐探索
    論專業(yè)論文寫作的先進性和前沿性
    以人為本 以綱為綱
    ——老年大學教學大綱實踐與探索
    互動式教學大綱在本科教學中的實踐與探索
    ——以《工程制圖與識圖》為例
    贏未來(2019年33期)2019-12-17 09:45:28
    我國正當防衛(wèi)研究的網(wǎng)絡知識結構與核心脈絡
    法大研究生(2019年2期)2019-11-16 00:39:26
    解讀《魯科版化學必修一新教材》
    概率統(tǒng)計知識結構與方法拓展
    音樂學的學科現(xiàn)狀與前沿問題研究
    基于九因子模型的新手教師TPACK知識結構分析
    国产在线免费精品| 亚洲av国产av综合av卡| 欧美日韩精品成人综合77777| 亚洲精品一二三| 另类亚洲欧美激情| 国产亚洲av片在线观看秒播厂| 国产精品女同一区二区软件| 成年人免费黄色播放视频| 国产精品麻豆人妻色哟哟久久| 性色av一级| 久久久久久久精品精品| 边亲边吃奶的免费视频| 国产不卡av网站在线观看| 成人二区视频| 美女xxoo啪啪120秒动态图| 亚洲精品视频女| 成年人免费黄色播放视频| 丰满少妇做爰视频| 久久久国产一区二区| 国产精品久久久久久久电影| 18禁动态无遮挡网站| 99九九在线精品视频| 国产亚洲欧美精品永久| 在线观看免费日韩欧美大片| 精品人妻熟女毛片av久久网站| av黄色大香蕉| 免费观看无遮挡的男女| 18禁裸乳无遮挡动漫免费视频| 国产精品 国内视频| 国产探花极品一区二区| 国产日韩欧美亚洲二区| 国产成人aa在线观看| 久久久久久久精品精品| 亚洲精品色激情综合| 国产精品国产三级专区第一集| 大香蕉久久网| 久久狼人影院| 国产精品蜜桃在线观看| 欧美人与性动交α欧美软件 | 一级,二级,三级黄色视频| 少妇精品久久久久久久| 亚洲精品456在线播放app| 春色校园在线视频观看| 午夜久久久在线观看| 成人亚洲欧美一区二区av| 精品酒店卫生间| av有码第一页| 欧美日韩综合久久久久久| 久久精品国产亚洲av天美| 久久久精品区二区三区| 如何舔出高潮| 国产精品久久久久久久久免| 人妻系列 视频| videossex国产| 国产精品一国产av| 99精国产麻豆久久婷婷| 久久久久精品人妻al黑| 亚洲在久久综合| videosex国产| 亚洲,欧美,日韩| 三级国产精品片| 51国产日韩欧美| 日韩欧美精品免费久久| 在线观看三级黄色| av片东京热男人的天堂| 久久久国产一区二区| 国产精品欧美亚洲77777| 亚洲精品视频女| 欧美成人午夜免费资源| 嫩草影院入口| 天美传媒精品一区二区| 一级毛片 在线播放| 欧美精品一区二区大全| 人妻一区二区av| 天天影视国产精品| 国产乱人偷精品视频| 黄色 视频免费看| 99热6这里只有精品| 91精品伊人久久大香线蕉| 99久久中文字幕三级久久日本| 女人精品久久久久毛片| 国产免费现黄频在线看| 国产色婷婷99| 男人舔女人的私密视频| 日韩 亚洲 欧美在线| 高清欧美精品videossex| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 国产成人欧美| 狂野欧美激情性bbbbbb| 久久精品国产综合久久久 | 国产精品一二三区在线看| 美国免费a级毛片| 久久久久久久精品精品| www.熟女人妻精品国产 | 国产精品蜜桃在线观看| 亚洲精品成人av观看孕妇| 最近手机中文字幕大全| 久久青草综合色| 精品国产乱码久久久久久小说| 肉色欧美久久久久久久蜜桃| 免费女性裸体啪啪无遮挡网站| 午夜福利视频在线观看免费| 蜜桃国产av成人99| 亚洲情色 制服丝袜| 久久久国产一区二区| 亚洲欧洲日产国产| 免费观看无遮挡的男女| 在现免费观看毛片| 国产免费一区二区三区四区乱码| 777米奇影视久久| 久久99一区二区三区| 夜夜爽夜夜爽视频| 日韩在线高清观看一区二区三区| 看免费成人av毛片| 最近中文字幕2019免费版| 国产欧美亚洲国产| 晚上一个人看的免费电影| 人妻人人澡人人爽人人| 一区二区三区四区激情视频| 国语对白做爰xxxⅹ性视频网站| 亚洲四区av| 人妻系列 视频| 国产1区2区3区精品| 综合色丁香网| 国产高清国产精品国产三级| 久久这里只有精品19| 视频区图区小说| 99久久中文字幕三级久久日本| 精品第一国产精品| 91久久精品国产一区二区三区| 免费av不卡在线播放| 涩涩av久久男人的天堂| 国产xxxxx性猛交| 蜜桃在线观看..| 亚洲图色成人| 国产精品久久久久久精品古装| 欧美丝袜亚洲另类| 欧美日韩亚洲高清精品| 国产精品一区www在线观看| 丝袜脚勾引网站| 熟女人妻精品中文字幕| 久久久久精品性色| 五月天丁香电影| 欧美成人午夜精品| 日韩免费高清中文字幕av| 久久青草综合色| 啦啦啦中文免费视频观看日本| 天堂8中文在线网| 免费大片18禁| 亚洲内射少妇av| 国产激情久久老熟女| 观看美女的网站| 久久国内精品自在自线图片| 亚洲精品第二区| 欧美国产精品一级二级三级| 婷婷色麻豆天堂久久| 国产女主播在线喷水免费视频网站| 这个男人来自地球电影免费观看 | 欧美少妇被猛烈插入视频| 日本午夜av视频| av免费在线看不卡| av天堂久久9| 久久精品久久精品一区二区三区| 男女国产视频网站| 哪个播放器可以免费观看大片| av在线观看视频网站免费| 在线精品无人区一区二区三| 成年人免费黄色播放视频| 免费人成在线观看视频色| 免费看不卡的av| 久久这里有精品视频免费| 久久久欧美国产精品| 99国产综合亚洲精品| 久久久国产精品麻豆| 国产成人午夜福利电影在线观看| 欧美激情极品国产一区二区三区 | 精品少妇内射三级| 久久影院123| 两性夫妻黄色片 | 精品福利永久在线观看| 欧美亚洲 丝袜 人妻 在线| www.色视频.com| 国产成人免费观看mmmm| 精品久久蜜臀av无| 狂野欧美激情性xxxx在线观看| 伦理电影免费视频| av国产精品久久久久影院| 精品国产国语对白av| 男人爽女人下面视频在线观看| 精品少妇内射三级| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频| 成人无遮挡网站| 国产免费一区二区三区四区乱码| 免费观看性生交大片5| 久久午夜福利片| 欧美国产精品va在线观看不卡| 水蜜桃什么品种好| 免费看av在线观看网站| 欧美 日韩 精品 国产| 高清在线视频一区二区三区| 国产亚洲av片在线观看秒播厂| 久久狼人影院| 尾随美女入室| 捣出白浆h1v1| 91国产中文字幕| 国产一区二区三区av在线| 日韩av不卡免费在线播放| 2022亚洲国产成人精品| av免费观看日本| 观看av在线不卡| 欧美亚洲 丝袜 人妻 在线| 日本av免费视频播放| 在线观看三级黄色| 国产成人免费无遮挡视频| 国产在视频线精品| 少妇人妻精品综合一区二区| 一级黄片播放器| 精品99又大又爽又粗少妇毛片| 在线观看免费视频网站a站| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 成人毛片60女人毛片免费| a级毛片在线看网站| 亚洲精品乱久久久久久| 久久青草综合色| 人妻系列 视频| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 男人舔女人的私密视频| 免费人成在线观看视频色| 久久久久精品人妻al黑| 亚洲一区二区三区欧美精品| 女人精品久久久久毛片| 91精品国产国语对白视频| 一二三四中文在线观看免费高清| 好男人视频免费观看在线| 国产乱来视频区| 久久久久久人妻| 精品视频人人做人人爽| videosex国产| 男人操女人黄网站| 欧美国产精品一级二级三级| 午夜福利影视在线免费观看| 少妇 在线观看| 丝袜脚勾引网站| 少妇熟女欧美另类| 男女午夜视频在线观看 | 免费在线观看黄色视频的| 各种免费的搞黄视频| 又粗又硬又长又爽又黄的视频| 成人18禁高潮啪啪吃奶动态图| 中文字幕精品免费在线观看视频 | 最近最新中文字幕大全免费视频 | 日韩制服骚丝袜av| 少妇被粗大猛烈的视频| 久久ye,这里只有精品| 热re99久久国产66热| 丝袜脚勾引网站| 一级黄片播放器| 精品亚洲成a人片在线观看| 成人午夜精彩视频在线观看| 性高湖久久久久久久久免费观看| 国产女主播在线喷水免费视频网站| 汤姆久久久久久久影院中文字幕| 少妇人妻 视频| 精品久久国产蜜桃| 亚洲欧美日韩卡通动漫| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃 | 日韩制服骚丝袜av| 欧美精品av麻豆av| 亚洲精品国产av成人精品| 欧美3d第一页| 精品国产一区二区三区四区第35| 免费大片黄手机在线观看| 大话2 男鬼变身卡| 国产欧美日韩综合在线一区二区| 久久人人爽人人爽人人片va| 色视频在线一区二区三区| 9热在线视频观看99| 少妇精品久久久久久久| 日韩成人伦理影院| 亚洲一码二码三码区别大吗| 高清av免费在线| 又黄又粗又硬又大视频| av在线app专区| 在线观看免费视频网站a站| 90打野战视频偷拍视频| 少妇被粗大猛烈的视频| 免费大片18禁| 999精品在线视频| 欧美激情国产日韩精品一区| av福利片在线| 日日爽夜夜爽网站| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 两个人免费观看高清视频| 久久久久久久久久久久大奶| 亚洲av福利一区| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 高清av免费在线| 精品一区二区三区视频在线| 丁香六月天网| 国产男女超爽视频在线观看| 精品一区二区三区四区五区乱码 | 亚洲成人av在线免费| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 免费看不卡的av| 日本黄大片高清| 精品一区二区免费观看| 黄色怎么调成土黄色| 妹子高潮喷水视频| 日韩成人伦理影院| 美女大奶头黄色视频| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 久久精品人人爽人人爽视色| 国产 一区精品| 中国国产av一级| 狂野欧美激情性bbbbbb| 少妇精品久久久久久久| 国产精品一区二区在线观看99| 国产熟女午夜一区二区三区| 国产精品一区二区在线不卡| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡 | 国产亚洲欧美精品永久| 丝袜美足系列| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品999| 午夜日本视频在线| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 免费黄色在线免费观看| 熟女av电影| 午夜av观看不卡| 久久97久久精品| 免费看av在线观看网站| 在线观看一区二区三区激情| 岛国毛片在线播放| av免费观看日本| 亚洲色图综合在线观看| 丁香六月天网| 母亲3免费完整高清在线观看 | 天堂中文最新版在线下载| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 18+在线观看网站| 欧美日韩成人在线一区二区| 高清不卡的av网站| 十八禁高潮呻吟视频| 日韩熟女老妇一区二区性免费视频| 在线看a的网站| 中国三级夫妇交换| 王馨瑶露胸无遮挡在线观看| 超碰97精品在线观看| 国产又色又爽无遮挡免| 一级毛片黄色毛片免费观看视频| 久久人人爽人人爽人人片va| 老司机亚洲免费影院| 丝袜喷水一区| 99视频精品全部免费 在线| 一级片'在线观看视频| 国产精品99久久99久久久不卡 | 亚洲精品久久成人aⅴ小说| 国产熟女欧美一区二区| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 精品人妻在线不人妻| av在线观看视频网站免费| 亚洲 欧美一区二区三区| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 亚洲综合色惰| 国产精品久久久久成人av| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| av免费在线看不卡| 在线 av 中文字幕| 国产又色又爽无遮挡免| 91国产中文字幕| 毛片一级片免费看久久久久| 免费看不卡的av| 日本vs欧美在线观看视频| 亚洲成人手机| 中文字幕免费在线视频6| 波野结衣二区三区在线| 99热网站在线观看| 婷婷色综合www| 日韩电影二区| 国产精品 国内视频| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 18禁在线无遮挡免费观看视频| 在线观看人妻少妇| 久久99精品国语久久久| 99久国产av精品国产电影| 国产又爽黄色视频| 久久久久久久久久久久大奶| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品久久久久真实原创| 精品少妇内射三级| 一个人免费看片子| 久久久久久久久久久久大奶| av一本久久久久| 久热久热在线精品观看| 老司机影院毛片| 亚洲综合色网址| 999精品在线视频| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 九九在线视频观看精品| 制服人妻中文乱码| 少妇精品久久久久久久| 国产一区二区三区av在线| 九色亚洲精品在线播放| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| 丝袜脚勾引网站| 国产在线视频一区二区| 七月丁香在线播放| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 免费观看性生交大片5| 免费人成在线观看视频色| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 精品国产露脸久久av麻豆| √禁漫天堂资源中文www| 晚上一个人看的免费电影| 亚洲一区二区三区欧美精品| 亚洲综合精品二区| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| av线在线观看网站| 91国产中文字幕| 一本久久精品| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 午夜影院在线不卡| 久久99蜜桃精品久久| 亚洲精品久久午夜乱码| 国产爽快片一区二区三区| 日韩一本色道免费dvd| 春色校园在线视频观看| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 啦啦啦视频在线资源免费观看| 久久久久久久亚洲中文字幕| 日韩不卡一区二区三区视频在线| 妹子高潮喷水视频| 交换朋友夫妻互换小说| 精品国产国语对白av| 免费看光身美女| 国产男人的电影天堂91| 热re99久久精品国产66热6| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 国产精品无大码| 精品一区二区三区视频在线| 少妇高潮的动态图| 国产一区二区在线观看av| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 亚洲国产精品一区三区| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 黄片播放在线免费| 日韩电影二区| 日韩中字成人| 丝袜脚勾引网站| 两个人免费观看高清视频| 午夜福利在线观看免费完整高清在| 欧美性感艳星| 国产日韩欧美视频二区| 在线观看一区二区三区激情| 一区在线观看完整版| 久久久久网色| 亚洲精品一二三| 日韩中文字幕视频在线看片| 飞空精品影院首页| 成年美女黄网站色视频大全免费| 在线观看国产h片| 亚洲色图 男人天堂 中文字幕 | 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 亚洲成人av在线免费| 青青草视频在线视频观看| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 黄色一级大片看看| 黄色怎么调成土黄色| kizo精华| 亚洲精品国产色婷婷电影| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 日本av免费视频播放| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠久久av| av不卡在线播放| 亚洲国产精品一区二区三区在线| 日韩欧美精品免费久久| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 久久av网站| 九色成人免费人妻av| 国产爽快片一区二区三区| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 看十八女毛片水多多多| 视频中文字幕在线观看| 中国美白少妇内射xxxbb| 成人影院久久| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 国产麻豆69| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性xxxx在线观看| 精品国产一区二区三区四区第35| 高清av免费在线| 日日啪夜夜爽| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 免费黄频网站在线观看国产| 99久久中文字幕三级久久日本| 高清在线视频一区二区三区| 国产国语露脸激情在线看| 飞空精品影院首页| 欧美精品一区二区免费开放| 欧美亚洲日本最大视频资源| 观看av在线不卡| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 亚洲精品456在线播放app| 成人黄色视频免费在线看| 国产成人欧美| 免费观看a级毛片全部| 妹子高潮喷水视频| 街头女战士在线观看网站| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到 | 精品人妻熟女毛片av久久网站| 观看美女的网站| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 91精品三级在线观看| 日日摸夜夜添夜夜爱| 久久女婷五月综合色啪小说| 亚洲高清免费不卡视频| 九九在线视频观看精品| 在现免费观看毛片| 交换朋友夫妻互换小说| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 欧美丝袜亚洲另类| 欧美人与性动交α欧美精品济南到 | 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 亚洲天堂av无毛| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 巨乳人妻的诱惑在线观看| 亚洲内射少妇av| 久热这里只有精品99| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 国产免费视频播放在线视频| 夫妻性生交免费视频一级片| 欧美 亚洲 国产 日韩一| 男女边摸边吃奶| 亚洲成人一二三区av| 视频区图区小说| 亚洲美女搞黄在线观看| 国产欧美另类精品又又久久亚洲欧美| 免费人成在线观看视频色| 亚洲精品国产色婷婷电影| 欧美老熟妇乱子伦牲交| 久久97久久精品| 你懂的网址亚洲精品在线观看| 国产片特级美女逼逼视频| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久|