• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact millimeter-wave air-filled substrate-integrated waveguide crossover employing homogeneous cylindrical lens*#

    2023-09-21 06:31:18ChunGENGJiweiLIANDazhiDING
    關鍵詞:前沿性教學大綱知識結構

    Chun GENG ,Jiwei LIAN ,Dazhi DING

    1Qian Xuesen College, Nanjing University of Science and Technology, Nanjing 210094, China

    2School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China

    3State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

    We propose a new method to design crossovers by employing an embedded homogeneous cylindrical lens (HCL).Compared with traditional crossover designs,this strategy introduces an HCL within the air-filled substrate-integrated waveguide (SIW) crossover cavity to direct the incident waves in the desired direction.According to ray-tracing analysis,the added HCL can efficiently concentrate the electromagnetic wave propagating from the input to the output without increasing the fabrication complexity or footprint.The operating mechanism of this method is elaborated in detail,and is further verified by E-field distributions.Using the air-filled SIW technology,two-,three-,and four-channel crossovers operating at the millimeterwave are developed and fabricated to demonstrate the practical feasibility of the proposed method.Some transitional structures are designed for experimental purposes.It is found that the simulated fractional bandwidths (FBWs) related to two-,three-,and four-channel air-filled SIW crossovers are 33%,14%,and 10%,respectively;the dimensions of their core areas are 0.74λ×0.74λ,1.43λ×1.43λ,and 1.90λ×1.90λ,respectively.Comparisons between our method and similar approaches in the literature illustrate the advantages of our method.

    1 Introduction

    Most reported crossovers operating at the microwave frequency are based on microstrip technology because of its merits of planar structure and ease of integration (Feng et al.,2016;Jiao et al.,2018;Tajik et al.,2018;Yu and Sun,2019).Recently,millimeterwave and terahertz applications have attracted great interest due to the higher availability of unallocated frequency spectrum resources.In this situation,some close or quasi-close structures are preferable in crossover designs,which include waveguide (Cheng et al.,2021),substrate-integrated waveguide (SIW) (Djerafi and Wu,2009;Hesari and Bornemann,2017;Sun et al.,2020;Qi et al.,2021),and printed ridge gap waveguide (Ali and Sebak,2018).

    Traditional crossovers usually comprise four ports and deal with the intersections between two channels.As the circuit complexity increases,intersections among more than two channels appear and they should be taken into account in circuit designs.One feasible alternative is to cascade multiple two-channel crossovers.For instance,three two-channel crossovers can be combined into a three-channel crossover,or six two-channel crossovers can cooperatively build a four-channel crossover.However,apparently too many two-channel crossovers are required and cascaded in these cases,which can lead to larger sizes and increased losses (Li and Luk,2016).

    Facing this issue,the design of crossovers dealing with more than two channels simultaneously has become a significant and challenging research topic.Tang and Chuang (2015) used double rings in the microstrip to construct a three-channel crossover,which was later extended to a four-channel crossover (Chu and Tang,2018).Wu et al.(2014) proposed a different three-channel crossover by using lumped inductors.Subsequently,a microstrip three-channel crossover with the filtering property was developed (Wu and Mao,2016).However,for reasons explained above,these crossovers in the microstrip technology are not suitable for millimeter-wave or above millimeter-wave applications.

    Some crossovers have been proposed that use close or quasi-close transmission lines.Using a cavity for excitation TE011,TE101,and TM110modes (Lin et al.,2019),a three-channel waveguide filtering crossover was reported at the expense of a large size.Lian et al.(2020) designed a four-channel crossover using SIW technology by adding a power divider to each port,which eventually led to a larger footprint.When resorting to TE102and TE201modes,four-,five-,and sixchannel SIW filtering crossovers have been realized.To support the TE102and TE201modes simultaneously,the whole design is formed by cascaded rectangular cavities,while it suffers from a relatively large footprint (Zhan et al.,2020;Zhou and Wu,2020).

    Given the state-of-the-art development of crossovers,a new method to design air-filled SIW crossovers using an embedded homogeneous cylindrical lens (HCL) was proposed by Geng et al.(2022).In previous studies,HCLs (two-dimensional case) or homogeneous spherical lenses (three-dimensional case) have been widely applied and explored in antenna designs (Bekefi and Farnell,1956;Gunderson,1972;Schoenlinner et al.,2002;Boriskin et al.,2008;Costa et al.,2009;Zhang et al.,2011).As for the antenna design,the introduced HCL enables the conversion from spherical or cylindrical wave to planar wave,so that a high-directivity radiation can be achieved.Meanwhile,the feasibility of such lens in crossover designs is still questionable.In the proposed crossover design,the introduced HCL helps concentrate the electromagnetic wave and suppress the wave scattering within the airfilled SIW crossover cavity.Compared with previously published designs,the proposed method has mainly three salient merits.Firstly,this method drills an airfilled area to build an HCL without increasing the crossover footprint.Secondly,it is applicable to the two-channel crossover and can be extended to three-,four-channel crossovers,etc.Thirdly,it can be applied in single-layer SIW technology,which serves as an attractive candidate for low-loss and highly-integrated millimeter-wave applications.

    2 Air-filled SIW crossover design

    2.1 Operation principle

    Fig.1 depicts the topology of the proposed method for two-,three-,and four-channel crossovers.For the simplest case,it is composed of four ports (two channels).Different from traditional crossover designs,an extra HCL is inserted at the intersection.As a result,the electromagnetic wave coming from port 1 as an example will exclusively propagate toward port 3,while satisfactory isolation is observed between port 1 and port 2 (port 4).This two-channel topology can be extended to three-and four-channel cases by adjusting the diameters of the crossover cavity and the inserted HCL.

    Fig.1 Topologies of two-channel (a),three-channel (b),and four-channel (c) crossovers

    Fig.2a describes the design parameters from both the top view and side view.The width of the open air-filled SIW is denoted bywand the thickness of the substrate ish;ais the radius of the HCL,whiler0is the distance between the input air-filled SIW and the center of the HCL.The relative dielectric constants inside and outside the HCL are indicated byεr2andεr1,respectively.

    Fig.2 Design parameters of the HCL (a) and ray-tracing analysis of the crossover with HCL (b)

    Fig.3 E-field distribution with (a) and without (b) HCL at 30 GHz (T is the period of the electromagnetic field)

    To further reveal the operation mechanism of the proposed method,the ray-tracing analysis of the crossover with HCL is displayed in Fig.2b.Lian et al.(2020) demonstrated that concentrating the incoming electromagnetic wave is an effective method to design crossovers,which introduces a power divider at each port,so that the electromagnetic wave is concentrated.At the same time,the added power dividers lead to a larger footprint.In contrast,the proposed topology with an embedded HCL has the merit of better compactness,which is an alternative to concentrating the electromagnetic wave.In this case,the ray escaping out of the HCL should be parallel to thex-axis,as shown in Fig.2b.In contrast,when designing a crossover,each ray encountering two refractions is expected to arrive at the position mirrored to the source point,as shown in Fig.2b.

    按照“厚基礎、強應用、有特色”的原則,精簡課程體系,設置實用性、前沿性強的專業(yè)課程,補齊短板,增加關聯(lián)大、交叉多的基礎課程開設,打破專業(yè)與學科之間的橫向壁壘,積極開發(fā)綜合性特色課程。通過調(diào)研學生對知識的多層次需求,適當增加選修課數(shù)量,滿足學生全面發(fā)展的需要。從全面提升和完善學生的科學文化素養(yǎng)、合理的知識結構和創(chuàng)新創(chuàng)業(yè)實踐能力出發(fā),制訂符合社會需要的教學大綱和教學計劃,確定教學內(nèi)容,[5]鼓勵教師將最新學術動態(tài)、技術成果和創(chuàng)新經(jīng)驗融入課堂教學。

    The above is a brief description of the operation mechanism of the proposed method,and a more detailed description can be found in Section 1 of the supplementary materials.More details about this result can be found in (Gunderson,1972).

    To give a clearer view of the impact brought by the HCL,we compute the model using the High-Frequency Structure Simulator (HFSS) and show the E-field distribution,and the results contains two open air-filled SIWs with or without an HCL.As depicted in Figs.3a and 3b,it is observed that the E-field is bound in the HCL and most of the incoming energy propagates toward the other port.In contrast,if the HCL was removed,the energy would scatter outward and severe energy leakage would appear.

    2.2 Design process

    Derived from the abovementioned topology,a two-channel air-filled SIW crossover is designed,as shown in Fig.4a,wherea1is the radius of the HCL of the two-channel crossover,d1is the distance between the centers of two adjacent metal holes,andd2is the diameter of the metal holes.The first step of the design procedure is to determine the relative dielectric constants inside and outside the HCL.To simplify the fabrication,an air-filled area is built by drilling the substrate.In this way,one can obtain an interface between two materials within a single substrate.Here,a Rogers RT/duroid 5880 substrate with a thickness of 0.787 mm is applied.Then,we haveεr1=1.0 andεr2=2.2.Secondly,the width of the open air-filled SIWwshould be large enough to support the dominant mode within the interested frequency spectrum.In this work,w=7.2 mm is chosen.Then,one open air-filled SIW should be duplicated to four and placed clockwise to build a closed cavity.Finally,an HCL is inserted at the center and its diameter is optimized to achieve the minimum reflection and isolation.

    Fig.4 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the two-channel SIW crossover (d1=0.80 mm,d2=0.40 mm, a1=2.00 mm,and w=7.20 mm)

    The E-field distribution of the designed twochannel crossover at 30 GHz is displayed in Fig.4b,in which a crossed transmission is observed.The simulatedS-parameters of the designed two-channel crossover are plotted in Fig.4c,whereS11is the reflection coefficient of port 1,S21is the isolation coefficient of port 1 and port 2,andS31is the isolation coefficient of port 1 and port 3.From 25.8 to 38.3 GHz,the reflection coefficient and the isolation coefficients are lower than -15 dB,indicating a fractional bandwidth (FBW) of 39%.Within this frequency range,the insertion loss varies from 0.1 to 0.5 dB.

    To describe the design process more clearly,parametric study is given in Section 2 of the supplementary materials.In the above,the design details of the twochannel air-filled SIW crossover have been elaborated.Interestingly,the proposed method can be directly extended to crossovers with more channels.As shown in Fig.5a,a three-channel air-filled SIW crossover is designed using the proposed topology.Since the design process and operation principle are similar to those in the two-channel case,only the final model and simulation results are provided here.The E-field distribution at 34 GHz is displayed in Fig.5b,in which a crosspassing property is observed.The optimalS-parameters are plotted in Fig.5c.Due to the symmetry of the configuration,S51andS61are omitted.From 31.9 to 36.6 GHz,both the reflection and isolation coefficients are less than -15 dB;i.e.,the FBW is 14%.Within this frequency range,the minimum and maximum transmission losses are 0.1 dB and 0.7 dB,respectively.

    Fig.5 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the three-channel SIW crossover (a2=2.10 mm,w=7.20 mm)

    Similarly,a four-channel counterpart is designed (Fig.6a),and its E-field distribution is shown (Fig.6b).Indicated by theS-parameters in Fig.6c,the FBW is 7.5% (32.0 to 34.5 GHz).The minimum insertion loss is 0.2 dB,while the maximum insertion loss is 0.7 dB.

    Fig.6 Simulated HFSS model (a),E-field distribution (b),and S-parameters (c) of the four-channel SIW crossover (a3=4.00 mm,w=7.20 mm)

    3 Results and discussion

    3.1 Simulation and measurement

    For the experiments,transitions from SIW to airfilled SIW and coplanar waveguide (CPW) to SIW are designed,as shown in Fig.7a (Parment et al.,2015).The simulated reflection and transmission coefficients are plotted in Fig.7b.From 25.9 to 41.6 GHz,the reflection coefficient is below -15 dB,corresponding to a maximum insertion loss of 0.8 dB and a minimum insertion loss of 0.4 dB.The fabricated prototypes of the two-,three-,and four-channel air-filled SIW crossovers are shown in Fig.8.The interior,top,and bottom views are illustrated in Figs.8a-8c.Two aluminum plates are added on the top and bottom of the substrate to act as ground planes.The design parameters of the crossover are listed in Table 1.

    Table 1 Design parameters and values

    Table 2 Comparisons between the designed two-channel crossovers and similar designs

    Fig.7 Simulated HFSS model (a) and S-parameters (b) of the transition

    Fig.8 Interior (a),top (b),and bottom (c) views of the fabricated prototypes (two-channel,three-channel,and four-channel crossovers from left to right)

    To describe the experimental results more clearly,an analysis based on the simulated and measured results of the crossovers is given in Section 3 of the supplementary materials for a detailed description.It can be concluded that the largest difference between the simulation and the measurement is in the insertion loss,about 1.7 dB.This discrepancy comes mainly from the insertion loss of the connectors,that of the connection between the connectors and the CPW,and the fabrication tolerance.The additional insertion loss mentioned above can be calibrated by using a thru-reflect-line (TRL) calibration to correct the effects of connectors and transitions,to correct characterize the demonstrator.The details of the calibration process are demonstrated in Doghri et al.(2015).

    3.2 Discussion

    The comparisons between the proposed air-filled SIW crossovers and similar designs with two or more channels are summarized in Tables 2 and 3,respectively.It is concluded that using microstrip line can build extraordinarily compact two-channel crossover (Tajik et al.,2018).However,the microstrip line as an open structure would lead to increased loss operating at higher frequencies.Considering designs in the literature (Djerafi and Wu,2009;Hesari and Bornemann,2017;Ali and Sebak,2018;Sun et al.,2020),it is noted that all of them suffer from relatively small bandwidth and large footprint when using either SIW or printed ridge gap waveguide technology.This brings the advantage of the proposed method in two-channel crossover designs;that is,the two-channel air-filled SIW crossover has a large FBW of 33% in the simulation and a reduced size of 0.74λ×0.74λ(λis the freespace wavelength at the center frequency).For fair comparisons,the FBW result is extracted from the complete model in the simulation including the SIW crossover and the transitions from air-filled SIW to CPW,and the size is related to the coupling area,which is surrounded by the open air-filled SIWs.

    Table 3 describes crossovers with more than two channels.It can be seen that using a microstrip can build similar compact crossovers (Wu et al.,2014;Tang and Chuang,2015;Chu and Tang,2018).However,SIW technologies usually suffer from a larger footprint (Lian et al.,2020;Zhou and Wu,2020).The designed three-and four-channel crossovers effectively reduce the occupied areas while maintaining sufficient FBWs.

    Table 3 Comparisons between the designed multi-channel crossovers and similar designs

    4 Conclusions

    In this work,a new method of crossover designs is presented by introducing an HCL in the middle of the air-filled SIW crossover cavity.According to raytracing analysis,the introduced HCL can concentrate and direct the electromagnetic wave in the desired direction and suppress the scattering within the cavity.Two-,three-,and four-channel air-filled SIW crossovers are designed and fabricated successively to demonstrate the feasibility of the proposed method.The corresponding FBWs of these cases in the simulation are 33%,14%,and 10%,separately.The dimensions of their core areas are only 0.74λ×0.74λ,1.43λ×1.43λ,and 1.90λ×1.90λ,separately.Compared with similar approaches,the designed crossovers show the merits of simple structure,compactness,and wide FBWs.

    Contributors

    Chun GENG and Jiwei LIAN designed the research.Chun GENG processed the data.Chun GENG and Jiwei LIAN drafted the paper.Dazhi DING revised and finalized the paper.

    Compliance with ethics guidelines

    Chun GENG,Jiwei LIAN,and Dazhi DING declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    List of supplementary materials

    1 Supplement to the operation principle

    2 Supplement to the design process

    3 Supplement to the experiment

    猜你喜歡
    前沿性教學大綱知識結構
    把握核心概念 優(yōu)化知識結構
    物理之友(2020年12期)2020-07-16 05:39:18
    以綱為要,創(chuàng)新課程體系建設
    ——上海老年大學教學大綱建設實踐探索
    論專業(yè)論文寫作的先進性和前沿性
    以人為本 以綱為綱
    ——老年大學教學大綱實踐與探索
    互動式教學大綱在本科教學中的實踐與探索
    ——以《工程制圖與識圖》為例
    贏未來(2019年33期)2019-12-17 09:45:28
    我國正當防衛(wèi)研究的網(wǎng)絡知識結構與核心脈絡
    法大研究生(2019年2期)2019-11-16 00:39:26
    解讀《魯科版化學必修一新教材》
    概率統(tǒng)計知識結構與方法拓展
    音樂學的學科現(xiàn)狀與前沿問題研究
    基于九因子模型的新手教師TPACK知識結構分析
    www.av在线官网国产| 新久久久久国产一级毛片| 丰满少妇做爰视频| 在线观看国产h片| 国产男人的电影天堂91| 亚洲美女视频黄频| 亚洲真实伦在线观看| 亚洲天堂av无毛| 日韩不卡一区二区三区视频在线| 在线观看一区二区三区| 草草在线视频免费看| 综合色丁香网| 国产欧美日韩一区二区三区在线 | 亚洲综合精品二区| 免费黄频网站在线观看国产| 黑丝袜美女国产一区| 亚洲av成人精品一二三区| 天美传媒精品一区二区| 一级黄片播放器| 国产欧美日韩精品一区二区| 久久精品人妻少妇| 丰满迷人的少妇在线观看| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 日本-黄色视频高清免费观看| 精品久久久久久电影网| 日本一二三区视频观看| 一个人免费看片子| 久久久久久久久久人人人人人人| 高清日韩中文字幕在线| 好男人视频免费观看在线| 内地一区二区视频在线| 看十八女毛片水多多多| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 在线免费观看不下载黄p国产| 国产淫片久久久久久久久| 亚洲精品自拍成人| 精品人妻偷拍中文字幕| 精华霜和精华液先用哪个| 激情五月婷婷亚洲| 久久久久久久久大av| 免费av中文字幕在线| 一级毛片我不卡| 国产亚洲一区二区精品| 99热6这里只有精品| 99热6这里只有精品| 狂野欧美激情性bbbbbb| 国产精品一二三区在线看| 韩国高清视频一区二区三区| 午夜精品国产一区二区电影| 亚洲不卡免费看| 免费看不卡的av| 少妇的逼水好多| av视频免费观看在线观看| 人人妻人人看人人澡| 国产成人午夜福利电影在线观看| 国产精品一区二区在线观看99| 精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 国产69精品久久久久777片| 亚洲无线观看免费| 久久99精品国语久久久| 免费观看无遮挡的男女| 伊人久久国产一区二区| 日韩,欧美,国产一区二区三区| 深夜a级毛片| 超碰av人人做人人爽久久| 欧美丝袜亚洲另类| 日韩成人伦理影院| 国产精品福利在线免费观看| 欧美zozozo另类| 蜜桃亚洲精品一区二区三区| 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 男女啪啪激烈高潮av片| 国产亚洲欧美精品永久| 舔av片在线| 久久久久国产网址| 久久久精品免费免费高清| 在线精品无人区一区二区三 | 一区在线观看完整版| 七月丁香在线播放| 亚洲国产欧美在线一区| 亚洲精品色激情综合| 欧美少妇被猛烈插入视频| 日韩成人av中文字幕在线观看| 久久精品久久精品一区二区三区| 欧美成人a在线观看| 在现免费观看毛片| 国产中年淑女户外野战色| 高清在线视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 日韩欧美 国产精品| 亚洲欧洲日产国产| 国产精品伦人一区二区| 黑丝袜美女国产一区| 各种免费的搞黄视频| 男人和女人高潮做爰伦理| 精品视频人人做人人爽| 亚洲欧美日韩无卡精品| 午夜福利影视在线免费观看| 精品视频人人做人人爽| av播播在线观看一区| 久久6这里有精品| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 麻豆成人午夜福利视频| 久久精品国产亚洲av涩爱| 欧美bdsm另类| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 亚洲精品,欧美精品| 午夜免费鲁丝| 欧美成人午夜免费资源| 亚洲第一区二区三区不卡| 国产亚洲欧美精品永久| 青春草国产在线视频| 亚洲最大成人中文| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 80岁老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 99久国产av精品国产电影| 日韩欧美一区视频在线观看 | 精品一区在线观看国产| 中文字幕亚洲精品专区| 我的老师免费观看完整版| 激情 狠狠 欧美| 18禁动态无遮挡网站| av天堂中文字幕网| 久久久精品94久久精品| 精品99又大又爽又粗少妇毛片| 精品国产露脸久久av麻豆| 又粗又硬又长又爽又黄的视频| 在线免费观看不下载黄p国产| 免费看光身美女| 亚洲伊人久久精品综合| 国产美女午夜福利| 国产精品.久久久| 成人国产av品久久久| 黄色怎么调成土黄色| 久久久久久人妻| 欧美日韩一区二区视频在线观看视频在线| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 男女边吃奶边做爰视频| 亚洲不卡免费看| 成人毛片60女人毛片免费| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品古装| 网址你懂的国产日韩在线| 日韩中文字幕视频在线看片 | 午夜免费观看性视频| 黄色欧美视频在线观看| 简卡轻食公司| 国产淫语在线视频| 99视频精品全部免费 在线| 26uuu在线亚洲综合色| 人人妻人人添人人爽欧美一区卜 | 高清欧美精品videossex| 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| 在线播放无遮挡| 在线观看一区二区三区| 国产中年淑女户外野战色| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 婷婷色av中文字幕| 国产精品一区二区性色av| 国产高清国产精品国产三级 | 我的女老师完整版在线观看| 简卡轻食公司| 亚洲成人av在线免费| 国产男女内射视频| av线在线观看网站| 黄片无遮挡物在线观看| 久久久久精品性色| 亚洲色图av天堂| 九色成人免费人妻av| 久热久热在线精品观看| 99久久精品国产国产毛片| 久热这里只有精品99| 最黄视频免费看| 日韩亚洲欧美综合| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 久久久久性生活片| 亚洲欧美精品自产自拍| 久久97久久精品| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 男人和女人高潮做爰伦理| 在线精品无人区一区二区三 | 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 熟女人妻精品中文字幕| 老司机影院毛片| 91久久精品国产一区二区三区| 蜜桃久久精品国产亚洲av| 交换朋友夫妻互换小说| 嫩草影院入口| 国产成人一区二区在线| 亚洲精品乱久久久久久| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 欧美性感艳星| av专区在线播放| 少妇丰满av| 亚洲国产精品成人久久小说| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 成人国产av品久久久| 国产成人a∨麻豆精品| h视频一区二区三区| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 国产高潮美女av| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 国产成人91sexporn| 久久精品国产亚洲网站| 高清黄色对白视频在线免费看 | 如何舔出高潮| 亚洲精品视频女| videossex国产| 色5月婷婷丁香| 国产精品人妻久久久影院| 如何舔出高潮| 国产精品福利在线免费观看| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 欧美日韩视频高清一区二区三区二| 一级爰片在线观看| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| av播播在线观看一区| 女性被躁到高潮视频| 五月开心婷婷网| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| 最黄视频免费看| 狂野欧美激情性bbbbbb| 夜夜看夜夜爽夜夜摸| 日本爱情动作片www.在线观看| 欧美一级a爱片免费观看看| 少妇丰满av| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 天美传媒精品一区二区| 亚洲国产精品999| 日韩中文字幕视频在线看片 | 国产亚洲91精品色在线| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 中文字幕制服av| 亚洲激情五月婷婷啪啪| a 毛片基地| 最近中文字幕2019免费版| 欧美日韩视频高清一区二区三区二| 日韩电影二区| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄| 一本—道久久a久久精品蜜桃钙片| 国产老妇伦熟女老妇高清| 久久这里有精品视频免费| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 观看美女的网站| 夜夜爽夜夜爽视频| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 高清午夜精品一区二区三区| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久 | 成人毛片a级毛片在线播放| 精品久久久久久电影网| 男女国产视频网站| 有码 亚洲区| 免费观看无遮挡的男女| 国产视频内射| 欧美高清成人免费视频www| 免费人妻精品一区二区三区视频| 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产| 国产成人免费观看mmmm| 国产精品伦人一区二区| 国产黄色免费在线视频| 婷婷色综合www| 亚洲中文av在线| 国产高清国产精品国产三级 | 免费久久久久久久精品成人欧美视频 | 日韩三级伦理在线观看| 精品亚洲成国产av| 国产精品av视频在线免费观看| 麻豆乱淫一区二区| 国产永久视频网站| 国产老妇伦熟女老妇高清| 亚洲成色77777| 99九九线精品视频在线观看视频| 久久毛片免费看一区二区三区| 97超视频在线观看视频| 亚洲av在线观看美女高潮| 亚洲av欧美aⅴ国产| 国语对白做爰xxxⅹ性视频网站| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 91在线精品国自产拍蜜月| 国产久久久一区二区三区| 黄色一级大片看看| 免费观看在线日韩| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| videos熟女内射| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 免费看光身美女| 中国国产av一级| 成人一区二区视频在线观看| 亚洲av福利一区| 又爽又黄a免费视频| 国产一区二区在线观看日韩| 国产一级毛片在线| 精品人妻视频免费看| 久久久久国产精品人妻一区二区| 亚洲精品自拍成人| 久久久久国产精品人妻一区二区| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 全区人妻精品视频| 春色校园在线视频观看| 一级毛片黄色毛片免费观看视频| 日韩免费高清中文字幕av| 国产黄片美女视频| 午夜福利视频精品| 亚洲色图av天堂| 精品少妇久久久久久888优播| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 少妇的逼水好多| 久久人人爽人人爽人人片va| av专区在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩综合久久久久久| 免费观看无遮挡的男女| 三级经典国产精品| 嫩草影院新地址| 亚洲无线观看免费| 一级二级三级毛片免费看| 亚洲丝袜综合中文字幕| 精品久久久久久久久av| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 赤兔流量卡办理| 国产亚洲午夜精品一区二区久久| a级一级毛片免费在线观看| 亚洲av福利一区| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 久久久久久久久久久丰满| 日本wwww免费看| 亚洲av不卡在线观看| 美女主播在线视频| 久久精品国产亚洲av天美| 日韩不卡一区二区三区视频在线| 亚洲美女搞黄在线观看| 国产成人91sexporn| 久久精品国产a三级三级三级| 在线观看一区二区三区| 欧美成人午夜免费资源| 我的女老师完整版在线观看| 免费黄色在线免费观看| 日本欧美视频一区| 久久国内精品自在自线图片| 精品亚洲成国产av| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人爽人人片va| 青春草国产在线视频| 女性生殖器流出的白浆| xxx大片免费视频| 婷婷色av中文字幕| 伦理电影大哥的女人| av国产精品久久久久影院| 99re6热这里在线精品视频| 青青草视频在线视频观看| 欧美人与善性xxx| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 男男h啪啪无遮挡| 亚洲成人av在线免费| 久久午夜福利片| 九九在线视频观看精品| 日本欧美国产在线视频| 国产爱豆传媒在线观看| 久久久久性生活片| 精品人妻视频免费看| 久久久久久久大尺度免费视频| 成人国产麻豆网| av线在线观看网站| 大码成人一级视频| 日韩一区二区视频免费看| 欧美国产精品一级二级三级 | 成人免费观看视频高清| videossex国产| 免费观看在线日韩| 亚洲欧美一区二区三区国产| 2022亚洲国产成人精品| 一级av片app| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看| 日韩中文字幕视频在线看片 | 超碰av人人做人人爽久久| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 少妇人妻一区二区三区视频| 亚洲美女搞黄在线观看| 亚洲自偷自拍三级| 午夜免费观看性视频| 伦理电影免费视频| 国产欧美亚洲国产| 日韩免费高清中文字幕av| 两个人的视频大全免费| 少妇熟女欧美另类| 最黄视频免费看| 涩涩av久久男人的天堂| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 日本一二三区视频观看| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 免费观看a级毛片全部| 如何舔出高潮| 亚洲伊人久久精品综合| 国产免费又黄又爽又色| 国产精品爽爽va在线观看网站| 亚洲久久久国产精品| 国产精品久久久久久av不卡| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 亚洲精品中文字幕在线视频 | 欧美xxxx黑人xx丫x性爽| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 男女边摸边吃奶| 国产精品伦人一区二区| 国产成人免费观看mmmm| 国产av一区二区精品久久 | 久久毛片免费看一区二区三区| 综合色丁香网| 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 91精品国产九色| 九九久久精品国产亚洲av麻豆| 欧美97在线视频| 在线观看国产h片| 大香蕉久久网| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 国产一级毛片在线| 97超视频在线观看视频| 日韩在线高清观看一区二区三区| 久久97久久精品| 国产在线男女| 午夜福利高清视频| 日韩三级伦理在线观看| 亚洲美女搞黄在线观看| 只有这里有精品99| 春色校园在线视频观看| 一个人看视频在线观看www免费| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| av天堂中文字幕网| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 欧美精品国产亚洲| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 亚洲精品456在线播放app| 亚洲怡红院男人天堂| 国产免费又黄又爽又色| 日韩成人av中文字幕在线观看| 黑丝袜美女国产一区| 国产成人aa在线观看| 国产真实伦视频高清在线观看| 久久精品国产a三级三级三级| 国产男女内射视频| 成人高潮视频无遮挡免费网站| 最后的刺客免费高清国语| 国内少妇人妻偷人精品xxx网站| 免费看av在线观看网站| 国产精品国产三级国产av玫瑰| 国产成人午夜福利电影在线观看| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 久久人人爽人人爽人人片va| 亚洲最大成人中文| 免费观看的影片在线观看| 亚洲av中文av极速乱| 亚洲精品乱码久久久v下载方式| 一边亲一边摸免费视频| 国产探花极品一区二区| 夜夜骑夜夜射夜夜干| 亚洲精品日韩在线中文字幕| 内地一区二区视频在线| 亚洲国产欧美人成| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| av在线播放精品| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 国产伦精品一区二区三区视频9| 男人添女人高潮全过程视频| 国产av国产精品国产| 永久网站在线| 国产精品久久久久久精品古装| 国产精品一及| 亚洲无线观看免费| 2021少妇久久久久久久久久久| 日本av免费视频播放| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 性色av一级| 亚州av有码| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦视频在线资源免费观看| 纵有疾风起免费观看全集完整版| 国产v大片淫在线免费观看| 亚洲av福利一区| www.av在线官网国产| 国产人妻一区二区三区在| 国内揄拍国产精品人妻在线| 久久这里有精品视频免费| 天天躁日日操中文字幕| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 亚洲国产欧美人成| 国产男女超爽视频在线观看| 一级黄片播放器| 亚洲av男天堂| 高清视频免费观看一区二区| 老司机影院成人| 久久精品国产自在天天线| 亚洲三级黄色毛片| 国产av国产精品国产| 中文字幕av成人在线电影| 伊人久久国产一区二区| 久久影院123| 久久人妻熟女aⅴ| 久热久热在线精品观看| 国产亚洲欧美精品永久| 女人久久www免费人成看片| 久久久久精品性色| 菩萨蛮人人尽说江南好唐韦庄| 熟女av电影| 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 日本欧美视频一区| 午夜福利视频精品| 只有这里有精品99| 黄色欧美视频在线观看| 国产成人a∨麻豆精品| 2022亚洲国产成人精品| 亚洲av成人精品一区久久| 高清不卡的av网站| 日韩人妻高清精品专区| av在线app专区| 偷拍熟女少妇极品色| 两个人的视频大全免费| 直男gayav资源| 舔av片在线| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 美女视频免费永久观看网站| 夫妻午夜视频| 精品国产露脸久久av麻豆| 久久人人爽人人片av| 国产精品人妻久久久影院| 国产欧美亚洲国产| 亚洲欧美日韩另类电影网站 | 蜜桃久久精品国产亚洲av| 我要看日韩黄色一级片| 全区人妻精品视频| 久久久久久久国产电影| 久久影院123| 成人毛片60女人毛片免费| 亚洲美女搞黄在线观看| 免费大片18禁| 男的添女的下面高潮视频| 新久久久久国产一级毛片|