• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pattern reconfigurable antenna array for 5.8 GHz WBAN applications*

    2023-09-21 06:31:16LingshengYANGBinWANGYajieLI

    Lingsheng YANG ,Bin WANG ,Yajie LI

    1School of Electronics &Information Engineering, Nanjing University of Information Science &Technology, Nanjing 210044, China

    2Zhongda Hospital Southeast University, Nanjing 210009, China

    A pattern reconfigurable antenna array for 5.8 GHz wireless body area network (WBAN) applications is proposed in this paper.The antenna array consists of a radiation component and a controller component.The radiation component comprises four planar F-shaped antennas,which are located on the four corners of the upper layer and are rotated 90° anticlockwise from each other.The controller component is located in the lower layer and includes a four-port controllable network.An omnidirectional radiation pattern tangent to the human body surface and a directional radiation pattern normal to the human body surface can be obtained by controlling the PIN diodes,which are integrated in this controllable network.Measurements of impedance bandwidth,radiation pattern,and gain are performed when the array is mounted on the human body or forearm phantom,and the results agree with the simulation.Specific absorption rate (SAR) values for both radiation modes,and beam switch ability are also simulated to ensure the practicability of this array.

    1 Introduction

    WBAN has drawn growing attention from a wide variety of applications,such as wireless communications,medical care,health monitoring,physical training,and military applications (Lee et al.,2017;Wong et al.,2017;Ramaswamy and Gandhi,2022).As the most critical component of WBAN devices,the antenna should be compact,easy to fabricate,robust to the influence of the human body,have a minimal SAR,and be low in cost (Wang MJ et al.,2018;G?kdemir et al.,2022).Even if all these requirements are met,when the antenna is mounted above the dynamic human body,the environment becomes so complex that it is difficult to guarantee low power and secure wireless communication (Cihangir et al.,2018;Yaghoubi et al.,2022).

    For WBAN devices,when creeping waves that propagate around the body surface (such as on-body communications between wearable devices) are the main component of all received waves,an antenna with an omnidirectional or monopole-like radiation pattern is suitable.When waves normal to the body surface (such as off-body communications between the communication node and the wearable device) are dominant,an antenna with a directional or patch-antenna-like radiation pattern is preferred (Alves et al.,2011;Shan and Yan,2020).Antennas with pattern diversity,especially antennas that can switch between omnidirectional and directional radiation patterns,can adapt to different application scenarios,and have gained a lot of interest (Kim et al.,2012;Lin et al.,2017;Wang Y et al.,2017).

    Scholars worldwide have conducted extensive research around WBAN antennas with radiation pattern diversity (Kim et al.,2012;Yan and Vandenbosch,2016a;Lin et al.,2017).In Kim et al.(2012),by changing the state of two PIN diodes,the power divider provides in-phase and out-of-phase excitation to two branched radiators.Normal and side-direction radiation patterns are realized accordingly.A three-port-fed antenna with tripolarization diversity for wearable communications was proposed in Yao et al.(2012) and Yan and Vandenbosch (2016b).The omnidirectional radiation pattern is generated when an inductively loaded patch antenna is fed in the center,while orthogonal broadside patterns are obtained when a microstrip annular ring antenna is excited by the other two ports separately.In Yan and Vandenbosch (2016a),by reconfiguring the dispersion curve of the inductor-loaded transmission line,the antenna can be switched between the +1 mode or the 0th-order mode,and an omnidirectional or broadside radiation pattern can be achieved,respectively.In Tong et al.(2018),the states of the PIN diodes determine whether the circular patch is connected to the ground,and two working modes are realized accordingly.

    This paper describes a four-element antenna array with pattern-diversity performance,designed for 5.8 GHz industrial scientific medical (ISM) band WBAN operations.By changing the working states of the PIN diodes located in the controllable network,two types of radiation patterns can be realized: omnidirectional radiation,which is tangent to the human body surface,and directional radiation,which is normal to the human body surface.Next,the power transmission efficiency method for designing the directional mode is further extended to achieve beam switch ability performance.This paper covers the parameter study of the antenna element and the working principle of the pattern reconfigurable array.Simulation and measurement results and further development of the antenna array-like switchable pattern properties are also presented.

    2 Pattern reconfigurable antenna array design

    2.1 Four-element antenna array structure

    Fig.1 shows the geometry of the proposed antenna array.The antenna array consists of a radiation component and a controller component,which are located in different layers of an FR4 double-layered substrate with relative permittivityεr=4.4,loss tangent tanδ=0.02,and dimensions 30 mm×30 mm×3 mm (layer 1:2 mm;layer 2: 1 mm).The radiation component includes four planar F-shaped antennas,which are located on the top of the upper layer and are rotated 90° anticlockwise in turn.The controller component consists of a controllable network with four ports and is located on the bottom of the lower layer.The controllable network includes power dividers,PIN diodes,and phase shifters.The four output ports from the controllable network are connected to the antenna elements through four vias.As shown in Fig.1c,seven PIN diodes (SMPA1320-079LF_Skyworks) integrated with the transmission lines are divided into two groups (blue: PIN A;red: PIN B).For ports 2 and 3,the feeding phase is fixed,but for ports 1 and 4,the feeding phase is controllable by controlling the working states of the diodes.The on-resistance and off-capacitance of the PIN diodes are 1 Ω and 0.3 pF,respectively.The center copper sheet acts as the common ground as shown in Fig.1c,and can isolate the coupling between the antenna elements and the controllable network.Hence,it is of great benefit to design and optimize this radiation antenna array.

    Fig.1 Geometry of the proposed array: (a) overall view;(b) antenna elements,top view;(c) controllable network,bottom and side views (References to color refer to the online version of this figure)

    2.2 Antenna element design

    Near the feed point,a short stub (microstrip line in Fig.1b) is set as a matching circuit.We use High Frequency Structure Simulator (HFSS) (Ansys Version 15) to optimize the parameters for the antenna element.The optimized parameters are as follows:a=4 mm,b=8 mm,c=9.5 mm,d=4 mm,e=2.5 mm,andf=2 mm.The total length of the current path for the antenna to resonate at 5.8 GHz is 30 mm,which is about one wavelength at 5.8 GHz.

    The wavelength (λ) can be determined by

    2.3 Omnidirectional radiation array design

    As shown in Fig.2,the surface currents distributed on single-antenna elements contain two orthogonal components,and the expression of the currents can be assumed as

    Fig.2 Surface current distribution on the antenna array for omnidirectional radiation mode (References to color refer to the online version of this figure)

    wheref(x) orf(y) is the current distribution of a halfwave antenna,Iis the amplitude of the current,and j means that the current phase difference in theXandYdirections is 90°.So,the total electric field of the antenna element can be written as

    For the antenna element,the length of the surface currents in theXandYdirections are nearlyλ/2,and for the half-wave antenna,we have

    Therefore,the total electric field of the antenna element can be written as

    According to Eq.(6),the E-field of a single element acts as a circle in theXY-plane (omnidirectional).So if the four antennas are fed with the same amplitude and phase,the synthetic total field can still achieve omnidirectional radiation characteristics.

    When +1.8 V direct current (DC) voltage is applied to point_a and point_b through bias circuits,diodes of PIN A are on and diodes of PIN B are off,the amplitude and phase of the input power for the four ports are the same,the array can achieve horizontal omnidirectional radiation parallel to the human body (XY-plane),and can effectively receive creeping waves that propagate along the human body surface.Surface current distribution can be used to further analyze the working mechanism of the array.In Fig.2,J1represents the total vector sum of the leftward and downward surface currents that distribute on ant 1,J2represents the total vector sum of the rightward and downward surface currents that distribute on ant 2,J3represents the total vector sum of the rightward and upward surface currents that distribute on ant 3,andJ4represents the total vector sum of the leftward and upward surface currents that distribute on ant 4.The four total vector sum currents form a loop current.This is similar to the performance of a magnetic dipole,which radiates omnidirectionally in theXY-plane.

    2.4 Directional radiation array design

    To realize directional radiation,we first establish a wireless transmission system using the power transmission efficiency method (Jiang et al.,2016).The system is depicted in Fig.3;the aforementioned fourelement array is used as the transmitting antenna,and a dipole (resonant at 5.8 GHz) is introduced as a receiving antenna.The dipole is placed in the far field of the transmitting antenna in a specified direction.In this case,the antenna array is designed to radiate normally to human body surfaces,which is suitable for receiving off-body communication signal waves,or waves that are scattered by the ground,the walls,and so on.Therefore,during simulation,the dipole is placed in the +Zdirection,300 mm away from the transmitting antenna.

    Fig.3 Power transmission between the four-element transmit‐ting antenna array and the receiving antenna (dipole)

    The whole transmission system can be treated as a (4+1)-port network,and can be described by the scattering matrix as Eq.(7):

    The subscripts t and r represent the transmitting antenna array and the receiving antenna (dipole),respectively.The normalized incident and reflected waves in the above formula can be expressed as

    The ratio of the power received by the receiving antenna to the power input to the transmitting antenna array is defined as the power transmission efficiencyT,which can be expressed by

    Because the test antenna is well matched at 5.8 GHz,we havear=0.When the power transmission efficiencyTreaches the maximum,according to Jiang et al.(2016) and Eqs.(7) and (9),Tcan be obtained by

    whereAandBare two matrices defined by

    Because at 5.8 GHz,the dipole and the transmitting antenna array are well matched,Eq.(10) can be further simplified to Eq.(12):

    Through the HFSS simulation software,theSparameters for the transmitting antenna array and the receiving antenna can be obtained,and then substituted into Eq.(8).By solving Eq.(8),we can obtain the maximum transmission efficiency,Tmax,as the largest eigenvalue (because there is only one test antenna,Eq.(12) has only one positive eigenvalue,while the rest are zero because the rank ofAis unit).Meanwhile,the eigenvectoratcorresponding to the largest eigenvalue stands for the optimal excitation for each port of the transmitting antenna array.This method involves only port information,which can be obtained in the simulations and measurements.The complex environment and the coupling between antennas have been taken into consideration,which makes the method for obtaining the desired pattern of a wearable antenna array simple and effective.

    During the simulations,when the amplitude and phase of the input power for the feed are set as 1 and 0°,respectively,to achieve a directional radiation pattern,the calculated amplitudes for the four ports are 0.49,0.51,0.50,and 0.50,while the phases are 179.3°,-2.5°,0°,and 178.1°.For simplicity,the four ports are designed to be fed with the same amplitude,and the phases for the four ports are adjusted to 180°,0°,0°,and 180°.

    3 Antenna array measurements and further performance

    3.1 Antenna measurements

    The fabricated prototype of the antenna is shown in Fig.4.We use a ZNB 20 GHz two-port vector network analyzer to measure theSparameters of the array in free space and on an arm.When +1.8 V DC voltage is put on point_a (the black wire weld spot in Fig.4b) and point_b (the red wire weld spot in Fig.4b) through bias circuits,the omnidirectional model can be measured,and when -1.8 V DC voltage is put on point_a (the black wire weld spot in Fig.4b) and point_b (the red wire weld spot in Fig.4b),diodes of PIN A are off and diodes of PIN B are on,and the directional mode can be measured.As depicted in Fig.5,for both radiation modes,the measured resonance frequencies not attached to the human body shift slightly from the simulation results,which is caused mainly by the fabrication error and the difference among realistic dielectric material,PIN diodes,and the simulation models.When the array is mounted on the human body,for both modes,the resonance frequencies shift to a higher frequency.However,for all cases,the measured bandwidth can cover the targeted 5.8 GHz ISM band (5.725-5.875 GHz).

    Fig.4 Fabricated prototype of the array: (a) top view;(b) bottom view (References to color refer to the online version of this figure)

    Fig.5 Simulation and measurement S parameters:(a) omnidirectional mode (OM);(b) directional mode (DM)

    Fig.6 Radiation patterns for two modes of the array: (a) measurements of the antenna array on the forearm phantom;(b) XY-plane for omnidirectional mode;(c) XZ-plane for omnidirectional mode;(d) YZ-plane for omnidirectional mode;(e) XZ-plane for directional mode;(f) YZ-plane for directional mode;(g) comparison between simulated XZ-plane for two modes;(h) comparison between simulated YZ-plane for two modes

    The radiation pattern is measured when the antenna array is mounted on a forearm phantom (Speag model SHO3TO6-LFPV2).The phantom has a frequency range from 3 to 6 GHz.For omnidirectional mode,as shown in Figs.6b-6d,the simulation and measurement results agree well,and omnidirectional radiation characteristics can be observed in theXY-plane.When the array is mounted on the forearm phantom,the gain is slightly reduced mainly due to the high loss of human tissue.For directional mode,the radiation patterns in theXZ-andYZ-plane are plotted in Figs.6e and 6f,respectively.We can see that the array radiates mainly to the +Zaxis direction,which is normal to human surfaces.Non-null radiation around broadside is obtained.From Figs.6g and 6h,we can see that compared with the directional mode,the lobe of the forward radiation pattern is wider in the omnidirectional mode.For omnidirectional mode,based on our design,after setting multiple receiving (test) antennas,the radiation pattern stretches in the four directions in theXY-plane.

    In the 5.8 GHz ISM band,the measured gain with the forearm phantom varies from 1.7 to 2.1 dBi for the omnidirectional mode,and varies from 2.33 to 3.45 dBi for the directional mode.For both modes,the antenna array has the highest gain near the resonance point of 5.8 GHz.Simulated efficiencies in free space are 72% and 81% for the omnidirectional and directional modes,respectively,whereas measured values for the omnidirectional and directional modes reduced to 63% and 70% in the presence of the phantom.

    3.2 Specific absorption rate evaluation

    To ensure the safety of the antenna array when it is mounted on the human body,the SAR level should be analyzed.According to the Federal Communications Commission (FCC) guidelines,the SAR must be <1.6 W/kg averaged >1 g of human tissue (Lin et al.,2017).In this study,the SAR values of the array are also simulated via HFSS.Skin,fat,and muscle layers used in the three-layer human tissue model (Fig.7) are 1,2,and 10 mm,respectively.Their relative permittivities and conductivities are listed in Table 1.The antenna array is placed 5 mm above the human tissue model,and the input power to the array is 500 mW.For the directional model,the maximum SAR is 0.75 W/kg for averaged >1 g of body tissue at 5.8 GHz in the fat layer,which is higher than the maximum SAR values in the skin layer (0.23 W/kg) and muscle layer (0.03 W/kg).For the omnidirectional model,the SAR values in three layers are slightly higher,but they can all satisfy the FCC criterion.

    Table 1 Dielectric properties of various human tissues at an operation frequency of 5.8 GHz

    Fig.7 Simulated 1 g averaged SAR distributions with a three-layer tissue model

    3.3 Beam switchable function realization

    Recent studies have shown that arrays with beam switching capabilities are in demand for WBAN applications.Similar to directional radiation pattern design,based on a power transmission efficiency method,we can realize the beam switchable function by replacing the feed network with power dividers and phase shifters.Taking the beam switching angles of ±45° as an example,as depicted in Fig.8,test ant 1 is for the directional mode,while test ant 2 and test ant 3 are for-45° and +45°,respectively.Together with the antenna array and calculate the (4+1)-port network for test ant 2 and test ant 3.Using Eqs.(7)-(12),we can obtain the amplitude and phase information of the 4-port feed required in Table 2.

    Table 2 Port amplitude and phase information required to realize the beam switching angle

    Fig.8 Antenna system setting for beam switchable function

    When the amplitude and phase of the input power for the feed are set at 1 and 0°,to achieve a +45°beam switching angle,the calculated amplitudes for the four ports are 0.48,0.53,0.28,and 0.65,while the phases are -66.8°,47.8°,-140°,and 0°.Meanwhile,to obtain -45° beam switching angle,the calculated amplitudes for the four ports are 0.28,0.65,0.48,and 0.53,while the phases are -140°,0°,-66.8°,and 47.8°.

    By bringing the above port amplitude and phase information into HFSS for simulation,we can obtain the beam switchable function (Fig.9).We can see that the radiation pattern of the array switches to the aimed angle,while the front-to-back ratios are at a similar level.Because all the port information can be calculated in advance,we can ensure that even without the fixed microstrip feed network,omnidirectional and directional patterns can still be realized.According to our design,when the test antenna is relocated,the beam can be shifted in the aimed direction.Because there are only four antenna elements and the antenna element beam is not narrow,the effective beam steering range is about -60° to 60°.

    Fig.9 Simulated switchable radiation patterns for the array

    4 Conclusions

    A four-element antenna array with pattern diversity for 5.8 GHz wearable applications is proposed in this paper.By changing the working states of the PIN diodes,the array can switch between two radiation patterns: the omnidirectional radiation pattern in the plane tangent to the body surface,which is suitable for on-body communication applications,and a radiation pattern normal to the body surface,which is appropriate for off-body communication applications.When the array is attached to the human body or arm phantom,the measurement results such as impedance bandwidth and radiation patterns agree with the simulation results and can satisfy the design goal.Moreover,the simulated SAR values for both modes are below the FCC’s standard threshold.Also,the methods used to design the directional mode can be simply extended to realize beam switchable functionality.By calculating theSparameters of the system composed of the virtual test antenna at the target position and replacing the feed network with feeding circuits including power dividers and phase shifters,the beam can be easily switched to the target angle.

    Contributors

    Lingsheng YANG and Yajie LI designed the research.Bin WANG processed the data.Lingsheng YANG drafted the paper.Yajie LI revised and finalized the paper.

    Compliance with ethics guidelines

    Lingsheng YANG,Bin WANG,and Yajie LI declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    免费不卡的大黄色大毛片视频在线观看 | 精品国产一区二区三区久久久樱花 | 国产在视频线精品| av卡一久久| 日日啪夜夜撸| 国产精品福利在线免费观看| 日韩成人伦理影院| 久久这里有精品视频免费| 欧美潮喷喷水| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 3wmmmm亚洲av在线观看| 国产一级毛片七仙女欲春2| 国产伦理片在线播放av一区| 小蜜桃在线观看免费完整版高清| 国产成人一区二区在线| 老司机福利观看| 又爽又黄a免费视频| 欧美成人午夜免费资源| 中文字幕亚洲精品专区| 国产成人a区在线观看| 亚洲精华国产精华液的使用体验| 不卡视频在线观看欧美| 午夜福利网站1000一区二区三区| 久久精品久久久久久噜噜老黄 | 天堂影院成人在线观看| 赤兔流量卡办理| 精品酒店卫生间| 成人毛片a级毛片在线播放| 少妇丰满av| or卡值多少钱| 视频中文字幕在线观看| 有码 亚洲区| 舔av片在线| 一个人免费在线观看电影| 亚洲aⅴ乱码一区二区在线播放| videossex国产| 久久久久网色| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 久久久久性生活片| 久热久热在线精品观看| 亚洲国产精品国产精品| 一区二区三区乱码不卡18| 国产又黄又爽又无遮挡在线| 亚洲国产最新在线播放| 日韩高清综合在线| 在线观看美女被高潮喷水网站| 亚洲精品国产av成人精品| 亚洲国产精品专区欧美| 色哟哟·www| 老司机影院毛片| 欧美日韩国产亚洲二区| 亚洲国产高清在线一区二区三| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在| av天堂中文字幕网| 日韩一本色道免费dvd| 少妇丰满av| 国产精品av视频在线免费观看| 国产成人免费观看mmmm| 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| 有码 亚洲区| 日韩强制内射视频| 美女国产视频在线观看| 我要看日韩黄色一级片| 最近视频中文字幕2019在线8| 欧美xxxx黑人xx丫x性爽| 亚洲国产欧美在线一区| 免费看美女性在线毛片视频| 99在线人妻在线中文字幕| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 蜜桃亚洲精品一区二区三区| 国产v大片淫在线免费观看| 国产精品野战在线观看| 日日摸夜夜添夜夜添av毛片| 熟女电影av网| 日本色播在线视频| 夫妻性生交免费视频一级片| 国产极品天堂在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲综合精品二区| 国产黄色小视频在线观看| 国产亚洲av嫩草精品影院| 亚洲av免费高清在线观看| 99热这里只有精品一区| 国产午夜精品一二区理论片| 天天一区二区日本电影三级| 男女啪啪激烈高潮av片| 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区 | 国产乱来视频区| 日本一本二区三区精品| 亚洲经典国产精华液单| 全区人妻精品视频| www日本黄色视频网| 在线免费观看的www视频| 久久国产乱子免费精品| 变态另类丝袜制服| 久久久久久国产a免费观看| 性插视频无遮挡在线免费观看| 秋霞在线观看毛片| 欧美极品一区二区三区四区| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 亚洲色图av天堂| 汤姆久久久久久久影院中文字幕 | 亚洲国产精品合色在线| 22中文网久久字幕| 久久久午夜欧美精品| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 99九九线精品视频在线观看视频| 国产一区二区在线av高清观看| 一个人观看的视频www高清免费观看| 国产黄色视频一区二区在线观看 | 91狼人影院| 国产女主播在线喷水免费视频网站 | 亚洲无线观看免费| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| 成人毛片60女人毛片免费| 亚洲av二区三区四区| 亚洲精品成人久久久久久| 黑人高潮一二区| 国产黄a三级三级三级人| 国语对白做爰xxxⅹ性视频网站| videossex国产| 99久国产av精品| 国产亚洲av片在线观看秒播厂 | 免费看日本二区| 精品久久久噜噜| 精品不卡国产一区二区三区| 日本免费在线观看一区| 久久久久精品久久久久真实原创| 亚洲伊人久久精品综合 | 男人的好看免费观看在线视频| 日本欧美国产在线视频| videos熟女内射| 水蜜桃什么品种好| 91久久精品国产一区二区成人| 99热全是精品| 国产片特级美女逼逼视频| 日本免费a在线| 久99久视频精品免费| 国产淫片久久久久久久久| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 高清毛片免费看| 亚洲最大成人中文| 国产91av在线免费观看| 麻豆乱淫一区二区| 在线播放无遮挡| 国产精品电影一区二区三区| 国产大屁股一区二区在线视频| 国产精品国产高清国产av| 亚洲在久久综合| 日本与韩国留学比较| 国产免费一级a男人的天堂| 黄片无遮挡物在线观看| 黄片无遮挡物在线观看| 亚洲av电影在线观看一区二区三区 | 丝袜美腿在线中文| 久久韩国三级中文字幕| 久久久久久久国产电影| 亚洲丝袜综合中文字幕| 女的被弄到高潮叫床怎么办| 高清视频免费观看一区二区 | 精品国内亚洲2022精品成人| 国产伦在线观看视频一区| 少妇高潮的动态图| 免费观看a级毛片全部| 淫秽高清视频在线观看| 久久久久网色| 乱系列少妇在线播放| 成人综合一区亚洲| 亚洲中文字幕日韩| 亚洲精品亚洲一区二区| 有码 亚洲区| 国产精品日韩av在线免费观看| 免费观看的影片在线观看| 国产精品嫩草影院av在线观看| 国产精品麻豆人妻色哟哟久久 | 久久精品国产亚洲av涩爱| 免费观看在线日韩| eeuss影院久久| 亚洲国产欧洲综合997久久,| 精品免费久久久久久久清纯| 我要搜黄色片| 国产精品蜜桃在线观看| 久热久热在线精品观看| 简卡轻食公司| 天堂av国产一区二区熟女人妻| 亚洲国产日韩欧美精品在线观看| 日韩人妻高清精品专区| 日韩一本色道免费dvd| 亚洲伊人久久精品综合 | 国产亚洲av片在线观看秒播厂 | 午夜激情福利司机影院| 国产精品永久免费网站| 国产精品久久久久久久电影| 日本-黄色视频高清免费观看| 日韩三级伦理在线观看| 99国产精品一区二区蜜桃av| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 日本黄色视频三级网站网址| 日韩av在线免费看完整版不卡| 深夜a级毛片| 日本av手机在线免费观看| 亚洲av免费高清在线观看| 超碰97精品在线观看| a级一级毛片免费在线观看| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 久久这里只有精品中国| 国产高清有码在线观看视频| 日本黄色片子视频| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| 99热网站在线观看| 插阴视频在线观看视频| 99热这里只有精品一区| 在线播放无遮挡| 久久精品91蜜桃| 久久精品影院6| 能在线免费观看的黄片| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 国国产精品蜜臀av免费| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 亚洲精品亚洲一区二区| 中文字幕熟女人妻在线| 在线免费观看不下载黄p国产| 小蜜桃在线观看免费完整版高清| 亚洲精品亚洲一区二区| 嫩草影院精品99| 麻豆av噜噜一区二区三区| 一个人看视频在线观看www免费| 成人国产麻豆网| 亚洲国产最新在线播放| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 日韩强制内射视频| 色视频www国产| 国产精品国产高清国产av| 精品久久久久久久久久久久久| 国产黄片美女视频| 亚洲伊人久久精品综合 | 成人综合一区亚洲| 日韩在线高清观看一区二区三区| 2021天堂中文幕一二区在线观| 国产免费视频播放在线视频 | 国产黄色视频一区二区在线观看 | 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 午夜久久久久精精品| 极品教师在线视频| 看十八女毛片水多多多| 少妇人妻一区二区三区视频| 菩萨蛮人人尽说江南好唐韦庄 | 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 色噜噜av男人的天堂激情| 亚洲国产最新在线播放| 嘟嘟电影网在线观看| av福利片在线观看| 亚洲自偷自拍三级| 99久国产av精品国产电影| 国产伦精品一区二区三区四那| 国产极品天堂在线| 女人十人毛片免费观看3o分钟| 国产久久久一区二区三区| 亚洲欧美成人精品一区二区| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频| 久久久国产成人免费| 免费一级毛片在线播放高清视频| 亚洲av中文av极速乱| 亚洲国产欧美人成| 欧美成人免费av一区二区三区| 国产熟女欧美一区二区| 又粗又爽又猛毛片免费看| 视频中文字幕在线观看| 久久精品夜色国产| www.av在线官网国产| 国产午夜福利久久久久久| 国产视频首页在线观看| 我要搜黄色片| 欧美成人免费av一区二区三区| 看免费成人av毛片| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 级片在线观看| 亚洲无线观看免费| 人人妻人人澡人人爽人人夜夜 | 成年女人看的毛片在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲高清免费不卡视频| 麻豆成人午夜福利视频| 高清视频免费观看一区二区 | 国产亚洲5aaaaa淫片| 美女内射精品一级片tv| 欧美97在线视频| 日韩欧美 国产精品| 国产高清国产精品国产三级 | 午夜免费男女啪啪视频观看| 国产乱人视频| 国产高清视频在线观看网站| 国产真实乱freesex| 精品99又大又爽又粗少妇毛片| 国产极品精品免费视频能看的| 久久综合国产亚洲精品| 国产成人aa在线观看| 黄色配什么色好看| 亚洲电影在线观看av| 欧美一区二区亚洲| 久久精品国产鲁丝片午夜精品| 全区人妻精品视频| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 亚洲性久久影院| 日本wwww免费看| 一个人观看的视频www高清免费观看| 尤物成人国产欧美一区二区三区| 欧美最新免费一区二区三区| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 看非洲黑人一级黄片| 在线免费观看的www视频| 日本黄色片子视频| 日韩欧美国产在线观看| 只有这里有精品99| 国产黄色小视频在线观看| 亚洲欧美清纯卡通| 亚洲国产日韩欧美精品在线观看| 少妇被粗大猛烈的视频| 男人的好看免费观看在线视频| 国产麻豆成人av免费视频| 岛国毛片在线播放| 在线天堂最新版资源| 我要搜黄色片| 久久久a久久爽久久v久久| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 简卡轻食公司| .国产精品久久| 床上黄色一级片| 色视频www国产| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲一区二区精品| 久久久久国产网址| 国产爱豆传媒在线观看| 嫩草影院入口| 成年免费大片在线观看| 身体一侧抽搐| 欧美性感艳星| 久久99热6这里只有精品| 免费观看在线日韩| 噜噜噜噜噜久久久久久91| 日韩欧美国产在线观看| 波多野结衣高清无吗| 91av网一区二区| av女优亚洲男人天堂| www.av在线官网国产| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 日本黄大片高清| 国产成人91sexporn| 欧美3d第一页| 特级一级黄色大片| 亚洲经典国产精华液单| 日韩制服骚丝袜av| 性插视频无遮挡在线免费观看| kizo精华| 草草在线视频免费看| 日本一二三区视频观看| 啦啦啦韩国在线观看视频| 成人国产麻豆网| 熟女人妻精品中文字幕| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 免费观看人在逋| 亚洲丝袜综合中文字幕| 黄片wwwwww| 午夜老司机福利剧场| 中文资源天堂在线| 亚洲av成人av| 麻豆精品久久久久久蜜桃| 亚洲精品aⅴ在线观看| av在线播放精品| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 久久精品夜色国产| 亚洲成色77777| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费| 亚洲欧美成人精品一区二区| 亚洲国产精品sss在线观看| av女优亚洲男人天堂| 九九在线视频观看精品| 亚洲国产精品合色在线| 综合色av麻豆| 联通29元200g的流量卡| 久久久久久九九精品二区国产| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| 两个人视频免费观看高清| 又黄又爽又刺激的免费视频.| 身体一侧抽搐| 六月丁香七月| 精品国内亚洲2022精品成人| 久久精品国产亚洲av涩爱| 九九热线精品视视频播放| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 国产老妇伦熟女老妇高清| 久久久久久久久久久免费av| 又粗又爽又猛毛片免费看| 亚洲精品影视一区二区三区av| 看黄色毛片网站| 国产男人的电影天堂91| 如何舔出高潮| av在线观看视频网站免费| 青青草视频在线视频观看| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 欧美另类亚洲清纯唯美| 日韩av在线免费看完整版不卡| 美女内射精品一级片tv| av在线亚洲专区| 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 亚洲真实伦在线观看| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 国产精品精品国产色婷婷| 欧美潮喷喷水| 五月玫瑰六月丁香| 婷婷色av中文字幕| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 日本三级黄在线观看| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 亚洲成色77777| 嫩草影院新地址| 中文资源天堂在线| 小说图片视频综合网站| 国产精品久久久久久av不卡| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 能在线免费观看的黄片| 国产免费一级a男人的天堂| 一边摸一边抽搐一进一小说| 精品人妻一区二区三区麻豆| 久久这里只有精品中国| 麻豆精品久久久久久蜜桃| 午夜福利在线在线| 听说在线观看完整版免费高清| 中文字幕av在线有码专区| 国产精品一区二区三区四区久久| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 国语对白做爰xxxⅹ性视频网站| 国产精品伦人一区二区| 中文欧美无线码| 日本黄色片子视频| 国产极品天堂在线| 狠狠狠狠99中文字幕| 国产精品乱码一区二三区的特点| 免费大片18禁| 欧美激情国产日韩精品一区| 久久综合国产亚洲精品| 午夜激情福利司机影院| 神马国产精品三级电影在线观看| 欧美xxxx性猛交bbbb| 丝袜喷水一区| 亚州av有码| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 亚洲在线自拍视频| 午夜福利在线在线| 免费在线观看成人毛片| 久久亚洲国产成人精品v| 舔av片在线| 亚洲美女搞黄在线观看| 亚洲美女视频黄频| 别揉我奶头 嗯啊视频| 国产欧美日韩精品一区二区| 国产亚洲午夜精品一区二区久久 | 亚洲最大成人av| 久久久欧美国产精品| 日日撸夜夜添| 熟女人妻精品中文字幕| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 国产亚洲精品久久久com| 三级国产精品欧美在线观看| www.色视频.com| 国产亚洲av片在线观看秒播厂 | 一个人看的www免费观看视频| 毛片一级片免费看久久久久| h日本视频在线播放| 国产爱豆传媒在线观看| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 久久99精品国语久久久| 婷婷色av中文字幕| 三级经典国产精品| videossex国产| 日本一本二区三区精品| 国产男人的电影天堂91| 日韩一区二区视频免费看| av播播在线观看一区| 蜜桃亚洲精品一区二区三区| 看非洲黑人一级黄片| 久久精品久久久久久久性| 亚洲成人中文字幕在线播放| 中国国产av一级| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 久久鲁丝午夜福利片| 丝袜美腿在线中文| 黄色日韩在线| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站在线播| 菩萨蛮人人尽说江南好唐韦庄 | 国产高潮美女av| 狂野欧美白嫩少妇大欣赏| 自拍偷自拍亚洲精品老妇| 91精品国产九色| 色综合亚洲欧美另类图片| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 中文字幕av在线有码专区| 日韩成人av中文字幕在线观看| 免费无遮挡裸体视频| 插阴视频在线观看视频| 国产高潮美女av| 国产亚洲一区二区精品| 男人舔女人下体高潮全视频| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 人人妻人人看人人澡| 美女xxoo啪啪120秒动态图| 国产毛片a区久久久久| 国语对白做爰xxxⅹ性视频网站| 纵有疾风起免费观看全集完整版 | 午夜福利视频1000在线观看| 国产高潮美女av| 麻豆av噜噜一区二区三区| 在线观看一区二区三区| 国产亚洲av片在线观看秒播厂 | 国产伦精品一区二区三区视频9| 亚洲av成人精品一区久久| 97在线视频观看| 日本熟妇午夜| 性色avwww在线观看| 成人毛片a级毛片在线播放| 成人鲁丝片一二三区免费| 久久久成人免费电影| 亚洲国产精品久久男人天堂| 亚洲国产欧美在线一区| 亚洲国产日韩欧美精品在线观看| 欧美zozozo另类| 高清午夜精品一区二区三区| 人妻少妇偷人精品九色| 91av网一区二区| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 国产探花极品一区二区| 一级毛片我不卡| 亚洲精品自拍成人| 国产精品久久久久久久久免| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频| 69人妻影院| 亚洲第一区二区三区不卡| 久久久久性生活片| 久久精品夜夜夜夜夜久久蜜豆| 国产 一区 欧美 日韩| 国国产精品蜜臀av免费| 成人高潮视频无遮挡免费网站| 一区二区三区乱码不卡18| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品色激情综合| 中文字幕av在线有码专区| 亚洲aⅴ乱码一区二区在线播放| 国产极品精品免费视频能看的| a级毛色黄片| 美女国产视频在线观看| 中文字幕av在线有码专区| 国产成人a∨麻豆精品| 日本黄大片高清| 干丝袜人妻中文字幕| 亚洲av.av天堂| 亚洲av中文字字幕乱码综合| av视频在线观看入口| 身体一侧抽搐| 99久国产av精品| 中文精品一卡2卡3卡4更新|