• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak

    2023-09-05 08:48:14ShengBoZhao趙勝波HuiDongZhuang莊會東JingShengYuan元京升DeHaoZhang張德皓LiLi黎立LongZeng曾龍DaLongChen陳大龍SongTaoMao毛松濤MingHuang黃明GuiZhongZuo左桂忠andJianShengHu胡建生
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃明松濤

    Sheng-Bo Zhao(趙勝波), Hui-Dong Zhuang(莊會東), Jing-Sheng Yuan(元京升), De-Hao Zhang(張德皓),Li Li(黎立), Long Zeng(曾龍), Da-Long Chen(陳大龍), Song-Tao Mao(毛松濤), Ming Huang(黃明),Gui-Zhong Zuo(左桂忠),?, and Jian-Sheng Hu(胡建生)

    1Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    Keywords: disruption mitigation, massive gas injection (MGI), Experimental Advanced Superconducting Tokamak(EAST)

    1.Introduction

    Plasma disruption is a substantial threat to future fusion devices.It rapidly terminates plasma discharge, releasing a vast amount of stored thermal and magnetic energy to damage fusion devices.[1]During plasma disruption,massive heat loads on plasma-facing components(PFCs)occur while thermal quench (TQ), the strong electromagnetic forces and currents are induced in the inner structures of fusion machines,and multi-MeV runaway electrons (REs) are generated during current quench (CQ).[2]Future ITER devices must mitigate plasma disruption to reduce the electromagnetic forces and thermal loads on the inner components to ensure machine safety.[3]Massive gas injection (MGI) has been developed to inject a large amount of noble gas into the plasma before plasma disruption.MGI uniformly radiates thermal energy through the ionization of particles.Further,the high particle density leads to collision frequency high enough to hinder runaway; subsequently, the high plasma resistivity causes the current to decay faster.[4]

    MGI system is an advanced method for disruption mitigation.Some associated experiments were carried out on JET,[5]DIII-D,[6]ASDEX Upgrade,[7]EAST,[8]MAST,[9]Tore Supra[10]and Alcator C-Mod.[11]Holmannet al.performed the impurity assimilation measurements for MGI experiments in DIII-D.[12]On the ASDEX Upgrade,MGI of Ne revealed that the electron density reached 24% of RE collisional suppression needed(the so-called critical electron density,nc)[7]for the disruption.[13]Uron Krueziet al.had investigated the impact of MGI on wall conditions and verified the influence of injecting impurities on the machine condition for the plasma pulses after the MGI.[14]MGI shutdown timescales, including cold front, TQ, and CQ durations had rough increasing trends with device size, clearly observed on the Alcator C-MOD, DIII-D, and MAST.[15]However, the same trend was not followed well on JET device.On JET,various pure noble gases and mixed gases were injected into plasma,and timescales,including cooling time,CQ,and mitigation efficiency were investigated.Neon,argon,and the mixtures with deuterium showed much shorter cooling duration compared with pure deuterium and helium.[16]On Tore Supra,comparing all gases(He,Ne,Ar,and He/Ar mixture)revealed that helium produced the longest coolings although the cooling time weakly depends on the gasZ-number.[10]Therefore,this study compared different noble gas injections by MGI on plasma disruption mitigation on EAST to study the plasma shutdown timescales on large scale superconductive tokamak and provide some key data reference for ITER device.

    This study systematically compared the effects of different gas injections on plasma disruption mitigation.It mainly includes the analysis of the critical duration of pre-TQ, TQ,CQ, and radiation distribution with different gas injections during the plasma shutdown process.Section 2 describes the MGI development on EAST.Section 3 compares the shutdown timescales and radiation distribution by various gas injections.Finally,Section 4 presents the summary of this study.

    2.Development of MGI on EAST

    Figure 1 shows the structure and operating principle of the MGI fast valve.The fast valve is closed under the spring preload during the non-working mode.With the trigger signal generated,the power supply system gives a strong pulsating current to the coil.The spool induces strong eddy currents through electromagnetic induction.According to the Lenz’s law, a large change in a short time in the magnetic flux produces a massive electromagnetic repulsion force.The valve port opens when the repulsion force exceeds the spring preload.The power supply system’s output voltage can adjust and control the electromagnetic repulsion force.Additionally,the valve port’s opening degree and opening time can be controlled to adjust the amount of gas injected.

    Fig.1.(a)Cross-sectional view of fast valve.(b)Eddy-current repulsion in the fast valve.

    Fig.2.The development of MGI devices on EAST.

    The EAST had developed the MGI system since 2010.In 2010, the trigger time could be controlled at 0.5 ms, and the amount of injected gas could be adjusted between 0 Pa·L to 7×104Pa·L.Such parameters were comparable at the advanced level globally.However,the time of plasma disruption,a basic requirement for disruption mitigation,was very short.The MGI disruption mitigation device with a shorter response time could have much time left for rupture prediction to meet future fusion reactor requirements.Therefore, in 2013, the EAST team developed the second generation of MGI with a built-in fast valve.The main feature of this device is that the gas is already in the tube before the MGI is triggered.The gas can quickly enter the plasma after a 0.5 ms trigger time.Compared with the previous generation device, the mitigation device can respond to the trigger signal faster by eliminating the gas transit time in the pipeline.In 2015,the EAST team successfully developed the fast valve for MGI with double eddycurrent coils, with a shortened trigger time of 0.15 ms.The MGI device uses a new sealing system to attain a maximum working pressure of 5 MPa and a maximum working voltage of 3 kV.At the same time, it reduces the volume of the MGI device to only about 4 dm3(250 mm×150 mm×100 mm).High pressure, atmospheric volume, fast response, and small size are the main advantages of the MGI fast valve on EAST.

    MGI fast valves on EAST conducted a large number of experiments using He/Ne/Ar gas.Further, a series of investigations around disruption prediction, disruption mitigation,lithium pellet injection, and radiation asymmetry resulted in many achievements.It accumulated much experimental data for future fusion reactor design.Figure 2 shows the development history of MGI devices on EAST.

    Figure 3(a) demonstrates installation and relevant diagnosis positions.MGI fast valve was installed at the O port horizontal lower position.This study used critical diagnostics,including an absolute extreme ultraviolet (AXUV) photodiode array and a multichannel middle-plane electron cyclotron emission(ECE).These were installed at the P port,as shown in the top view in Fig.3(b).

    Fig.3.(a) The installation position of MGI.(b) Top view of relevant diagnostics.

    3.Experimental results

    During plasma shutdown experiments, massive gas was injected into the plasma vessel by MGI.Some key phases,including gas flight from the valve to the plasma edge,gas permeation from the plasma edge to the core, and the thermal and current quench,successively occurred and were observed.The reference of a critical time in the disruption process was established in shot 75647 to analyze and understand each fundamental timescale in the plasma disruption process.Figure 4 shows a typical plasma disruption process triggered by Ar-MGI.The main plasma parameters wereIp= 0.4 MA, andne=2.1×1019m?3in the upper single null(USN)configuration.

    MGI fast valve receives trigger signal at 4 s.It takes about 4 ms flight time to reach the plasma edge,which can be indicated by the edge radiation rise,as shown in Fig.4(c).Meanwhile, it enters the pre-TQ duration, also called the cooling time.[17]Additionally, the pre-TQ duration is defined as the time of flight (TOF) of the gas from the valve to the plasma edge and the duration of the edge cooling process before initiating the TQ.[18]However, this study defines pre-TQ as the time from the arrival of impurities at the plasma edge to the temperature drop of the plasma core.During this phase, the Ar atoms are thoroughly mixed with the plasma and moved closer to the plasma core through the plasma transport process.Throughout the process, the plasma cools with the constant ionization of Ar atoms and the dissipation of plasma energy.Finally,the electron temperature in the plasma core drops suddenly at about 4.01 s.The time span of this process is very short,less than 1 ms,and is called the TQ phase,as shown in Fig.4(d).

    After the TQ phase, the current of plasma drops rapidly,and this phase is called the CQ phase.For the EAST device,an 80%–30%interval of the maximum plasma current is found to be a better fit for the CQ phase.[19]In this paper,we continue to use this definition.Figure 4(a)shows that in the discharge experiment,the CQ duration lasts about 5 ms.

    Fig.4.A typical process of plasma disruption triggered by MGI.(a)Plasma current,(b)vertical centroid of plasma current,(c)edge radiation measured by AXUV,(d)core electron cyclotron emission(ECE)signal.

    3.1.Flight time and a general comparison of different gas injections

    First, the flight time of the noble gas is analyzed.Figure 5 shows the relationship between the amount of gas injected and flight time.The flight time decreases slightly with the increase in gas injection amount.However, this trend is not apparent, which suggests that the amount of gas injected is not the decisive factor in determining flight time.The flight time decreases with the decrease in the relative atomic mass of the injected impurity.It is also consistent with the theoretical formula, whereKis the Boltzmann constant,Tis the gas temperature,andmis the atomic mass.

    Fig.5.Gas flight time as a function of the injected gas species and quantity.

    Fig.6.General comparison of the disruption mitigation effects with different kinds of impurities injection.(a)Plasma current,(b)loop voltage,(c)edge radiation measured by AXUV,(d)stored energy.

    Figure 6 depicts the general comparison of the disruption mitigation effects with different impurities injections.Previously we analyzed the influence of flight time.Thus, we aligned the time of impurities reaching the plasma on the time axis, evident by the rising edge radiation signal, shown by the pink dashed line in Fig.6(c).Figure 6(a) shows that the plasma current decay delays with the increasing atomic weight of the injected impurity.Also,Fig.6(c)shows that the radiation intensity caused by highZimpurities at the plasma edge is stronger.The rate of change of the plasma stored energy suggests that the highZimpurities can induce plasma stored energy to drop quickly.The small dash lines show this decreased stored energy rate in Fig.6(d).

    3.2.Pre-TQ,TQ,and CQ phases with different gas injections

    The pre-TQ phase is one of the most critical phases in the disruption mitigation process.It represents the penetration and ionization of impurity particles in plasma.The MHD unstable modes, which eventually transport the impurities to the plasma core, are also the focus of disruption mitigation research.Figure 7 shows that small atomic mass impurities penetrate the plasma faster.Comparing the pre-TQ duration(0.9 ms–1.1 ms for He,1.1 ms–1.5 ms for Ne,1.4 ms–1.9 ms for Ar) with different gas injection quantities reveals a clear linear relationship between the decrease in pre-TQ duration and the increasing amount of gas injected.The decline rate of this linear relationship also decreases with the reduction in impurity atomic mass.However, this conclusion needs to be further verified by subsequent experiments.This study mentions the injection amount as the normalized relative injection amount,which is the ratio of the number of particles injected to the number of particles contained in the plasma.

    Fig.7.The pre-TQ duration as a function of the relative injection amount(N(gas)/N(plasma)).

    After the pre-TQ phase, plasma entered the TQ phase,where the stored energy in the plasma is lost.[20]A large portion of stored energy is removed from the plasma core zone through the scrape-off layer(SOL)and deposits onto the first wall and the divertor plate zones.[21]Figure 8 shows the evolution of plasma core electron temperature (measured by ECE)with time under the different noble gas injection conditions.The plasma discharges exhibit similar plasma parameters, such asIp=0.35 MA–0.4 MA,ne=2.5×1019m?3–3.0×1019m?3, USN configuration, and the gas injection amount is similar,~2×104Pa·L.The shaded area is socalled thermal quench phase (TQ).The highZimpurities injections would make the plasma core electron temperature collapse faster.The subsequent small rise in electron temperature in the plasma core is due to the reheating of the external system.Compared with highZimpurity gas, the lowZimpurity gas has weak radiation rate coefficients.Further, it cannot efficiently mitigate heat load, leading to a long TQ duration.However,slight impurity gas moves more quickly to the plasma,which results in a short pre-TQ duration and requires less time to accumulate impurities before TQ.[22]

    Fig.8.Evolution of TQ with time indicated by ECE core of(a)shot#71246,(b)shot#94519,and(c)shot#87967.The shaded area stands for the thermal quench phase.

    Fig.9.CQ duration with varying relative injection amount.

    The effect of different impurity gas species,including Ar,Ne, and He, on the CQ, can be estimated by the plasma current decay time analysis.The CQ phase is closely related to the generation of runaway electrons.Long CQ duration could cause part of the current to hit the first wall before it is relieved,causing ablation damage to the first wall.However,for a very short CQ duration,huge electromagnetic stress induces on the metal components of the device,resulting in mechanical damage.Therefore,controlling CQ duration in an acceptable range by adjusting injection parameters is the key point of current research.Figure 9 demonstrates the relationship between the CQ time and injection amount.The CQ duration is 4 ms–11 ms.More specifically, CQ duration is 7 ms–11 ms for He, 5 ms–7 ms for Ne, and 4 ms–6 ms for Ar injections,indicating CQ reduces with increased atomic mass gas.Meanwhile, the CQ duration decreases rapidly with the increase in injection amount for small injection amounts.When the injection quantity increased to a certain threshold, there is no obvious change in CQ duration.Therefore,it indicates that increasing the amounts of impurities promotes the reduction of CQ duration.The injection amount mentioned here is still the normalized relative injection amount.

    3.3.Radiation distribution and poloidal asymmetry

    Recently, radiation asymmetry has attracted more and more attention.A few examples are the multifaceted asymmetric radiation from the edge (MARFE) phenomenon caused by high-density experiments in H-mode, radiation asymmetries,[23]poloidal asymmetries during disruption mitigation by MGI on DIII-D,[21]and radiation asymmetries during TQ phase in JET.[24]In this MGI disruption mitigation experiment,strong radiation asymmetry is also observed.Figure 10 suggests the contour map of radiative brightness for different impurities injections by MGI.Figure 10(a) shows that the ionizing radiation distribution of helium is very dispersive.It could be because helium’s very high ionization energy allows more time to disperse in space before being ionized.Subsequently, due to the fastest thermal movement of helium, it can fill the whole space in a very short time.The poloidal radiation distribution is uniform,as shown in area A(Z=0.2 m to 0.5 m and?0.3 m to?0.5 m).Compared with the radiation distribution of Ne and Ar, the radiation occurrence time in the upper and lower regions of helium is very similar.This might be because the helium diffuses before contacting the high-temperature areas that can ionize it, and helium surrounds the plasma from all directions.This also explains the low poloidal radiation asymmetry caused by helium injection.Compared with helium’s radiation distribution,neon’s ionization radiation is mainly concentrated at the upper position(Z=0.1 m to 0.5 m).Figure 10(b)shows such a comparison between areas B and C.Figure 10(c)indicates that compared with Ne and He, the radiation asymmetry of Ar is stronger and more concentrates in the upper region(Z=0.5 m to?0.3 m).It concludes that the lowZimpurities injections can reduce the poloidal radiation asymmetry compared with the highZimpurities injections.Furthermore,it is found that the primary radiation zones of He and Ne are atZ ~0.2 m–0.4 m andZ ~0.15 m–0.4 m, respectively.Even though the radiation is uniform for the Ar injection,the primary radiation zone is atZ ~0 m–0.4 m.These results suggest that the Ar can be accumulated and radiated at the plasma core zone.

    Fig.10.The contour map of radiative brightness for shots #81669,#94516,and#75647.

    Besides, it is worth noting that the bursting time of radiation was different when He, Ne, and Ar were injected.When helium was injected, the radiation bursts in the oscillating phase of the plasma current.But, when neon gas was injected,the radiation concentrates on the falling phase of the ionizer current.Furthermore,when argon was injected,the radiation erupts before the plasma current has dropped.The reasons for these phenomena still need to be further researched.

    4.Discussion and summary

    This study performed different noble gas injection experiments,including He,Ne,and Ar,to compare the mitigation effect of plasma disruption.The study evaluated key parameters such as TOF,pre-TQ,and CQ.The observed durations of pre-TQ,TQ,and CQ in MGI plasma shutdown experiments measured on the EAST device were longer than that measured on the J-TEXT device.[22]However, they showed similar trends.The difference in timescales was possible mainly because of the EAST device’s larger vessel structure size and some larger basic discharge parameters,including plasma current and heating powder.Studies[15]showed that cooling time and TQ duration increases linearly with the increase in minor radius,and CQ duration increases as minor radius squared.This was observed by analyzing the plasma shutdown data with noble gas injection by MGI from Alcator C-MOD,DIII-D,and MAST.The experimental data on the EAST device conformed to these relationships well,providing basic data support for plasma disruption mitigation systems on ITER and future fusion reactors.

    This paper compared disruption mitigation experimental results with different noble gas injections by MGI.First, it provided a brief introduction to the development of MGI on EAST devices.Then analyzed the advantages and disadvantages of the previous MGI fast valves.Moreover, comparing the TOF with different noble gas injections revealed that the TOF is mainly related to the gas species and cannot be reduced significantly by increasing the injection amount.The pre-TQ duration decreased significantly with the increased injected gas quantity, indicating a clear linear relationship between them.The TQ phase in the typical disruption process was also analyzed.Notably, the highZimpurities injection caused the plasma core electron temperature to collapse faster.The CQ duration decreased rapidly with increased gas injection amount, followed by saturation.In addition, comparing the radiation distributions revealed that the lowZimpurity injection can improve radiation uniformity.As a next step, we would upgrade the MGI system further and research the effect of mixed gas on plasma disruption mitigation by injecting several ratios of highZand lowZgases by MGI.Meanwhile,we would compare the plasma shutdown by MGI and shattered pellet injection(SPI)on EAST.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant Nos.2017YFE0301100 and 2022YFE03130000),the National Natural Science Foundation of China(Grant Nos.12105322,11905138,11905148,and 11905254), the Natural Science Foundation of Anhui Province of China (Grant No.2108085QA38), the Chinese Postdoctoral Science Found (Grant No.2021000278), the Presidential Foundation of Hefei Institutes of Physical Science(Grant No.YZJJ2021QN12), the U.S.Department of Energy contract DE-AC02–09CH11466(Grant No.DE-SC0016553),the Users with Excellence Program of Hefei Science Center CAS (Grant Nos.2020HSC-UE010 and 2021HSC-UE013),and Interdisciplinary and Collaborative Teams of CAS.

    猜你喜歡
    黃明松濤
    愛情設(shè)防,別人怎么懂你?
    我曾丟失過半個括號
    黃明 要把搶救生命放在第一位 繼續(xù)做好搜救工作,確保不漏一戶一人
    勞動保護(2019年7期)2019-11-25 04:06:23
    “功臣”現(xiàn)任PK落魄前任:血色黃昏豈能拷問人性?
    當好守夜人 筑牢安全線——人民日報專訪應(yīng)急管理部黨組書記黃明
    勞動保護(2018年5期)2018-06-05 02:11:56
    一周重要股東增減持明細(6月11 日~6 月15 日)
    一周重要股東增減持明細(7月23日~7月27日)
    滬深一周重要公告(7月23日~7月27日)
    一周重要股東增減持明細(7月2 日~7月6 日)
    巧妙辨雞蛋
    亚洲真实伦在线观看| 国产免费又黄又爽又色| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 欧美xxxx性猛交bbbb| 婷婷色av中文字幕| 性色av一级| 色视频www国产| 晚上一个人看的免费电影| 日韩 亚洲 欧美在线| 久久久久网色| 最近2019中文字幕mv第一页| 在线免费观看不下载黄p国产| 久久久久精品性色| 青春草国产在线视频| 51国产日韩欧美| 一本一本综合久久| 狂野欧美激情性bbbbbb| 亚洲精品成人av观看孕妇| 超碰97精品在线观看| av在线app专区| 亚洲av中文字字幕乱码综合| 国产伦在线观看视频一区| 三级经典国产精品| 交换朋友夫妻互换小说| 国产 一区精品| 国产精品一及| 国产精品三级大全| 91在线精品国自产拍蜜月| 国产亚洲av嫩草精品影院| 久久精品夜色国产| 亚洲不卡免费看| 美女被艹到高潮喷水动态| www.av在线官网国产| 熟女电影av网| 少妇人妻久久综合中文| 久久午夜福利片| 国产爽快片一区二区三区| 国产探花极品一区二区| 国产 一区精品| 一级毛片久久久久久久久女| 干丝袜人妻中文字幕| 欧美潮喷喷水| 国产乱人视频| 成人特级av手机在线观看| 国产精品99久久99久久久不卡 | 大话2 男鬼变身卡| 亚洲精品色激情综合| 插阴视频在线观看视频| 久久久a久久爽久久v久久| 最近中文字幕2019免费版| 国产精品av视频在线免费观看| 欧美zozozo另类| 欧美日韩亚洲高清精品| 黄色日韩在线| 美女国产视频在线观看| 亚洲va在线va天堂va国产| 伊人久久国产一区二区| 国产av码专区亚洲av| 免费av毛片视频| 18禁在线无遮挡免费观看视频| 久久久久久久国产电影| h日本视频在线播放| 日韩不卡一区二区三区视频在线| videossex国产| 又爽又黄a免费视频| 精品国产露脸久久av麻豆| 99久久中文字幕三级久久日本| 好男人视频免费观看在线| 亚洲图色成人| 全区人妻精品视频| 中国三级夫妇交换| 老司机影院成人| 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 国产av不卡久久| 国产片特级美女逼逼视频| 黄色欧美视频在线观看| 亚洲激情五月婷婷啪啪| 欧美日韩视频高清一区二区三区二| 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 亚洲婷婷狠狠爱综合网| 免费黄频网站在线观看国产| 天堂中文最新版在线下载 | 嘟嘟电影网在线观看| 不卡视频在线观看欧美| 草草在线视频免费看| 午夜老司机福利剧场| av女优亚洲男人天堂| 国产色婷婷99| 亚洲av国产av综合av卡| 久久综合国产亚洲精品| 国产精品伦人一区二区| 少妇高潮的动态图| 中国三级夫妇交换| 狂野欧美白嫩少妇大欣赏| 免费看不卡的av| 亚洲欧美精品自产自拍| eeuss影院久久| 色视频在线一区二区三区| 午夜老司机福利剧场| videos熟女内射| 国产午夜福利久久久久久| 国产男人的电影天堂91| 青春草国产在线视频| 国产探花极品一区二区| 国内揄拍国产精品人妻在线| 亚洲va在线va天堂va国产| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 18禁动态无遮挡网站| 一个人看的www免费观看视频| www.色视频.com| 日本一二三区视频观看| 可以在线观看毛片的网站| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 国产精品久久久久久久久免| 99精国产麻豆久久婷婷| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 少妇高潮的动态图| 在线观看三级黄色| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 日韩精品有码人妻一区| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 国产黄色免费在线视频| 午夜福利视频精品| 联通29元200g的流量卡| 国产一区二区三区av在线| 美女内射精品一级片tv| 日韩一区二区视频免费看| 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 别揉我奶头 嗯啊视频| 身体一侧抽搐| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 狠狠精品人妻久久久久久综合| 老司机影院毛片| 午夜激情久久久久久久| 成人二区视频| 成年女人看的毛片在线观看| 欧美性感艳星| 老师上课跳d突然被开到最大视频| 两个人的视频大全免费| 嫩草影院新地址| 国产乱人偷精品视频| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 久久精品国产a三级三级三级| 天堂中文最新版在线下载 | 免费少妇av软件| 国产极品天堂在线| 精品久久久久久久末码| 成人综合一区亚洲| 久久国产乱子免费精品| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 国产美女午夜福利| 免费av不卡在线播放| 日韩av免费高清视频| 成年免费大片在线观看| 国产熟女欧美一区二区| 青青草视频在线视频观看| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 久久人人爽av亚洲精品天堂 | 欧美日韩综合久久久久久| 高清av免费在线| 啦啦啦啦在线视频资源| 国产免费福利视频在线观看| 一区二区三区四区激情视频| 欧美97在线视频| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 国产精品99久久久久久久久| 中国三级夫妇交换| 91精品国产九色| 亚洲国产高清在线一区二区三| 精品一区在线观看国产| 亚洲天堂国产精品一区在线| 国产黄频视频在线观看| 毛片女人毛片| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 亚洲成人一二三区av| 高清午夜精品一区二区三区| 深爱激情五月婷婷| 亚洲人成网站高清观看| 久久精品国产自在天天线| 老司机影院成人| 国产成人freesex在线| 黑人高潮一二区| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 一级a做视频免费观看| 欧美日韩亚洲高清精品| 国产永久视频网站| 天天躁日日操中文字幕| 免费看不卡的av| 亚洲av.av天堂| 少妇熟女欧美另类| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 国产成人a区在线观看| 街头女战士在线观看网站| 美女cb高潮喷水在线观看| 亚洲无线观看免费| 97超视频在线观看视频| 国产欧美日韩一区二区三区在线 | 成人鲁丝片一二三区免费| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 视频区图区小说| 少妇 在线观看| av福利片在线观看| 午夜免费鲁丝| 亚洲丝袜综合中文字幕| av免费在线看不卡| 欧美极品一区二区三区四区| av在线观看视频网站免费| 精品久久久精品久久久| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 国产久久久一区二区三区| 2022亚洲国产成人精品| 国产色婷婷99| 日韩中字成人| 一级黄片播放器| 在线天堂最新版资源| 欧美性感艳星| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 最近中文字幕2019免费版| 超碰av人人做人人爽久久| 亚洲av成人精品一区久久| 亚洲熟女精品中文字幕| 99热全是精品| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 日本熟妇午夜| 激情 狠狠 欧美| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 简卡轻食公司| 精品熟女少妇av免费看| 亚洲婷婷狠狠爱综合网| 九草在线视频观看| av在线天堂中文字幕| 成人综合一区亚洲| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 亚洲精品日本国产第一区| 99久久九九国产精品国产免费| av一本久久久久| 老师上课跳d突然被开到最大视频| 精品人妻视频免费看| 国产片特级美女逼逼视频| av天堂中文字幕网| 亚洲色图综合在线观看| 欧美人与善性xxx| 日本猛色少妇xxxxx猛交久久| 日本三级黄在线观看| 国产午夜精品久久久久久一区二区三区| 热99国产精品久久久久久7| 国产成人精品福利久久| 色视频在线一区二区三区| 80岁老熟妇乱子伦牲交| 国产黄a三级三级三级人| 久久久久久久久久久丰满| 日本与韩国留学比较| 日本欧美国产在线视频| 91狼人影院| 久久99蜜桃精品久久| 久久精品久久精品一区二区三区| 国产欧美日韩一区二区三区在线 | 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 久久久色成人| 免费看不卡的av| 26uuu在线亚洲综合色| 高清欧美精品videossex| 午夜视频国产福利| 少妇人妻一区二区三区视频| 免费观看无遮挡的男女| 国产 一区 欧美 日韩| 22中文网久久字幕| 久久人人爽av亚洲精品天堂 | 精品久久久久久久人妻蜜臀av| 99热网站在线观看| 国产乱人偷精品视频| eeuss影院久久| 久久99热6这里只有精品| 久久久久久九九精品二区国产| 国产在视频线精品| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频 | 18禁裸乳无遮挡免费网站照片| 精品酒店卫生间| 久久人人爽av亚洲精品天堂 | 中文字幕av成人在线电影| 亚洲最大成人手机在线| 一级毛片黄色毛片免费观看视频| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看 | 国语对白做爰xxxⅹ性视频网站| 五月开心婷婷网| 午夜免费鲁丝| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6| 在线播放无遮挡| 夫妻午夜视频| 成人午夜精彩视频在线观看| 国产一区二区亚洲精品在线观看| 成人午夜精彩视频在线观看| 男女国产视频网站| 亚洲欧美成人精品一区二区| av在线天堂中文字幕| 免费看不卡的av| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 男女啪啪激烈高潮av片| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产精品成人综合色| 亚洲在久久综合| 亚洲av一区综合| 97超碰精品成人国产| 久久久久久国产a免费观看| 一级毛片aaaaaa免费看小| 一本色道久久久久久精品综合| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 丝袜脚勾引网站| 身体一侧抽搐| 国产成人aa在线观看| 国产免费一级a男人的天堂| 国产精品熟女久久久久浪| 亚洲国产高清在线一区二区三| 国产在视频线精品| av在线蜜桃| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| 大话2 男鬼变身卡| 国产精品99久久99久久久不卡 | 一级av片app| 亚洲欧美精品专区久久| 18禁动态无遮挡网站| av国产免费在线观看| 嘟嘟电影网在线观看| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 亚洲怡红院男人天堂| 伊人久久国产一区二区| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 一区二区av电影网| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 欧美日韩视频高清一区二区三区二| 国产探花在线观看一区二区| 亚洲av男天堂| 日本一本二区三区精品| 精品久久国产蜜桃| 中文资源天堂在线| 青春草亚洲视频在线观看| 亚洲欧美成人精品一区二区| 日本av手机在线免费观看| 免费大片黄手机在线观看| 国产av国产精品国产| 伦理电影大哥的女人| 大片免费播放器 马上看| 精品亚洲乱码少妇综合久久| 精品午夜福利在线看| 日韩视频在线欧美| 亚洲最大成人av| 免费av观看视频| 久久影院123| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 大香蕉久久网| 一个人观看的视频www高清免费观看| 女人久久www免费人成看片| 精品久久久久久久末码| 身体一侧抽搐| 免费在线观看成人毛片| 深夜a级毛片| 极品教师在线视频| 亚洲伊人久久精品综合| 精品一区二区三卡| 亚洲精品国产成人久久av| 亚洲欧美成人精品一区二区| 国产av国产精品国产| 欧美最新免费一区二区三区| 久久久色成人| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 狠狠精品人妻久久久久久综合| 久久久成人免费电影| 亚洲人成网站高清观看| av一本久久久久| 在线精品无人区一区二区三 | 成年av动漫网址| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 日韩成人伦理影院| 在线观看免费高清a一片| 亚洲,欧美,日韩| 欧美另类一区| 久久这里有精品视频免费| 激情五月婷婷亚洲| 国产欧美日韩精品一区二区| 国产欧美另类精品又又久久亚洲欧美| av专区在线播放| 深爱激情五月婷婷| 波野结衣二区三区在线| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 性色av一级| 又大又黄又爽视频免费| 成人美女网站在线观看视频| 舔av片在线| www.av在线官网国产| 亚洲va在线va天堂va国产| 男的添女的下面高潮视频| 韩国高清视频一区二区三区| 少妇丰满av| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 国产探花极品一区二区| 久久久久九九精品影院| 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 欧美变态另类bdsm刘玥| 最近中文字幕高清免费大全6| 亚洲成人av在线免费| 在现免费观看毛片| 国产精品成人在线| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 老司机影院成人| 成人毛片60女人毛片免费| a级毛色黄片| 国内揄拍国产精品人妻在线| 欧美97在线视频| 听说在线观看完整版免费高清| 精品酒店卫生间| 亚洲最大成人手机在线| 亚洲精品,欧美精品| 久久久久久久国产电影| 国产成人精品婷婷| 国产伦理片在线播放av一区| 精品久久久久久久末码| 精品人妻偷拍中文字幕| 成人二区视频| 一本色道久久久久久精品综合| 波多野结衣巨乳人妻| 久久97久久精品| 成年女人看的毛片在线观看| 天堂俺去俺来也www色官网| 日韩伦理黄色片| 免费少妇av软件| 欧美性感艳星| 99视频精品全部免费 在线| 简卡轻食公司| 少妇被粗大猛烈的视频| 一级爰片在线观看| 国产综合精华液| 人体艺术视频欧美日本| 韩国av在线不卡| 草草在线视频免费看| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 插逼视频在线观看| 三级国产精品片| 99久久精品热视频| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放| 国内精品美女久久久久久| 99热这里只有是精品在线观看| 99热国产这里只有精品6| 日本一本二区三区精品| 国产综合精华液| 国产精品久久久久久久电影| 少妇熟女欧美另类| 国产成人91sexporn| 亚洲人成网站在线观看播放| 亚洲婷婷狠狠爱综合网| 亚洲精品视频女| 亚洲图色成人| 亚洲精品国产成人久久av| 国产白丝娇喘喷水9色精品| 成年人午夜在线观看视频| 亚洲天堂av无毛| 国产日韩欧美在线精品| 亚洲精品久久午夜乱码| 日本黄大片高清| 国产一级毛片在线| 国产成人精品婷婷| www.av在线官网国产| 麻豆成人午夜福利视频| 少妇被粗大猛烈的视频| 可以在线观看毛片的网站| 女人十人毛片免费观看3o分钟| 在线看a的网站| 香蕉精品网在线| 久久人人爽人人爽人人片va| 天天一区二区日本电影三级| 精品一区二区三区视频在线| 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕| 超碰av人人做人人爽久久| 欧美日韩一区二区视频在线观看视频在线 | 国语对白做爰xxxⅹ性视频网站| 午夜福利在线在线| 老师上课跳d突然被开到最大视频| 青春草亚洲视频在线观看| 精品国产露脸久久av麻豆| 国产精品一二三区在线看| 成人国产av品久久久| 在线观看国产h片| av福利片在线观看| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇人妻久久综合中文| 久久亚洲国产成人精品v| 春色校园在线视频观看| 成人黄色视频免费在线看| 在线观看一区二区三区激情| 国产高清有码在线观看视频| 午夜福利网站1000一区二区三区| 精品99又大又爽又粗少妇毛片| 国产成人福利小说| 国产精品一区二区在线观看99| 国产中年淑女户外野战色| 亚洲av.av天堂| 亚洲,欧美,日韩| 在线 av 中文字幕| 视频区图区小说| 18+在线观看网站| 日韩欧美精品免费久久| 哪个播放器可以免费观看大片| 成人亚洲精品av一区二区| av免费在线看不卡| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 欧美激情久久久久久爽电影| 禁无遮挡网站| 亚洲精品亚洲一区二区| 在线亚洲精品国产二区图片欧美 | 国产毛片在线视频| 国产亚洲av嫩草精品影院| av国产免费在线观看| 久热这里只有精品99| 最后的刺客免费高清国语| 黄片无遮挡物在线观看| 午夜精品一区二区三区免费看| 一二三四中文在线观看免费高清| 亚洲一区二区三区欧美精品 | 国产视频首页在线观看| av.在线天堂| 一级av片app| 国产亚洲午夜精品一区二区久久 | 亚洲人与动物交配视频| 亚洲av.av天堂| 国产成人freesex在线| 亚洲欧美一区二区三区国产| av免费在线看不卡| 亚洲国产日韩一区二区| 少妇人妻精品综合一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 777米奇影视久久| 99久久九九国产精品国产免费| 99热全是精品| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美+日韩+精品| 丝袜脚勾引网站| 高清日韩中文字幕在线| 三级国产精品欧美在线观看| 亚洲精品乱码久久久v下载方式| 听说在线观看完整版免费高清| 亚洲av日韩在线播放| 亚洲图色成人| 色视频在线一区二区三区| 中文字幕av成人在线电影| 观看免费一级毛片|