• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-free mass tracking of a levitated nanoparticle

    2023-09-05 08:48:04YuanTian田原YuZheng鄭瑜LyuHangLiu劉呂航GuangCanGuo郭光燦andFangWenSun孫方穩(wěn)
    Chinese Physics B 2023年7期
    關鍵詞:田原

    Yuan Tian(田原), Yu Zheng(鄭瑜),?, Lyu-Hang Liu(劉呂航),Guang-Can Guo(郭光燦), and Fang-Wen Sun(孫方穩(wěn))

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: optical levitation,nanoparticle,mass measurement,thermal desorption

    1.Introduction

    Nanoparticles are one of the most critical research systems in nanomaterials research.[1–3]Relying on their large surface-to-volume ratio and specialized surface morphology,[4,5]nanoparticles have a wide range of applications in areas including molecular adsorption,[6,7]surface functionalization,[8,9]and catalytic reaction.[10,11]The characterization of particle properties is an essential part of nanoparticle and microparticle research, including the weighing of their mass.[12–22]The mass of a nanoparticle is related to its density, size, fill rate, composition, and other properties that provide important criteria for the identification of nanoparticles.Conventionally,a nanoparticle’s mass is estimated using data on density, particle size analysis, and particle properties measured on a bunch of particle powder.[23–26]This approach gives less accurate information on the mass of nanoparticles.It also lacks information on the individual nanoparticles and does not allow for the analysis of differences in properties,such as density, between nanoparticles in the same batch of samples.

    Recently, a number of methods have been invented to measure the mass of individual nanoparticles.[15–17,27–29]Among these mass measurement methods, the scheme using optical levitation is the most promising.Using the calibrated or estimated electric or optical field as a reference, the optical levitation system achieves high-precision fg-level mass measurement of nanoparticles.[16,28,29]A significant reduction in the mass of silica nanoparticles is observed.[12,22,28,30]However,comprehensive investigations of this mass-changing process are still lacking.Considering that the mass of most materials changes with increasing temperature, simultaneous high-precision measurement of the mass and temperature of nanoparticles is essential for investigating their property transitions.Nevertheless, there is still no satisfactory solution for the simultaneous measurement of the mass and center-ofmass motion(COM)temperature.This is because the existing schemes depend on the statistical properties after interaction with a thermal bath of known temperature.Only one of the mass or temperature can be measured, while the other has to be known beforehand.[31,32]Although there are attempts to estimate the particle temperature by using the scattered light intensity and the gas pressure,[12]the accuracy and reliability of the temperature obtained by this method are very poor.

    Here we present a scheme for the temperature-free mass measurement of optically levitated nanoparticles with the assistance of a sinusoidal electrostatic driving force.By using a known AC driving force as a reference scale, the involvement of temperature as a known variable in the mass measurement process is no longer needed,thus enabling a temperatureindependent mass measurement scheme.With this scheme,we tracked in real time the variations in mass, COM temperature, and other properties of a 165 nm nominal diameter silica particle as the air pressure changed.Using this scheme,it is possible to investigate the dynamics of nanoparticle properties with temperature,[33,34]for example,the crystalline form transition temperature or melting temperature of the nanoparticles,[35–39]the temperature dependence of the reaction rate with gas molecules,[40]temperature-controlled drug release,[41]etc.

    2.Mass measurement method

    Consider an optically levitated oscillator driven by a sinusoidal forceFAC.Its mechanical energy variation can be divided into three parts:

    with

    where dEACrepresents the work done by the AC driving force.xis the position of the oscillator.dEdamprepresents the work done by air damping.Γ0is the air damping coefficient.mis the mass of the nanoparticle.vis the velocity of the oscillator.dEstorepresents the work done by the stochastic force.kBis the Boltzmann constant.T0is the effective temperature which is equal to the COM temperature when the external driving force’s heating(cooling)effect can be neglected.Wrepresents the Wiener process.

    Here, dEcan be calculated using the calibrated oscillator trajectory andE=m(v2+?20x2)/2,where?0is the eigenfrequency of the oscillator.The schematic diagram of mechanical energy variation dEand the work done by the AC driving force dEACvarying with timetis shown in Fig 1(c).Multiply both sides of Eq.(1)by dEACand integrate,which is

    Because the dWis independent of dEAC,dEACdEsto=0.Extracting massmfrom Eq.(3),we have

    For a realistic measured oscillator trajectory, the mass of the nanoparticle can be obtained by using the discrete form,which is

    where ?xis the difference of trajectories: ?x(t)=x(t+?t)?x(t),?tis the sampling interval.Γ0is obtained by fitting an exponential equation to the variance of trajectory ensembles.[24]?0is obtained during the calibration of the particle’s trajectory, which is shown below.According to the experiment and simulation result,(dEACdEdamp) is much smaller than(dEACdEAC).When the pressure is below 1 mbar,(dEACdEdamp) can be neglected when measuring the particle’s mass.

    Fig.1.(a)Schematic diagram of vacuum optical levitation.A 1064 nm laser beam is focused by an objective lens (NA = 0.9) to trap the nanoparticle.The forward scattered light is collected by an aspherical lens(NA=0.6)to detect the position of the particles.The driven electric field is generated by a pair of stainless steel rods that are connected to a signal generator.An additional high voltage electrode is used for charge control of the particle.(b) The schematic diagram of particle’s trajectory x (blue line) and driving voltage UAC (orange line) varying with time t.The units of x and UAC shown in the figure are not the same.(c) The schematic diagram of mechanical energy variation dE(blue line) and the work done by the AC driving force dEAC (orange line)varying with time t.(d)PSD of the trajectory of a particle under AC driving force at 1 mbar.The curve was obtained by averaging the PSD of eight trajectories of 1 s duration.The frequency of the driving force is 200 kHz.

    3.Experimental method

    3.1.Experiment setup

    The experimental schematic is shown in Fig.1(a).The nanoparticle to be weighed is optically trapped in a vacuum chamber,where the air pressure can be controlled from atmospheric pressure to high vacuum.The optical potential used to trap the nanoparticle is formed by a tightly focused linear polarization laser,whose wavelength is 1064 nm and the numerical aperture of the objective is 0.9.The forward scattering light is collected by an aspheric lens for the measurement of the particle’s translational movement.Stainless steel rods,which are mounted on both sides of the trapping potential, are used as electrodes for the implementation of the electric field.The distance between the two electrodes is approximately 2 mm.

    3.2.Calibration coefficient and oscillation frequency

    According to Eq.(5),the mass measurement requires the particle’s position calibration coefficientcto convert detected signalVto the particle’s positionx=cV.The calibration of the particle’s trajectory is achieved by the Duffing nonlinearity induced frequency shift analysis of trajectory fragments with different amplitudes.[28,42]First, we collect the detector’s electric signals that satisfyV0?dV

    where?x0is the eigen frequency atx-axis,andξxis nonlinear coefficient.Therefore, the frequency?x0and the calibration coefficientccan be obtained by fitting Eq.(6)to the averaged detection signal.Such a calibration method has high precision at air pressures below 10 mbar.When the pressure is below 10?3mbar, it is hard to levitate the nanoparticle stably without COM temperature cooling.The COM temperature cooling harms the precision of the calibration coefficient.[42]Thus,the applicable pressure range of this calibration method is 10?3mbar–10 mbar,limiting the pressure range of our mass measurement.

    3.3.Driving force and charge

    In the experiment, two principles are followed in the selection of parameters for the driving force.The first rule is the high signal-to-noise ratio(SNR)of the driven motion component, which can be inferred from a much higher drive PSD peak at the AC driving force frequency than the PSD from thermal motion.Second, the component of motion imposed by the driving force is negligible compared to the total thermal motion.Otherwise,the accuracy of the calibration method based on the Duffing nonlinear analysis of the motion trajectory will be significantly reduced.As shown in Fig.1(d), the frequency of the AC driving force is 75 kHz away from the oscillator’s eigenfrequency.The SNR of the driven motion is about 4.4×105in a trajectory of 1 s duration, and the power of the driven motion compared with the total thermal motion is〈〉/〈x2〉=7.1×10?4.The mass measurement also requires the knowledge of the driving force’s amplitudeFAC.There are two ways to determine the sinusoidal electrostatic driving force.The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]The size of the AC driving force is obtained by the linear response function of the levitated harmonic oscillator[16](not adopted below 10 mbar due to nonlinearities)

    whereIis the integral of the PSD of the linear oscillator in an electric field at the driving frequency?dr.m10mbaris the particle’s mass measured at 10 mbar.At pressure above 10 mbar,the thermal conductivity is strong enough to keep the nanoparticle at the same temperature as room temperature.[28,31]The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]m10mbar=kBTem/(c2〈V2〉),where〈V2〉is the mean square values of the detected signal,andTemis the room temperature.Γandare obtained from fitting Lorentz line to PSD.In advance,the electric field strength at the particle trapping position is obtained by the electric field force measurements of a particle with a known charge.The AC driving force would be the electric field strength multiplied by the charge.

    If the charge change occurs only once during the pressure drop and rise,then the changedFACcan be recalibrated when the pressure returns to 10 mbar.And if the charge change occurs multiple times during mass monitoring, we first assume that the mass of the particle remains constant after one charge change occurs and estimate the charge of the particle by the height of theFACpeak on the PSD.Since the charge can only be an integer multiple of the elementary charge and the mass can only decrease, the change in theFACdue to the charge change can be recovered.However,in the case of large charge changes, theFACestimation for multiple charge changes becomes unreliable.

    3.4.COM temperature

    After we finish the trajectories’ calibration and driving force estimation, we can get the particle’s mass based on Eq.(5).As we already have the particle’s mass, the particle’s COM temperature can be obtained with the equipartition theorem thatTCOM=m?〈x2〉/kB.

    4.Experimental results

    A nanoparticle,which is a silica nanosphere with a nominal diameter of 165±20 nm(model number: SS02000,Bangs Labs Inc.), is sent into the optical trapping potential by a nebulizer.The nanoparticles are stored in water and diluted with ethanol before delivery.After the nanoparticle has been trapped, the air pressure in the vacuum chamber is reduced to 10 mbar from the atmosphere.After measurement ofFAC,the mass tracking of the nanoparticle starts.Then, the reduction in air pressure in the vacuum chamber restarts at a very low speed.When the pressure reaches below 5×10?3mbar,the pumping stops,and a slow leak into the vacuum chamber begin to bring the air pressure back to 10 mbar.This pressure control process lasts approximately 14400 s.At the same time,the trajectory of the levitated nanoparticle along the electrode direction and the driving electric field signal are recorded.

    We notice that the charge change event happens once when the pressure is reduced to 2×10?2mbar.The particle’s charge changes from?5eto?27eas shown in Fig.2(e),which corresponds to an electric field of 6.38 kV/m.

    Fig.2.Property changes of the optically levitated nanoparticle during the first pressure pump down and venting cycle.(a)Mass m.(b)COM temperature TCOM.(c)Oscillation frequency ?0/2π.(d)Calibration coefficient c.(e)Electric charge q.The pressure is reduced from 10 mbar to 4×10?3 mbar for the first time after the particle is trapped and then back to 10 mbar.The blue dots represent the pressure drop process and the orange squares represent the pressure rise process.Each data point is obtained from the average of five 20 s segments of the trajectory.The shading represents the standard deviation of the data.

    With the calibrated trajectory and Eq.(4), the nanoparticle’s mass variation with air pressure is obtained,as shown in Fig.2(a).As the pressure is reduced below 1 mbar, the mass of the particle gradually decreases.However,at 0.02 mbar,the mass of the nanoparticle suddenly decreases when the charge change event happens.After that,there is no further significant change in the mass of the particle.The statistical error of the mass measurement,shown in Fig.2(a),mainly comes from the uncertainty of calibration.As the pressure drops, the nonlinear calibration requires a longer trajectory signal to maintain the precision of the calibration coefficients.[42]However,since data sampling of equal-length trajectories is used in the actual experiment, the statistical error of the calibration coefficients increases with decreasing air pressure.

    The COM temperature is influenced by both the internal temperature of the particle and the ambient temperature,usually between them.[31]It can be seen from Fig.2(b) that, at the beginning of the vacuum evacuation, the COM temperature rises as the air pressure decreases.This can be explained by the fact that thermal conductivity decreases with decreasing air pressure.However, at 0.02 mbar, where the mass and charge have dramatically changed,the particle’s COM temperature suddenly drops to near room temperature.

    Similar to charge, mass, and COM temperature, the calibration coefficient and the oscillation frequency of the nanoparticle change significantly as the air pressure decreases to the transition point(seen in Figs.2(c)and 2(d)).Such a transition pressure point only happens during the first decrease in the air pressure.No similar transition points are observed during subsequent pressure increases or repeated vacuum evacuations.

    Fig.3.Property changes of the other three nanoparticles at the first pressure drop.(a)Mass.(b)COM temperature.(c)Oscillation frequency.(d)Charge.The blue squares,orange dots,and yellow triangles represent particles 2,3,and 4,respectively.

    Figure 3 shows the results of tracking the changes in the properties of the other three particles during the first pressure decrease.The power of the trapping laser is approximately 350 mW for the particle in Fig.2 and particle 2,and is approximately 180 mW for particles 3 and 4.Although the transition pressure and the magnitude of change are different for different particles,most particles undergo a significant reduction in mass when the air pressure drops below a certain point.Such abrupt changes in mass are usually accompanied by significant changes in COM temperature,calibration coefficients,oscillation frequencies,and electrical charges.

    5.Discussion

    Since long trajectories are not required,the measurement of the particle frequency provides us with evidence of higher temporal resolution for the abrupt changes in particle properties.As shown in Fig.4(a),the duration of the abrupt change in the mass of the particles in Fig.2 does not exceed 1 s,which corresponds to a relative pressure change of about 0.5%.Since the heating of particles by the laser is inversely proportional to the air pressure in a vacuum environment,[12,28]by fitting the pressure–temperature data of the particle before the abrupt change point(shown in Fig.4(b)),we can obtain that the internal temperature increase of the particle does not exceed 2.5 K at the moment of the abrupt change.The internal temperature of the particle is obtained based on the method in Ref.[32].

    Fig.4.(a)Frequency tracking of the particle shown in Fig.2 near the abrupt change point.(b)Temperature difference ?T between the internal temperature of the particle shown in Fig.2 and the ambient temperature with decreasing pressure.The solid line is the fitting to the data before the abrupt change point.

    We can use the experimental results of nanoparticle mass tracking described above to provide a conjecture as to the reason for the changes in the properties of nanoparticles during the pressure decrease.As the silica nanospheres we used are synthesized with the St¨ober process,[43]there would be plenty of water molecules adsorbed on the particle’s surface.Moreover, as the chemically synthesized silica particles are typically amorphous and porous,[44]water molecules can be sealed inside the nanoparticles.As the pure silica’s absorption of 1064 nm laser light is negligible, the heating effect from the trapping laser on the nanoparticles comes mainly from the water molecules they contain.When the thermal conductivity of the system decreases with decreasing air pressure,the nanoparticle’s internal temperature is rising and the water molecules adsorbed on the particle surface is detaching from the particle,which results in a gentle decrease in the particle’s mass.However, as the water that is sealed inside the particle cannot be released,the particle’s temperature continues to rise with decreasing pressure.When the internal temperature of the particle exceeds the boiling point of water, the water inside the particle is boiled into vapor.As the temperature continues to rise, the vapor pressure inside the particle exceeds the upper limit that the particle’s sealing structure can tolerate.Water molecules are expelled from the particle’s crack in the form of steam.The blasted vapor rubs against the particle and brings more charge away with them.The loss of water could introduce a decrease in the oscillator’s eigenfrequency and calibration coefficient which has been confirmed by the experiment.[12,22,28,30]

    The sudden loss of the water molecules inside(or on the surface)of the silica nanoparticles cannot be explained by the loss of surface water layers.Because the water molecules are connected through hydrogen bonds which have a large range of bond energies and correspond to a wide range of desorption temperatures.Therefore,the commonly used Zhuravlev model,[45]which is based on hydrogen bond breaking to explain the dehydration process of silica particles, is unable to explain the abrupt mass loss phenomenon found in this work.Such a sudden change cannot be observed by conventional desorption analysis tools, such as thermal desorption spectrometry,[46]because they cannot work with an individual particle,and the properties of desorption vary considerably between different particles.

    6.Conclusion

    We demonstrate an electrostatic driving force assisted mass measurement method for an individual nanoparticle that does not require the knowledge of temperature.The method can be utilized in the investigation of temperature-dependent mass variation.For example, the observation of molecules desorption from a particle’s surface when the surface temperature is increased.With this method,we monitor the variation of the properties of optically levitated nanoparticles with air pressure,including mass,temperature,electric charge,calibration coefficient,and oscillation frequency.We find that there is a sudden loss of the nanoparticle’s mass when the pressure is decreased below a certain point.This phenomenon cannot be explained by the desorption of water molecules from the surface.This work provides a new tool for surface and structure analysis in nanomaterials science.

    Appendix A:Internal temperature measurement

    The internal temperature of the particle in Fig 4(b)is obtained based on the method in Ref.[32].When the particle is heated, the heat can be transferred to the colliding gas particle.This causes the difference between the temperature of impinging gas particleTimpand the temperature of the emerging gas particleTem.The relation betweenTimp,Temand the COM temperatureTCOMis

    TheTCOMis measured based on the energy equipartition theorem and the measurement result of the particle’s mass.The temperature of impinging gas particles equals the room temperature (293 K in our experiment).Thus, we can obtain the temperature of the emerging gas particle based on Eq.(A1).

    The relationship between the gas temperatures and the surface temperature of the particleTsuris given by the accommodation coefficient

    The accommodation coefficient is known and close to 0.777.[32]Thus, we can obtain the surface temperature of the particleTsurbased on Eq.(A2).Since the particle is in nano size,the internal temperature of the particleTintwould be the same as the surface temperature.Thus, we can obtain the internal temperature of particleTint.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12104438 and 62225506),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-049),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    田原
    河流
    Efficient sampling for decision making in materials discovery*
    田原發(fā)表全新EP《2080》第二首單曲《WHY 2080》
    青年歌聲(2020年5期)2020-05-19 09:41:34
    處暑
    村上春樹的17歲
    田原:閱讀是私密的堡壘
    女友·花園(2015年5期)2015-05-30 10:48:04
    新干線上的暗戀計劃
    篆刻·書畫
    村上春樹的17歲
    尋找左紳
    午夜a级毛片| 国产精品,欧美在线| 亚洲av电影在线进入| 这个男人来自地球电影免费观看| 亚洲avbb在线观看| 色老头精品视频在线观看| 欧美+亚洲+日韩+国产| 十八禁网站免费在线| 老鸭窝网址在线观看| 中文字幕色久视频| 好看av亚洲va欧美ⅴa在| 国产午夜福利久久久久久| 黄色女人牲交| 狠狠狠狠99中文字幕| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 男女下面进入的视频免费午夜 | 一边摸一边抽搐一进一小说| 中文字幕最新亚洲高清| 超碰成人久久| 久久狼人影院| 高清黄色对白视频在线免费看| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 黄色a级毛片大全视频| 亚洲熟女毛片儿| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 怎么达到女性高潮| 神马国产精品三级电影在线观看 | 欧美老熟妇乱子伦牲交| 给我免费播放毛片高清在线观看| 日日夜夜操网爽| 老汉色∧v一级毛片| 人人妻人人爽人人添夜夜欢视频| 精品欧美国产一区二区三| 91大片在线观看| 久热爱精品视频在线9| 精品一品国产午夜福利视频| 国产乱人伦免费视频| 日本免费一区二区三区高清不卡 | 香蕉久久夜色| 美女午夜性视频免费| а√天堂www在线а√下载| 国产亚洲欧美98| 韩国av一区二区三区四区| 久久久久亚洲av毛片大全| 久久久久久久午夜电影| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 人妻久久中文字幕网| 757午夜福利合集在线观看| 亚洲欧美日韩无卡精品| 久久亚洲真实| 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 国产一区二区三区综合在线观看| x7x7x7水蜜桃| 色播在线永久视频| 巨乳人妻的诱惑在线观看| 国产高清有码在线观看视频 | 国产成人精品久久二区二区91| www国产在线视频色| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产日韩欧美精品在线观看 | 免费观看人在逋| 十分钟在线观看高清视频www| 国产亚洲精品一区二区www| 亚洲美女黄片视频| 一个人观看的视频www高清免费观看 | 又黄又爽又免费观看的视频| 亚洲国产看品久久| 十八禁人妻一区二区| 9色porny在线观看| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 久热这里只有精品99| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 日本五十路高清| 国产精品国产三级国产av玫瑰| av在线天堂中文字幕| 99精品久久久久人妻精品| 欧美丝袜亚洲另类 | 麻豆国产97在线/欧美| 亚洲精品久久国产高清桃花| 国产久久久一区二区三区| 亚洲国产精品合色在线| 日本五十路高清| 噜噜噜噜噜久久久久久91| 乱系列少妇在线播放| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 亚洲精品成人久久久久久| 嫩草影院新地址| 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 国产一级毛片七仙女欲春2| 一区福利在线观看| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 九九爱精品视频在线观看| 中文字幕av在线有码专区| 两性午夜刺激爽爽歪歪视频在线观看| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 日韩强制内射视频| 男人和女人高潮做爰伦理| 亚洲久久久久久中文字幕| 国产伦在线观看视频一区| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 日本成人三级电影网站| 欧美bdsm另类| 黄色视频,在线免费观看| 午夜精品久久久久久毛片777| 国产av一区在线观看免费| 内射极品少妇av片p| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 免费观看的影片在线观看| 99热这里只有精品一区| 亚洲欧美日韩东京热| 日本与韩国留学比较| 亚洲精品国产成人久久av| 国产美女午夜福利| 欧美高清成人免费视频www| av中文乱码字幕在线| 免费观看人在逋| 一级黄片播放器| 国产精品人妻久久久久久| 日本色播在线视频| 精品欧美国产一区二区三| 看黄色毛片网站| 精品人妻视频免费看| 嫩草影院入口| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 国内精品宾馆在线| 老司机深夜福利视频在线观看| 热99在线观看视频| 久久久色成人| 黄色一级大片看看| 精品久久久久久久久av| 九九爱精品视频在线观看| 亚洲一区二区三区色噜噜| 亚洲最大成人av| 亚洲avbb在线观看| 此物有八面人人有两片| 亚洲va在线va天堂va国产| 真人做人爱边吃奶动态| 欧美bdsm另类| 国产成人av教育| av在线亚洲专区| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 少妇的逼水好多| 日本黄大片高清| 国产91精品成人一区二区三区| 啪啪无遮挡十八禁网站| 啦啦啦啦在线视频资源| 国产亚洲精品综合一区在线观看| 1000部很黄的大片| 久久久久久久久久黄片| 午夜福利视频1000在线观看| 日韩欧美在线二视频| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 国产v大片淫在线免费观看| 日本熟妇午夜| 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品永久免费网站| 一级黄色大片毛片| 最好的美女福利视频网| 久久国内精品自在自线图片| 国产精品乱码一区二三区的特点| 欧美精品国产亚洲| 亚洲久久久久久中文字幕| 免费在线观看影片大全网站| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 在线观看美女被高潮喷水网站| 韩国av在线不卡| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 别揉我奶头 嗯啊视频| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 联通29元200g的流量卡| 他把我摸到了高潮在线观看| 色视频www国产| 欧美区成人在线视频| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 最好的美女福利视频网| 成人av在线播放网站| 国产精品乱码一区二三区的特点| 琪琪午夜伦伦电影理论片6080| 精品99又大又爽又粗少妇毛片 | 真人一进一出gif抽搐免费| 搞女人的毛片| 丰满乱子伦码专区| 国产高清三级在线| 欧美bdsm另类| 干丝袜人妻中文字幕| 国产午夜福利久久久久久| 欧美日韩乱码在线| 成人精品一区二区免费| 88av欧美| 精品久久久久久久久久久久久| 亚洲精品在线观看二区| 亚洲精品久久国产高清桃花| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 久久99热6这里只有精品| 全区人妻精品视频| 一区二区三区四区激情视频 | 尤物成人国产欧美一区二区三区| 97人妻精品一区二区三区麻豆| 一本一本综合久久| 欧美日韩综合久久久久久 | 国产探花在线观看一区二区| eeuss影院久久| av女优亚洲男人天堂| 欧美不卡视频在线免费观看| 亚洲国产欧美人成| 天堂网av新在线| eeuss影院久久| 热99re8久久精品国产| 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 午夜福利高清视频| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 国产精品女同一区二区软件 | 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 婷婷色综合大香蕉| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 午夜免费激情av| 老司机深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 亚洲avbb在线观看| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 成人av一区二区三区在线看| 日本欧美国产在线视频| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 内射极品少妇av片p| 国国产精品蜜臀av免费| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 国产精品99久久久久久久久| 最近视频中文字幕2019在线8| 欧美一级a爱片免费观看看| 热99在线观看视频| 99热这里只有精品一区| 国产一区二区在线观看日韩| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 免费看光身美女| 噜噜噜噜噜久久久久久91| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 日本三级黄在线观看| 国产真实伦视频高清在线观看 | 男人舔女人下体高潮全视频| 女人十人毛片免费观看3o分钟| 十八禁国产超污无遮挡网站| 日本黄大片高清| 我要看日韩黄色一级片| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 久久精品国产自在天天线| 国产精华一区二区三区| 看黄色毛片网站| 国产不卡一卡二| 日本一二三区视频观看| 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看| 最近最新免费中文字幕在线| 中文字幕久久专区| 最好的美女福利视频网| 日本 欧美在线| 高清日韩中文字幕在线| av女优亚洲男人天堂| 老司机深夜福利视频在线观看| 99热网站在线观看| 免费在线观看成人毛片| av福利片在线观看| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 欧美一区二区亚洲| 日本在线视频免费播放| 国产精品1区2区在线观看.| 永久网站在线| 午夜a级毛片| 国产亚洲精品久久久com| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 日本免费a在线| 成人美女网站在线观看视频| 国内精品一区二区在线观看| 国产精品三级大全| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线| 亚洲av一区综合| av黄色大香蕉| 美女大奶头视频| 国产成人aa在线观看| 亚洲经典国产精华液单| 我要看日韩黄色一级片| 男女那种视频在线观看| 日本五十路高清| 国产精品嫩草影院av在线观看 | 12—13女人毛片做爰片一| 国产精品久久久久久av不卡| 亚洲国产日韩欧美精品在线观看| 亚洲av免费在线观看| 欧美丝袜亚洲另类 | 久99久视频精品免费| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 大型黄色视频在线免费观看| 春色校园在线视频观看| 看免费成人av毛片| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站高清观看| 深夜a级毛片| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 免费大片18禁| 亚洲av中文字字幕乱码综合| 国产精品久久久久久精品电影| 日本 欧美在线| 窝窝影院91人妻| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 国产高潮美女av| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 国产高清不卡午夜福利| 国产精品三级大全| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产一区二区亚洲精品在线观看| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 亚洲无线在线观看| 日韩 亚洲 欧美在线| 国产视频一区二区在线看| 成人特级av手机在线观看| 直男gayav资源| 99国产极品粉嫩在线观看| 18禁在线播放成人免费| 天堂网av新在线| 日韩精品有码人妻一区| 亚洲人与动物交配视频| 亚洲电影在线观看av| 两个人视频免费观看高清| 免费观看精品视频网站| 美女免费视频网站| 国产精品一区www在线观看 | 制服丝袜大香蕉在线| 联通29元200g的流量卡| 久久精品夜夜夜夜夜久久蜜豆| 在线免费十八禁| 免费av不卡在线播放| 国产精品自产拍在线观看55亚洲| 中文字幕人妻熟人妻熟丝袜美| 国产精品无大码| 一进一出抽搐动态| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 欧美日韩精品成人综合77777| 午夜精品久久久久久毛片777| 网址你懂的国产日韩在线| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 日韩 亚洲 欧美在线| 中文亚洲av片在线观看爽| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 日本 av在线| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 亚洲国产欧美人成| 国产高清三级在线| 国产一区二区在线观看日韩| 国内精品久久久久久久电影| 不卡一级毛片| 精品久久久久久久末码| 一个人看视频在线观看www免费| 国国产精品蜜臀av免费| 国产高清三级在线| 热99在线观看视频| 一级av片app| 亚洲真实伦在线观看| 久久午夜亚洲精品久久| .国产精品久久| 69av精品久久久久久| 尾随美女入室| 久久精品综合一区二区三区| 欧美成人性av电影在线观看| a在线观看视频网站| 18+在线观看网站| 精品久久久久久久久av| 精品一区二区三区av网在线观看| 草草在线视频免费看| 听说在线观看完整版免费高清| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 亚洲va在线va天堂va国产| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区三区| 国产欧美日韩精品一区二区| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 国产精品国产三级国产av玫瑰| 国产精品久久电影中文字幕| 亚洲精品在线观看二区| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 亚洲三级黄色毛片| 免费电影在线观看免费观看| 亚洲男人的天堂狠狠| 无遮挡黄片免费观看| 三级毛片av免费| av在线蜜桃| 一本久久中文字幕| 国产精品久久久久久久电影| videossex国产| 国产精品1区2区在线观看.| 69av精品久久久久久| 欧美潮喷喷水| 成人高潮视频无遮挡免费网站| 亚洲性夜色夜夜综合| 国产色婷婷99| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频| 日韩精品有码人妻一区| 如何舔出高潮| 国产一区二区在线观看日韩| 老司机福利观看| 午夜福利在线在线| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 男插女下体视频免费在线播放| .国产精品久久| 校园人妻丝袜中文字幕| 亚洲天堂国产精品一区在线| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| 国产aⅴ精品一区二区三区波| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区 | 3wmmmm亚洲av在线观看| 成人亚洲精品av一区二区| 亚洲美女视频黄频| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影| 亚洲精品乱码久久久v下载方式| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 免费av毛片视频| 99热这里只有是精品50| 国产精品国产三级国产av玫瑰| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 国产精品三级大全| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 国产色婷婷99| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 一区二区三区激情视频| www.www免费av| 国产伦一二天堂av在线观看| 精品午夜福利在线看| 黄色丝袜av网址大全| 免费av毛片视频| 亚洲在线观看片| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 九色成人免费人妻av| 成人综合一区亚洲| 九色成人免费人妻av| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 午夜日韩欧美国产| 听说在线观看完整版免费高清| 国产成人一区二区在线| 欧美成人性av电影在线观看| 亚洲色图av天堂| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 最近中文字幕高清免费大全6 | 精华霜和精华液先用哪个| 欧美3d第一页| 精品久久久久久久久亚洲 | 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片 | 欧美成人免费av一区二区三区| 亚洲精品日韩av片在线观看| 成年女人毛片免费观看观看9| 婷婷色综合大香蕉| 精品99又大又爽又粗少妇毛片 | 国产精品久久电影中文字幕| 午夜福利欧美成人| 色av中文字幕| 成人国产麻豆网| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| av福利片在线观看| 午夜老司机福利剧场| 一级黄色大片毛片| 国内精品宾馆在线| av在线蜜桃| 午夜激情欧美在线| 久久人人精品亚洲av| 婷婷丁香在线五月| 无遮挡黄片免费观看| 欧美极品一区二区三区四区| 草草在线视频免费看| 又黄又爽又刺激的免费视频.| 哪里可以看免费的av片| 欧美一级a爱片免费观看看| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 淫妇啪啪啪对白视频| 免费高清视频大片| 成人精品一区二区免费| 听说在线观看完整版免费高清| 日韩精品中文字幕看吧| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 最近在线观看免费完整版| 亚洲 国产 在线| 久久精品国产亚洲网站| 美女大奶头视频| 国产精品久久电影中文字幕| 他把我摸到了高潮在线观看| 国内精品久久久久精免费| 国国产精品蜜臀av免费| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 国产精品98久久久久久宅男小说| 一本一本综合久久| 精品人妻偷拍中文字幕| 97超级碰碰碰精品色视频在线观看| 婷婷色综合大香蕉| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 欧美黑人巨大hd| 亚洲中文字幕一区二区三区有码在线看| av女优亚洲男人天堂| 国产男靠女视频免费网站| 极品教师在线视频| 国产主播在线观看一区二区| 中文在线观看免费www的网站| 亚洲av成人av| 91在线观看av| 一区二区三区四区激情视频 | 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽|