• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-free mass tracking of a levitated nanoparticle

    2023-09-05 08:48:04YuanTian田原YuZheng鄭瑜LyuHangLiu劉呂航GuangCanGuo郭光燦andFangWenSun孫方穩(wěn)
    Chinese Physics B 2023年7期
    關鍵詞:田原

    Yuan Tian(田原), Yu Zheng(鄭瑜),?, Lyu-Hang Liu(劉呂航),Guang-Can Guo(郭光燦), and Fang-Wen Sun(孫方穩(wěn))

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: optical levitation,nanoparticle,mass measurement,thermal desorption

    1.Introduction

    Nanoparticles are one of the most critical research systems in nanomaterials research.[1–3]Relying on their large surface-to-volume ratio and specialized surface morphology,[4,5]nanoparticles have a wide range of applications in areas including molecular adsorption,[6,7]surface functionalization,[8,9]and catalytic reaction.[10,11]The characterization of particle properties is an essential part of nanoparticle and microparticle research, including the weighing of their mass.[12–22]The mass of a nanoparticle is related to its density, size, fill rate, composition, and other properties that provide important criteria for the identification of nanoparticles.Conventionally,a nanoparticle’s mass is estimated using data on density, particle size analysis, and particle properties measured on a bunch of particle powder.[23–26]This approach gives less accurate information on the mass of nanoparticles.It also lacks information on the individual nanoparticles and does not allow for the analysis of differences in properties,such as density, between nanoparticles in the same batch of samples.

    Recently, a number of methods have been invented to measure the mass of individual nanoparticles.[15–17,27–29]Among these mass measurement methods, the scheme using optical levitation is the most promising.Using the calibrated or estimated electric or optical field as a reference, the optical levitation system achieves high-precision fg-level mass measurement of nanoparticles.[16,28,29]A significant reduction in the mass of silica nanoparticles is observed.[12,22,28,30]However,comprehensive investigations of this mass-changing process are still lacking.Considering that the mass of most materials changes with increasing temperature, simultaneous high-precision measurement of the mass and temperature of nanoparticles is essential for investigating their property transitions.Nevertheless, there is still no satisfactory solution for the simultaneous measurement of the mass and center-ofmass motion(COM)temperature.This is because the existing schemes depend on the statistical properties after interaction with a thermal bath of known temperature.Only one of the mass or temperature can be measured, while the other has to be known beforehand.[31,32]Although there are attempts to estimate the particle temperature by using the scattered light intensity and the gas pressure,[12]the accuracy and reliability of the temperature obtained by this method are very poor.

    Here we present a scheme for the temperature-free mass measurement of optically levitated nanoparticles with the assistance of a sinusoidal electrostatic driving force.By using a known AC driving force as a reference scale, the involvement of temperature as a known variable in the mass measurement process is no longer needed,thus enabling a temperatureindependent mass measurement scheme.With this scheme,we tracked in real time the variations in mass, COM temperature, and other properties of a 165 nm nominal diameter silica particle as the air pressure changed.Using this scheme,it is possible to investigate the dynamics of nanoparticle properties with temperature,[33,34]for example,the crystalline form transition temperature or melting temperature of the nanoparticles,[35–39]the temperature dependence of the reaction rate with gas molecules,[40]temperature-controlled drug release,[41]etc.

    2.Mass measurement method

    Consider an optically levitated oscillator driven by a sinusoidal forceFAC.Its mechanical energy variation can be divided into three parts:

    with

    where dEACrepresents the work done by the AC driving force.xis the position of the oscillator.dEdamprepresents the work done by air damping.Γ0is the air damping coefficient.mis the mass of the nanoparticle.vis the velocity of the oscillator.dEstorepresents the work done by the stochastic force.kBis the Boltzmann constant.T0is the effective temperature which is equal to the COM temperature when the external driving force’s heating(cooling)effect can be neglected.Wrepresents the Wiener process.

    Here, dEcan be calculated using the calibrated oscillator trajectory andE=m(v2+?20x2)/2,where?0is the eigenfrequency of the oscillator.The schematic diagram of mechanical energy variation dEand the work done by the AC driving force dEACvarying with timetis shown in Fig 1(c).Multiply both sides of Eq.(1)by dEACand integrate,which is

    Because the dWis independent of dEAC,dEACdEsto=0.Extracting massmfrom Eq.(3),we have

    For a realistic measured oscillator trajectory, the mass of the nanoparticle can be obtained by using the discrete form,which is

    where ?xis the difference of trajectories: ?x(t)=x(t+?t)?x(t),?tis the sampling interval.Γ0is obtained by fitting an exponential equation to the variance of trajectory ensembles.[24]?0is obtained during the calibration of the particle’s trajectory, which is shown below.According to the experiment and simulation result,(dEACdEdamp) is much smaller than(dEACdEAC).When the pressure is below 1 mbar,(dEACdEdamp) can be neglected when measuring the particle’s mass.

    Fig.1.(a)Schematic diagram of vacuum optical levitation.A 1064 nm laser beam is focused by an objective lens (NA = 0.9) to trap the nanoparticle.The forward scattered light is collected by an aspherical lens(NA=0.6)to detect the position of the particles.The driven electric field is generated by a pair of stainless steel rods that are connected to a signal generator.An additional high voltage electrode is used for charge control of the particle.(b) The schematic diagram of particle’s trajectory x (blue line) and driving voltage UAC (orange line) varying with time t.The units of x and UAC shown in the figure are not the same.(c) The schematic diagram of mechanical energy variation dE(blue line) and the work done by the AC driving force dEAC (orange line)varying with time t.(d)PSD of the trajectory of a particle under AC driving force at 1 mbar.The curve was obtained by averaging the PSD of eight trajectories of 1 s duration.The frequency of the driving force is 200 kHz.

    3.Experimental method

    3.1.Experiment setup

    The experimental schematic is shown in Fig.1(a).The nanoparticle to be weighed is optically trapped in a vacuum chamber,where the air pressure can be controlled from atmospheric pressure to high vacuum.The optical potential used to trap the nanoparticle is formed by a tightly focused linear polarization laser,whose wavelength is 1064 nm and the numerical aperture of the objective is 0.9.The forward scattering light is collected by an aspheric lens for the measurement of the particle’s translational movement.Stainless steel rods,which are mounted on both sides of the trapping potential, are used as electrodes for the implementation of the electric field.The distance between the two electrodes is approximately 2 mm.

    3.2.Calibration coefficient and oscillation frequency

    According to Eq.(5),the mass measurement requires the particle’s position calibration coefficientcto convert detected signalVto the particle’s positionx=cV.The calibration of the particle’s trajectory is achieved by the Duffing nonlinearity induced frequency shift analysis of trajectory fragments with different amplitudes.[28,42]First, we collect the detector’s electric signals that satisfyV0?dV

    where?x0is the eigen frequency atx-axis,andξxis nonlinear coefficient.Therefore, the frequency?x0and the calibration coefficientccan be obtained by fitting Eq.(6)to the averaged detection signal.Such a calibration method has high precision at air pressures below 10 mbar.When the pressure is below 10?3mbar, it is hard to levitate the nanoparticle stably without COM temperature cooling.The COM temperature cooling harms the precision of the calibration coefficient.[42]Thus,the applicable pressure range of this calibration method is 10?3mbar–10 mbar,limiting the pressure range of our mass measurement.

    3.3.Driving force and charge

    In the experiment, two principles are followed in the selection of parameters for the driving force.The first rule is the high signal-to-noise ratio(SNR)of the driven motion component, which can be inferred from a much higher drive PSD peak at the AC driving force frequency than the PSD from thermal motion.Second, the component of motion imposed by the driving force is negligible compared to the total thermal motion.Otherwise,the accuracy of the calibration method based on the Duffing nonlinear analysis of the motion trajectory will be significantly reduced.As shown in Fig.1(d), the frequency of the AC driving force is 75 kHz away from the oscillator’s eigenfrequency.The SNR of the driven motion is about 4.4×105in a trajectory of 1 s duration, and the power of the driven motion compared with the total thermal motion is〈〉/〈x2〉=7.1×10?4.The mass measurement also requires the knowledge of the driving force’s amplitudeFAC.There are two ways to determine the sinusoidal electrostatic driving force.The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]The size of the AC driving force is obtained by the linear response function of the levitated harmonic oscillator[16](not adopted below 10 mbar due to nonlinearities)

    whereIis the integral of the PSD of the linear oscillator in an electric field at the driving frequency?dr.m10mbaris the particle’s mass measured at 10 mbar.At pressure above 10 mbar,the thermal conductivity is strong enough to keep the nanoparticle at the same temperature as room temperature.[28,31]The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]m10mbar=kBTem/(c2〈V2〉),where〈V2〉is the mean square values of the detected signal,andTemis the room temperature.Γandare obtained from fitting Lorentz line to PSD.In advance,the electric field strength at the particle trapping position is obtained by the electric field force measurements of a particle with a known charge.The AC driving force would be the electric field strength multiplied by the charge.

    If the charge change occurs only once during the pressure drop and rise,then the changedFACcan be recalibrated when the pressure returns to 10 mbar.And if the charge change occurs multiple times during mass monitoring, we first assume that the mass of the particle remains constant after one charge change occurs and estimate the charge of the particle by the height of theFACpeak on the PSD.Since the charge can only be an integer multiple of the elementary charge and the mass can only decrease, the change in theFACdue to the charge change can be recovered.However,in the case of large charge changes, theFACestimation for multiple charge changes becomes unreliable.

    3.4.COM temperature

    After we finish the trajectories’ calibration and driving force estimation, we can get the particle’s mass based on Eq.(5).As we already have the particle’s mass, the particle’s COM temperature can be obtained with the equipartition theorem thatTCOM=m?〈x2〉/kB.

    4.Experimental results

    A nanoparticle,which is a silica nanosphere with a nominal diameter of 165±20 nm(model number: SS02000,Bangs Labs Inc.), is sent into the optical trapping potential by a nebulizer.The nanoparticles are stored in water and diluted with ethanol before delivery.After the nanoparticle has been trapped, the air pressure in the vacuum chamber is reduced to 10 mbar from the atmosphere.After measurement ofFAC,the mass tracking of the nanoparticle starts.Then, the reduction in air pressure in the vacuum chamber restarts at a very low speed.When the pressure reaches below 5×10?3mbar,the pumping stops,and a slow leak into the vacuum chamber begin to bring the air pressure back to 10 mbar.This pressure control process lasts approximately 14400 s.At the same time,the trajectory of the levitated nanoparticle along the electrode direction and the driving electric field signal are recorded.

    We notice that the charge change event happens once when the pressure is reduced to 2×10?2mbar.The particle’s charge changes from?5eto?27eas shown in Fig.2(e),which corresponds to an electric field of 6.38 kV/m.

    Fig.2.Property changes of the optically levitated nanoparticle during the first pressure pump down and venting cycle.(a)Mass m.(b)COM temperature TCOM.(c)Oscillation frequency ?0/2π.(d)Calibration coefficient c.(e)Electric charge q.The pressure is reduced from 10 mbar to 4×10?3 mbar for the first time after the particle is trapped and then back to 10 mbar.The blue dots represent the pressure drop process and the orange squares represent the pressure rise process.Each data point is obtained from the average of five 20 s segments of the trajectory.The shading represents the standard deviation of the data.

    With the calibrated trajectory and Eq.(4), the nanoparticle’s mass variation with air pressure is obtained,as shown in Fig.2(a).As the pressure is reduced below 1 mbar, the mass of the particle gradually decreases.However,at 0.02 mbar,the mass of the nanoparticle suddenly decreases when the charge change event happens.After that,there is no further significant change in the mass of the particle.The statistical error of the mass measurement,shown in Fig.2(a),mainly comes from the uncertainty of calibration.As the pressure drops, the nonlinear calibration requires a longer trajectory signal to maintain the precision of the calibration coefficients.[42]However,since data sampling of equal-length trajectories is used in the actual experiment, the statistical error of the calibration coefficients increases with decreasing air pressure.

    The COM temperature is influenced by both the internal temperature of the particle and the ambient temperature,usually between them.[31]It can be seen from Fig.2(b) that, at the beginning of the vacuum evacuation, the COM temperature rises as the air pressure decreases.This can be explained by the fact that thermal conductivity decreases with decreasing air pressure.However, at 0.02 mbar, where the mass and charge have dramatically changed,the particle’s COM temperature suddenly drops to near room temperature.

    Similar to charge, mass, and COM temperature, the calibration coefficient and the oscillation frequency of the nanoparticle change significantly as the air pressure decreases to the transition point(seen in Figs.2(c)and 2(d)).Such a transition pressure point only happens during the first decrease in the air pressure.No similar transition points are observed during subsequent pressure increases or repeated vacuum evacuations.

    Fig.3.Property changes of the other three nanoparticles at the first pressure drop.(a)Mass.(b)COM temperature.(c)Oscillation frequency.(d)Charge.The blue squares,orange dots,and yellow triangles represent particles 2,3,and 4,respectively.

    Figure 3 shows the results of tracking the changes in the properties of the other three particles during the first pressure decrease.The power of the trapping laser is approximately 350 mW for the particle in Fig.2 and particle 2,and is approximately 180 mW for particles 3 and 4.Although the transition pressure and the magnitude of change are different for different particles,most particles undergo a significant reduction in mass when the air pressure drops below a certain point.Such abrupt changes in mass are usually accompanied by significant changes in COM temperature,calibration coefficients,oscillation frequencies,and electrical charges.

    5.Discussion

    Since long trajectories are not required,the measurement of the particle frequency provides us with evidence of higher temporal resolution for the abrupt changes in particle properties.As shown in Fig.4(a),the duration of the abrupt change in the mass of the particles in Fig.2 does not exceed 1 s,which corresponds to a relative pressure change of about 0.5%.Since the heating of particles by the laser is inversely proportional to the air pressure in a vacuum environment,[12,28]by fitting the pressure–temperature data of the particle before the abrupt change point(shown in Fig.4(b)),we can obtain that the internal temperature increase of the particle does not exceed 2.5 K at the moment of the abrupt change.The internal temperature of the particle is obtained based on the method in Ref.[32].

    Fig.4.(a)Frequency tracking of the particle shown in Fig.2 near the abrupt change point.(b)Temperature difference ?T between the internal temperature of the particle shown in Fig.2 and the ambient temperature with decreasing pressure.The solid line is the fitting to the data before the abrupt change point.

    We can use the experimental results of nanoparticle mass tracking described above to provide a conjecture as to the reason for the changes in the properties of nanoparticles during the pressure decrease.As the silica nanospheres we used are synthesized with the St¨ober process,[43]there would be plenty of water molecules adsorbed on the particle’s surface.Moreover, as the chemically synthesized silica particles are typically amorphous and porous,[44]water molecules can be sealed inside the nanoparticles.As the pure silica’s absorption of 1064 nm laser light is negligible, the heating effect from the trapping laser on the nanoparticles comes mainly from the water molecules they contain.When the thermal conductivity of the system decreases with decreasing air pressure,the nanoparticle’s internal temperature is rising and the water molecules adsorbed on the particle surface is detaching from the particle,which results in a gentle decrease in the particle’s mass.However, as the water that is sealed inside the particle cannot be released,the particle’s temperature continues to rise with decreasing pressure.When the internal temperature of the particle exceeds the boiling point of water, the water inside the particle is boiled into vapor.As the temperature continues to rise, the vapor pressure inside the particle exceeds the upper limit that the particle’s sealing structure can tolerate.Water molecules are expelled from the particle’s crack in the form of steam.The blasted vapor rubs against the particle and brings more charge away with them.The loss of water could introduce a decrease in the oscillator’s eigenfrequency and calibration coefficient which has been confirmed by the experiment.[12,22,28,30]

    The sudden loss of the water molecules inside(or on the surface)of the silica nanoparticles cannot be explained by the loss of surface water layers.Because the water molecules are connected through hydrogen bonds which have a large range of bond energies and correspond to a wide range of desorption temperatures.Therefore,the commonly used Zhuravlev model,[45]which is based on hydrogen bond breaking to explain the dehydration process of silica particles, is unable to explain the abrupt mass loss phenomenon found in this work.Such a sudden change cannot be observed by conventional desorption analysis tools, such as thermal desorption spectrometry,[46]because they cannot work with an individual particle,and the properties of desorption vary considerably between different particles.

    6.Conclusion

    We demonstrate an electrostatic driving force assisted mass measurement method for an individual nanoparticle that does not require the knowledge of temperature.The method can be utilized in the investigation of temperature-dependent mass variation.For example, the observation of molecules desorption from a particle’s surface when the surface temperature is increased.With this method,we monitor the variation of the properties of optically levitated nanoparticles with air pressure,including mass,temperature,electric charge,calibration coefficient,and oscillation frequency.We find that there is a sudden loss of the nanoparticle’s mass when the pressure is decreased below a certain point.This phenomenon cannot be explained by the desorption of water molecules from the surface.This work provides a new tool for surface and structure analysis in nanomaterials science.

    Appendix A:Internal temperature measurement

    The internal temperature of the particle in Fig 4(b)is obtained based on the method in Ref.[32].When the particle is heated, the heat can be transferred to the colliding gas particle.This causes the difference between the temperature of impinging gas particleTimpand the temperature of the emerging gas particleTem.The relation betweenTimp,Temand the COM temperatureTCOMis

    TheTCOMis measured based on the energy equipartition theorem and the measurement result of the particle’s mass.The temperature of impinging gas particles equals the room temperature (293 K in our experiment).Thus, we can obtain the temperature of the emerging gas particle based on Eq.(A1).

    The relationship between the gas temperatures and the surface temperature of the particleTsuris given by the accommodation coefficient

    The accommodation coefficient is known and close to 0.777.[32]Thus, we can obtain the surface temperature of the particleTsurbased on Eq.(A2).Since the particle is in nano size,the internal temperature of the particleTintwould be the same as the surface temperature.Thus, we can obtain the internal temperature of particleTint.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12104438 and 62225506),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-049),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    田原
    河流
    Efficient sampling for decision making in materials discovery*
    田原發(fā)表全新EP《2080》第二首單曲《WHY 2080》
    青年歌聲(2020年5期)2020-05-19 09:41:34
    處暑
    村上春樹的17歲
    田原:閱讀是私密的堡壘
    女友·花園(2015年5期)2015-05-30 10:48:04
    新干線上的暗戀計劃
    篆刻·書畫
    村上春樹的17歲
    尋找左紳
    久久久久精品性色| 午夜激情av网站| 纯流量卡能插随身wifi吗| 这个男人来自地球电影免费观看 | 亚洲熟女精品中文字幕| av女优亚洲男人天堂| 精品免费久久久久久久清纯 | 欧美乱码精品一区二区三区| xxxhd国产人妻xxx| 欧美中文综合在线视频| 国产女主播在线喷水免费视频网站| 国产亚洲精品第一综合不卡| 老司机深夜福利视频在线观看 | 看免费av毛片| 久久精品人人爽人人爽视色| 校园人妻丝袜中文字幕| 宅男免费午夜| 国产精品女同一区二区软件| 久久久欧美国产精品| 日本一区二区免费在线视频| 国产精品一二三区在线看| 国产日韩一区二区三区精品不卡| 在线观看国产h片| 国产成人精品久久二区二区91 | 波野结衣二区三区在线| 国产日韩欧美在线精品| 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 国产97色在线日韩免费| 国产免费又黄又爽又色| 国产亚洲午夜精品一区二区久久| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看| 国产精品二区激情视频| 高清不卡的av网站| 天天添夜夜摸| 亚洲精品国产av成人精品| 岛国毛片在线播放| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 熟女av电影| 亚洲精品av麻豆狂野| 香蕉丝袜av| 亚洲一区中文字幕在线| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| 免费黄频网站在线观看国产| 国产精品欧美亚洲77777| 亚洲国产精品999| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 欧美日韩精品网址| 欧美精品一区二区免费开放| 18禁观看日本| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 久久综合国产亚洲精品| 亚洲中文av在线| 老司机深夜福利视频在线观看 | 亚洲av电影在线观看一区二区三区| 看免费成人av毛片| 欧美人与性动交α欧美软件| 久久天躁狠狠躁夜夜2o2o | 天天躁日日躁夜夜躁夜夜| 精品福利永久在线观看| 999精品在线视频| 中国三级夫妇交换| 国产精品久久久人人做人人爽| 91老司机精品| 欧美激情高清一区二区三区 | 国产高清不卡午夜福利| 中文乱码字字幕精品一区二区三区| 大香蕉久久成人网| 九九爱精品视频在线观看| 亚洲av福利一区| 亚洲久久久国产精品| 久久精品国产综合久久久| 天天躁夜夜躁狠狠久久av| 国产欧美日韩一区二区三区在线| 日韩大片免费观看网站| 久久天堂一区二区三区四区| 色播在线永久视频| 婷婷色麻豆天堂久久| 在线观看www视频免费| 男人操女人黄网站| 国产又爽黄色视频| 日本爱情动作片www.在线观看| 国产av精品麻豆| 久久久精品区二区三区| 色吧在线观看| 99re6热这里在线精品视频| 最近手机中文字幕大全| 91aial.com中文字幕在线观看| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 日韩熟女老妇一区二区性免费视频| 国产老妇伦熟女老妇高清| 国产熟女午夜一区二区三区| a级毛片在线看网站| 亚洲av日韩精品久久久久久密 | 久久久久网色| 丝袜美足系列| 国产一区二区在线观看av| 久久久久精品人妻al黑| 国产 精品1| 最近最新中文字幕免费大全7| 国产av一区二区精品久久| 一本大道久久a久久精品| 久久久久精品久久久久真实原创| 久久天堂一区二区三区四区| 欧美国产精品va在线观看不卡| 99精品久久久久人妻精品| 免费观看av网站的网址| 日韩一本色道免费dvd| 波野结衣二区三区在线| 国产一区二区三区综合在线观看| 午夜福利一区二区在线看| 久久久国产欧美日韩av| 狠狠精品人妻久久久久久综合| av电影中文网址| 色婷婷av一区二区三区视频| 岛国毛片在线播放| 国产一级毛片在线| 搡老乐熟女国产| 男女免费视频国产| 在线观看人妻少妇| 啦啦啦中文免费视频观看日本| 国产黄色免费在线视频| 精品视频人人做人人爽| 大片免费播放器 马上看| 婷婷色综合大香蕉| 黄片小视频在线播放| 2021少妇久久久久久久久久久| 亚洲国产av新网站| 国产一区二区三区综合在线观看| 韩国高清视频一区二区三区| 激情五月婷婷亚洲| 久久精品国产亚洲av高清一级| 亚洲伊人色综图| av在线播放精品| 制服诱惑二区| 少妇被粗大的猛进出69影院| 美女国产高潮福利片在线看| 国产一区亚洲一区在线观看| 人体艺术视频欧美日本| 亚洲国产精品国产精品| 中文字幕av电影在线播放| 久久性视频一级片| 熟女av电影| 久久久精品区二区三区| 成人影院久久| 18在线观看网站| 国产精品久久久人人做人人爽| 午夜激情av网站| 国产精品欧美亚洲77777| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 国产一区亚洲一区在线观看| 精品免费久久久久久久清纯 | 国产亚洲av片在线观看秒播厂| 嫩草影院入口| 亚洲av男天堂| 中文字幕另类日韩欧美亚洲嫩草| 精品亚洲成a人片在线观看| 亚洲综合精品二区| 精品午夜福利在线看| 满18在线观看网站| 日韩电影二区| 一本大道久久a久久精品| 精品午夜福利在线看| 成人毛片60女人毛片免费| 两个人免费观看高清视频| 少妇 在线观看| 两个人看的免费小视频| 婷婷色综合大香蕉| 久久精品人人爽人人爽视色| 91成人精品电影| 在现免费观看毛片| 国产成人欧美在线观看 | 久久久久国产一级毛片高清牌| 亚洲av日韩在线播放| 精品人妻在线不人妻| 丰满饥渴人妻一区二区三| 黄色怎么调成土黄色| 日韩伦理黄色片| 九草在线视频观看| 日日啪夜夜爽| 看免费av毛片| 日韩人妻精品一区2区三区| 午夜福利乱码中文字幕| av国产精品久久久久影院| 麻豆av在线久日| 新久久久久国产一级毛片| 色婷婷久久久亚洲欧美| 丰满乱子伦码专区| 欧美日韩视频精品一区| 午夜福利免费观看在线| 国产乱人偷精品视频| 卡戴珊不雅视频在线播放| 亚洲色图 男人天堂 中文字幕| 成人免费观看视频高清| 亚洲国产毛片av蜜桃av| 丰满少妇做爰视频| 超碰97精品在线观看| 人人妻,人人澡人人爽秒播 | 亚洲 欧美一区二区三区| 国产免费一区二区三区四区乱码| 天堂8中文在线网| 成年女人毛片免费观看观看9 | 亚洲精品日韩在线中文字幕| 美女中出高潮动态图| 久久人人爽人人片av| 卡戴珊不雅视频在线播放| 久久久国产一区二区| 国产精品无大码| 亚洲成人av在线免费| 老鸭窝网址在线观看| 日韩大片免费观看网站| 欧美中文综合在线视频| 久久久久久久精品精品| 91精品伊人久久大香线蕉| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说| 在线亚洲精品国产二区图片欧美| 国产精品嫩草影院av在线观看| 久久综合国产亚洲精品| 各种免费的搞黄视频| 青草久久国产| 香蕉丝袜av| 亚洲久久久国产精品| 久久国产精品男人的天堂亚洲| 亚洲精品在线美女| 亚洲自偷自拍图片 自拍| 91老司机精品| 啦啦啦在线观看免费高清www| 欧美日韩视频精品一区| 高清黄色对白视频在线免费看| 国产探花极品一区二区| 国产精品久久久av美女十八| 亚洲精品国产av成人精品| 高清不卡的av网站| 欧美少妇被猛烈插入视频| 熟女少妇亚洲综合色aaa.| 成人黄色视频免费在线看| 天堂中文最新版在线下载| 十八禁网站网址无遮挡| 成年动漫av网址| 悠悠久久av| 亚洲欧美精品综合一区二区三区| 精品卡一卡二卡四卡免费| 久久午夜综合久久蜜桃| 国产成人91sexporn| 国产精品无大码| 中文天堂在线官网| 亚洲成色77777| 宅男免费午夜| 日韩 欧美 亚洲 中文字幕| 韩国精品一区二区三区| 麻豆乱淫一区二区| 可以免费在线观看a视频的电影网站 | 亚洲图色成人| 亚洲精品中文字幕在线视频| 九色亚洲精品在线播放| 又黄又粗又硬又大视频| 国产成人a∨麻豆精品| 欧美久久黑人一区二区| 一边亲一边摸免费视频| 日韩一卡2卡3卡4卡2021年| 久久99精品国语久久久| 永久免费av网站大全| 久久av网站| 久久国产精品男人的天堂亚洲| 日韩制服丝袜自拍偷拍| 欧美人与善性xxx| av福利片在线| 亚洲自偷自拍图片 自拍| 青春草视频在线免费观看| 99精国产麻豆久久婷婷| 国产在线视频一区二区| 熟女av电影| 精品人妻在线不人妻| 免费少妇av软件| 午夜福利视频在线观看免费| 天天躁夜夜躁狠狠躁躁| 国产无遮挡羞羞视频在线观看| 最近2019中文字幕mv第一页| 五月天丁香电影| 国产精品久久久久成人av| av卡一久久| 亚洲,一卡二卡三卡| 黄片播放在线免费| 久久ye,这里只有精品| 欧美日韩亚洲国产一区二区在线观看 | 两个人免费观看高清视频| 国产日韩欧美在线精品| 国产亚洲av片在线观看秒播厂| 嫩草影视91久久| 男人舔女人的私密视频| 婷婷成人精品国产| 久久精品久久久久久久性| 国产精品免费视频内射| 美女国产高潮福利片在线看| 99久国产av精品国产电影| 精品久久久精品久久久| 午夜91福利影院| 亚洲成人手机| 一二三四中文在线观看免费高清| 黑人欧美特级aaaaaa片| 国产视频首页在线观看| 国产精品 欧美亚洲| 2018国产大陆天天弄谢| 精品久久蜜臀av无| 亚洲综合色网址| 国产亚洲欧美精品永久| 2018国产大陆天天弄谢| 久久久国产一区二区| www.精华液| 久久久精品94久久精品| 久久久久精品国产欧美久久久 | 丰满迷人的少妇在线观看| 国产视频首页在线观看| 国产精品一区二区在线不卡| 国产片内射在线| 丰满迷人的少妇在线观看| 午夜免费鲁丝| 校园人妻丝袜中文字幕| 少妇 在线观看| 亚洲精品美女久久久久99蜜臀 | 纵有疾风起免费观看全集完整版| 色婷婷av一区二区三区视频| 高清不卡的av网站| 啦啦啦在线观看免费高清www| 成人三级做爰电影| 国产亚洲最大av| 观看美女的网站| 热re99久久国产66热| 女人爽到高潮嗷嗷叫在线视频| 欧美乱码精品一区二区三区| 在现免费观看毛片| 精品少妇一区二区三区视频日本电影 | 91老司机精品| av卡一久久| 国产精品熟女久久久久浪| 日韩 亚洲 欧美在线| 国产av一区二区精品久久| 亚洲精品自拍成人| 日韩av免费高清视频| 不卡av一区二区三区| 国产日韩欧美亚洲二区| 90打野战视频偷拍视频| 亚洲欧洲国产日韩| 黄色毛片三级朝国网站| av在线app专区| 秋霞伦理黄片| 免费在线观看完整版高清| 国产成人精品在线电影| 男女下面插进去视频免费观看| 超色免费av| 性少妇av在线| 亚洲精品国产色婷婷电影| 高清不卡的av网站| 2021少妇久久久久久久久久久| 免费黄色在线免费观看| 亚洲专区中文字幕在线 | 午夜av观看不卡| 精品久久久久久电影网| 欧美中文综合在线视频| 啦啦啦中文免费视频观看日本| 精品久久久精品久久久| 少妇 在线观看| 国产爽快片一区二区三区| 免费少妇av软件| 亚洲精品美女久久久久99蜜臀 | 考比视频在线观看| 国产一区二区激情短视频 | 一级毛片电影观看| 久久 成人 亚洲| 曰老女人黄片| 午夜精品国产一区二区电影| 久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 精品国产一区二区三区久久久樱花| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| xxxhd国产人妻xxx| 高清不卡的av网站| 丝袜脚勾引网站| 男人舔女人的私密视频| 秋霞伦理黄片| 久久久久久久久久久免费av| 老鸭窝网址在线观看| 日韩精品有码人妻一区| 免费久久久久久久精品成人欧美视频| 免费观看性生交大片5| 女性被躁到高潮视频| 悠悠久久av| 日韩欧美一区视频在线观看| 亚洲av日韩精品久久久久久密 | 老司机靠b影院| 美女午夜性视频免费| 不卡视频在线观看欧美| 国产成人精品久久二区二区91 | 大片电影免费在线观看免费| 久久97久久精品| 国产精品99久久99久久久不卡 | 亚洲av中文av极速乱| 久久这里只有精品19| 制服人妻中文乱码| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| 久热这里只有精品99| 人体艺术视频欧美日本| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| 在线观看免费高清a一片| 国产亚洲av高清不卡| 在线观看一区二区三区激情| 国产在线免费精品| 国产极品天堂在线| 亚洲av福利一区| 色播在线永久视频| 在线观看www视频免费| 男女无遮挡免费网站观看| 免费高清在线观看日韩| 国产精品一国产av| 丰满乱子伦码专区| 久久精品亚洲熟妇少妇任你| 韩国精品一区二区三区| 亚洲久久久国产精品| 一级,二级,三级黄色视频| 亚洲成国产人片在线观看| 日本爱情动作片www.在线观看| 一二三四在线观看免费中文在| 少妇精品久久久久久久| 成人免费观看视频高清| 如日韩欧美国产精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 妹子高潮喷水视频| 黄色视频不卡| 国产黄频视频在线观看| 国产男女内射视频| 老司机深夜福利视频在线观看 | 精品国产乱码久久久久久男人| 操出白浆在线播放| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 极品人妻少妇av视频| 一二三四中文在线观看免费高清| 亚洲av综合色区一区| h视频一区二区三区| 亚洲av日韩在线播放| 成人国语在线视频| 精品少妇内射三级| 亚洲精品国产av蜜桃| h视频一区二区三区| 男女免费视频国产| 大码成人一级视频| 嫩草影视91久久| 男女边摸边吃奶| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 丝袜脚勾引网站| 国产精品.久久久| 大码成人一级视频| 晚上一个人看的免费电影| 成年人免费黄色播放视频| 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 18禁观看日本| 午夜福利在线免费观看网站| 国产成人91sexporn| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 亚洲第一区二区三区不卡| av又黄又爽大尺度在线免费看| 99久国产av精品国产电影| 精品国产一区二区三区四区第35| 满18在线观看网站| 夫妻午夜视频| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 汤姆久久久久久久影院中文字幕| 成人漫画全彩无遮挡| 少妇被粗大的猛进出69影院| 又粗又硬又长又爽又黄的视频| 日日啪夜夜爽| 18在线观看网站| 亚洲自偷自拍图片 自拍| 精品人妻熟女毛片av久久网站| 777米奇影视久久| 午夜精品国产一区二区电影| 国产精品 国内视频| 久久精品国产综合久久久| 亚洲男人天堂网一区| 亚洲综合色网址| 九色亚洲精品在线播放| 欧美人与善性xxx| 一区二区av电影网| 不卡av一区二区三区| 亚洲人成网站在线观看播放| 制服诱惑二区| 99九九在线精品视频| 天天影视国产精品| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 久久精品久久久久久久性| av有码第一页| 亚洲av福利一区| 青春草国产在线视频| 国产成人精品福利久久| 各种免费的搞黄视频| 久热爱精品视频在线9| 国产成人精品福利久久| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 一级毛片我不卡| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 国产一卡二卡三卡精品 | av网站在线播放免费| 另类精品久久| 国产av精品麻豆| 国产视频首页在线观看| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 麻豆av在线久日| 99久久99久久久精品蜜桃| 国产精品久久久人人做人人爽| 久久久久精品久久久久真实原创| www日本在线高清视频| 中文字幕人妻丝袜一区二区 | 丰满饥渴人妻一区二区三| 欧美激情高清一区二区三区 | 国产亚洲av片在线观看秒播厂| 丝袜人妻中文字幕| 天天躁日日躁夜夜躁夜夜| 宅男免费午夜| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 在线天堂最新版资源| 欧美日韩视频高清一区二区三区二| 欧美av亚洲av综合av国产av | 不卡av一区二区三区| 亚洲精品美女久久久久99蜜臀 | 18在线观看网站| 美国免费a级毛片| 精品少妇黑人巨大在线播放| 精品午夜福利在线看| 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区久久| 国产伦理片在线播放av一区| 各种免费的搞黄视频| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 欧美乱码精品一区二区三区| 深夜精品福利| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 国产极品天堂在线| 久久精品亚洲熟妇少妇任你| 大香蕉久久网| 亚洲国产精品一区三区| 国产免费又黄又爽又色| 少妇人妻 视频| 国产日韩欧美视频二区| 亚洲av日韩在线播放| 男男h啪啪无遮挡| 国产成人一区二区在线| 国产精品三级大全| 少妇精品久久久久久久| 视频区图区小说| 一区二区三区激情视频| 精品福利永久在线观看| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 91老司机精品| 国产不卡av网站在线观看| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 别揉我奶头~嗯~啊~动态视频 | 99re6热这里在线精品视频| 男女边吃奶边做爰视频| 少妇精品久久久久久久| 亚洲国产av新网站| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 久久久久国产精品人妻一区二区| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 在线天堂中文资源库| 久久综合国产亚洲精品| 热99久久久久精品小说推荐| 熟女少妇亚洲综合色aaa.| 亚洲欧美色中文字幕在线| 操美女的视频在线观看| 亚洲图色成人|