• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soliton propagation for a coupled Schr¨odinger equation describing Rossby waves

    2023-09-05 08:47:12LiYangXu徐麗陽(yáng)XiaoJunYin尹曉軍NaCao曹娜andShuTingBai白淑婷
    Chinese Physics B 2023年7期

    Li-Yang Xu(徐麗陽(yáng)), Xiao-Jun Yin(尹曉軍), Na Cao(曹娜) and Shu-Ting Bai(白淑婷)

    College of Science,Inner Mongolia Agriculture University,Hohhot 010018,China

    Keywords: Hirota bilinear method,Schr¨odinger equation,soliton solution,Rossby waves

    1.Introduction

    In the last few years,Rossby waves have been the subject of our study.[1–3]The result based on the single-layer quasi geostrophic vortex equation[4]is an approximate result.For the actual ocean and atmosphere,because of the inhomogeneity of fluid density and the multi-physicality of mixed fluid,the two-layer fluid pattern is real existence.In addition, the two-layer fluid can better fit the actual atmosphere and ocean,because they play an important role in the ocean atmospheric fluctuation, especially in the deep-sea internal wave theory.The two-layer fluid model attracts much attention from scholars.For example,Yanget al.derived a set of time-space fractional coupled generalized Zakharov–Kuznetsov equations to explore the Rossby waves’property in two-layer fluids and obtained group solutions for them,[5]derived(2+1)-dimensional coupled Boussinesq equations describing Rossby waves in a two-layer cylindrical fluid and gave their exact solutions,[6]then derived coupled Kadomtsev–Petviashvili equations and gave their soliton solutions.[7]We notice that a Boussinesq equation of Rossby waves can be written as

    wherexis the coordinate in latitudinal direction,zrepresents the coordinate in vertical direction;tdonates the time;uandwrepresent the velocities inxandzdirections,respectively;T′is the temperature perturbation.The perturbation pressure,density, zonal mean background temperature, gravitational constant,dry adiabatic lapse rate,and moist lapse rate are all donated byp′,ρ0,T0,g,γd,andγ,respectively.[8]

    A coupled nonlinear Schr¨odinger(CNLS)equation[9]can be derived from the Boussinesq equation and can also be obtained from the literature,[10]that is,

    the coefficientsα1andα2are dispersion coefficients,σ1andΓ2are Landau constants,Γ1andσ2are interaction coefficients.[9]Equation (2) can be obtained through optical waves[11]or large-scale Rossby waves.[9]

    Research of the CNLS equation in aspects of physics and mathematics is of continuous interest because of the science applying in many fields such as nonlinear optics,[12–15]optical communication,[16–19]Bose–Einstein condensates,[20,21]and plasma physics.[22,23]

    The system (2) has received great attention by many researchers.For example, the symmetries and symmetry reductions have been obtained, and some exact solutions have been given by using the classical Lie group approach,[8]while there is little analysis of the solutions for the equation.In Ref.[24], two CNLS equations which are also a special case of the system(2)were discussed about the integrability properties through Painlev′e analysis.At the same time, their accompanying B¨acklund transformation and the Hirota bilinear forms were build.In Ref.[25],Louet al.also investigated the system’s Painlev′e integrability.

    Introducing a transformation

    whereB=B(X,T).

    Using the above transformation, letu(X,T)=A1(X,T),v(X,T)=B(X,T),the system(2)is transformed into

    By using the inverse scattering transform approach,equation(4)is typically not integrable,with the exception of high symmetry instancesα1=α2=±1,σ1=Γ2=σ2=Γ1=±1,a periodic travelling wave solution in terms of the Weierstrass function has been obtained.[26]Then, Makhankov found that equation(4)is completely integrable and gave the corresponding Lax pair.[27,28]

    Whenα1=α2= 1, equation (4) reads the Manakov model.[29]Whenσ1=Γ2=σ2=Γ1=1, equation (4) reads the focusing Manakov model.Whenσ1=Γ2=σ2=Γ1=?1,equation (4) is of the defocusing Manakov model.Whenσ1=Γ2=1,σ2=Γ1=?1 orσ1=Γ2=?1,σ2=Γ1=1,equation (4) is of the mixed Manakov model.[30,31]The focusing Manakov model has bright-bright solitons.[29]Brightdark and dark-dark soliton solutions are supported by the defocusing Manakov model.[32]However,in the mixed case,the Manakov model admits bright-bright soliton,bright-dark soliton, and dark-dark soliton solutions.[17,18,30]Feng considered a generalN-soliton solution to a vector Schr¨odinger equation,following that, extended to the multi-component case, of allfocusing,all-defocusing and mixed types by the KP hierarchy reduction approach.[31]Researchers have used different methods to solve the equations in the literature.[17,18,30,31]However,as far as we are aware,they have not provide the three-solution solutions and do not work on the two-soliton and three-soliton solutions’ propagations.There are other methods for solving nonlinear equations,[33]but recently the Hirota bilinear method seems to be used more frequently.[34–42]Some scholars have recently focused on soliton solutions,[37–42]especially multiple solitons and their interactions.[37,41,42]As a result,we seek to provide two-soliton and three-soliton solutions and to study their propagations for Eq.(4).

    The Hirota bilinear method was firstly used by Hirota for searching exact solutions to the Korteweg–de Vries equation,[43]then the method was widely used to solve various equations.Settingα1=α2,σ1=Γ2,σ2=Γ1,X=x,T=t,then equation(4)changes to

    We try to find the soliton solutions for Eq.(5)as the Manakov model of all-focusing,all-defocusing and mixed types by using the Hirota bilinear approach.The plan of this paper is as follows:In Section 2,bilinear forms of the CNLS equation(5)is obtained by using variable transformation.In Section 3,exact two-soliton solutions and three-soliton solutions are presented with the Hirota bilinear method.[43]Finally,analysis for the solitons and conclusions are given in Sections 4 and 5.

    2.Bilinear forms for the coupled Schr¨odinger equation

    To study the solitons for the CNLS equation, we will write the bilinear forms of the system.Firstly, the Doperators,[43]also called Hirota derivatives,are defined as

    Foruandv,we employ a dependent variable transformation

    whereg=g(x,t),h=h(x,t),f=f(x,t);gandhare the differentiable complex functions; andfis a differentiable real function.Likewise,the bilinear forms of Eq.(5)are

    where superscript*represents the conjugation of the complex function.Expandg,h,andfas the following power series in a small parameter:

    wheregi=gi(x,t),hi=hi(x,t),fi=fi(x,t),i=1,2,....Substituting the expansions and Eq.(10)into Eq.(9)and collecting the terms in the same power inε,we have

    The coefficients of the same powers inεare equivalent to some linear differential equations forgi,hiorfi, by appropriately selectingg1,h1, which satisfy the equations.We can calculatef1, and then figure out the other functionsgi,hiandfi,i=2,3,...in turn.The complexity of calculating the coefficients of power series increases as the power increases, especially when the coefficients of terms have a power greater than 3.To make calculations easier, we can use symbolic calculation software.Therefrom, we give the two-soliton and threesoliton solutions for the coupled system.

    3.Soliton solutions of the coupled Schr¨odinger equation

    3.1.Two-soliton solution

    Assume

    whereθi=kix+wit,ki=ki1+iki2,wi=wi1+iwi2,kij,wij ∈R(i= 1,2,j= 1,2).Substitutingg1(x,t) andh1(x,t) into Eq.(10), we can obtainf1(x,t)=0.At the same time, we can find the relationship between the parameterskiandwi,miandni,wi=iα1k2i(i=1,2),m1/m2=n1/n2.Substitutingg1(x,t),h1(x,t) andf1(x,t) into Eq.(12), we can obtaing2(x,t),h2(x,t) andf2(x,t).Likewise, we can getgn(x,t),hn(x,t)andfn(x,t)(n=3,4,...)as follows:

    with

    We obtain the two-soliton solutions to Eq.(5)as follows:

    Without loss of generality,settingε=1,the two-soliton solution can be expressed as

    3.2.Three-soliton solution

    Assume

    whereθi=kix+wit,ki=ki1+iki2,wi=wi1+iwi2,kij,wij ∈R(i=1,2,3;j=1,2).

    Using the method in the above section, we can fnid the relationship between the parameterskiandwi,miandni,wi=iα1(i=1,2,3),===?,and

    with

    We can write the following three-soliton solutions for Eq.(5):

    Without loss of generality, settingε= 1, we can write the three-soliton solutions as

    4.Discussion

    4.1.Discussion of the two-soliton solutions

    Figure 1 presents the interaction diagram of two-soliton solutions(16)with the parametersk1=1+0.2i,k2=0.6+i,α1=n1=1,n2=1/2,m1=2.Figures 1(a), 1(b), and 1(c)show the two-soliton solutions for Eq.(5), which reflect the all-focusing Manakov model,all-defocusing Manakov model,and mixed types, respectively.Our findings corroborate the view in Ref.[29]that the all-focusing type Manakov model admits bright-bright solitons solutions and the view in Ref.[18]that mixed type ones admit bright-bright solitons solutions.Furthermore, we find that the all-defocusing type Manakov model admits bright-bright solitons solutions.Compared to Figs.1(a) and 1(b), we find that the waves amplitude of the two-soliton becomes larger when we change the value of parameterσ2from 2 to?2 and the other parameters remain unchanged.Nevertheless,the direction of propagation of waves remains unchanged.

    Figure 2 shows the interaction diagram of two-soliton solutions (16) with the same parameters as in Fig.1(a), but Fig.2(a) withk1= 2+0.2i, Fig.2(b) withk2=?2+i.Comparing the interaction between two solitons in Figs.1(a),2(a) and 2(b), we find that the amplitudes of the solitons can be controlled by changing the value of the real parts ofkj(j=1,2),that is,the amplitudes of the solitons increase with the absolute value of the real parts ofkj.When the value of the real parts ofk1increases from 1 to 2,one of the two-soliton’s amplitude increases.When the value of the real parts ofk2decreases from 0.6 to?2,the other one’s amplitude increases either.

    Comparing Figs.1(a),3(a)and 3(b),and lots of other diagrams drawn during the study, we can find that the propagation directions of solitons are determined by the imaginary part ofkj(j=1,2).When the imaginary part ofkjis equal to zero, the propagation direction of the soliton is perpendicular to thex-axis.When the imaginary part ofkjis greater than zero,the soliton’s propagation path forms an acute angle with the positivex-axis,the angle decreases with the increase of the imaginary part ofkj, and finally tends to be parallel to thex-axis.When the imaginary part ofkjis less than zero,the soliton’s propagation path forms an obtuse angle with the positivex-axis,the angle increases with the decrease of the imaginary part ofkj, and finally tends to be parallel to thex-axis.The change in the above angle seems to be positive correlation with the inverse cotangent function.

    Fig.1.Two-soliton interaction diagram via solutions(16),with k1=1+0.2i,k2=0.6+i,α1=n1=1,n2=1/2,m1=2,but(a)with σ1=2,σ2=2,(b)with σ1=2,σ2=?2,(c)with k1=0.08+0.2i,k2=0.08+i,σ1=?2,σ2=?2.

    Fig.2.Two-soliton interaction diagram shown in solutions(16)with the same parameters as in Fig.1(a),but[(a),(c)]with k1=2+0.2i and[(b),(d)]with k2=?2+i.

    Fig.3.Two-soliton interaction diagram in solutions(16)with the same parameters as in Fig.1(a),but[(a),(c)]with k1=1+2i,k2=0.6+2i,and[(b),(d)]with k1=1?2i,k2=0.6.

    Fig.4.The contour plot of the absolute value of the function u in expression(16)with the same parameters as given in Fig.1(a),but(a)with n1=?10,n2=0.5,(b)with n1=?1,n2=0.5,and(c)with n1=0.005,n2=0.5.

    Figure 4 shows the contour plot of the absolute value of the functionuin expression (16) with the same parameters as given in Fig.1(a), but Fig.4(a) withn1=?10,n2=0.5,Fig.4(b) withn1=?1,n2=0.5, Fig.4(c) withn1=0.005,n2=0.5.We find that the absolute value of the ration1/n2affects the location of the collision of two solitons,where the energies of the two solitons converge.Fixingn2and decreasing the absolute value ofn1,we find that one of the two-soliton shifts to the right,and the other one does not shift;the change of the contour plot of the absolute value of the functionvin expression (16) is the same as the functionu.When the absolute value of the ration1/n2decreases, the location of the collision of two solitons moves to right upper the coordinate surface.In addition,the value ofm1has a similar effect on the ration1/n2.

    4.2.Discussion of the three-soliton solutions

    Figure 5 portrays the interaction diagram of three-soliton solutions with the parametersk1=0.6+0.2i,k2=0.6+i,k3=0.6?0.5i,α1=?=n1=n2=n3=1,σ1=σ2=?2.By observing Fig.5, the three-soliton solutions for Eq.(4),which reads the Manakov model of all-defocusing type, we can find that the all-defocusing type Manakov model admits bright-bright-bright solitons solutions.This conclusion can be regarded as a generalization of the two-soliton case.A graph of|u|is shown in Fig.5(a),where the collision causes the amplitude of one soliton to be suppressed and the amplitude of the other two solitons to be enhanced.It is interesting to note that the graph of|v| shown in Fig.5(b) also shows the same kinds of changes.The similar phenomena of this form of intensity redistribution have surfaced in the potential application to communication signal amplification.[18]

    Figure 6 portrays the interaction diagram of three-soliton solutions (20) with the parametersσ1= 2,σ2= 2,α1=?=n1=n2=n3= 1,k3= 1.2?0.5i, but Fig.6(a) withk1=1+0.2i,k2=0.6+i, Fig.6(b) withk1=2.5+0.2i,k2=0.6+i,Fig.6(c)withk1=1+0.2i,k2=2.5+i.By observing the three-soliton solutions shown in Figs.6(a)–6(c),in comparisons of the real parts of wave numbersk1andk2shown in Figs.6(a)and 6(b),Figs.6(a)and 6(c),it can be found that the amplitudes of the solitons increase with the absolute value of the real parts ofkj(j=1,2), the result is the same as the case of two solitons.It means that the wave amplitude of the three-soliton solution is also controlled by the wave number of the real parts ofkj.

    Fig.5.Three-soliton interaction diagram via solutions(20),with k1 =0.6+0.2i,k2 =0.6+i,k3 =0.6 ?0.5i,α1 =? =n1 =n2 =n3 =1,σ1=σ2=?2.

    Fig.6.Three-soliton interaction diagram via solutions (20), for σ1 =2, σ2 =2, α1 =? =n1 =n2 =n3 =1, k3 =1.2 ?0.5i: (a) with k1=1+0.2i,k2=0.6+i,(b)with k1=2.5+0.2i,k2=0.6+i,(c)with k1=1+0.2i,k2=2.5+i.

    Fig.7.Three-soliton interaction diagram in solutions(20)with the same parameters as given in Fig.6(b),but with k1=2.5+2.5i.

    When the imaginary parts of one wave numberkj(j=1,2,3) are changed and the other parameters remain unchanged, we can control the wave to rotate.This means that the propagation directions of solitons are determined by the imaginary parts ofkj(j=1,2,3).Compared Fig.6(b) and Fig.7,when we change the imaginary part of the wave numberk1,from 0.6 to 2.5,the imaginary part value ofk1is greater than zero,the soliton’s propagation path forms an acute angle with the positivex-axis,the angle decreases with the increase of the imaginary part ofk1, and the other laws in the case of two solitons are also true.

    Figure 8 portrays the interaction diagram of three-soliton solutions(20)with the parametersk1=1+0.2i,k2=0.6+i,k3=1.2?0.5i,α1=?=1,σ1=2,σ2=2,but Fig.8(a)withn1=n2=n3=1,Fig.8(b)withn1=n3=1,n2=0.01,and Fig.8(c) withn1=n3=1,n2=100.In Figs.8(a)–8(c), we fixn1=n3=1 and change the absolute value ofn2,and it is found that one of the three solitons shifts and the other two solitons do not shift.In comparison of Figs.8(a)and 8(b),one of the three solitons shifts to the right with decrease of the absolute value ofn2.In comparison of Figs.8(a)and 8(c),one of the three solitons shifts to the left with increase of the absolute value ofn2.The change of the functionvin expression(20)is the same as the functionu.We can see that the value of the rationi/njaffects the location of the collision of three solitons,and the law is also the same as in the case of two solitons.

    Fig.8.Three-soliton interaction diagram of solutions(20),for k1 =1+0.2i,k2 =0.6+i,k3 =1.2 ?0.5i,α1 =? =1,σ1 =2,σ2 =2: (a)with n1=n2=n3=1,(b)with n1=n3=1,n2=0.01,and(c)with n1=n3=1,n2=100.

    5.Conclusions

    In summary, we have studied a coupled Schr¨odinger equation that comes from the Boussinesq equation of atmospheric gravity waves by using multiscale analysis and reduced perturbation method to describe Rossby waves.By setting values of parameters, we obtain the Manakov model of all-focusing, all-defocusing and mixed types, and utilize the Hirota bilinear method to give the two-soliton and threesoliton solutions.We find that the all-defocusing type Manakov model admits bright-bright soliton solutions.This finding has not been reported in the literature to our best knownledge.We also find that the all-defocusing type Manakov model admits bright-bright-bright soliton solutions,which can be regarded as a generalization of the two-soliton solutions.

    Then,we discuss the influence of free parameters on the wave amplitude,the propagation direction and the location of the collision in the two-soliton and three-soliton solutions for the all-focusing type Manakov model.The following conclusions are drawn:

    (i)The amplitudes of the solitons increase with the absolute value of the real parts ofkj(j=1,2,3)for the two-soliton and the three-soliton solutions.

    (ii) The propagation direction of solitons can be controlled by the imaginary part ofkj(j=1,2,3) for the twosoliton and the three-soliton solutions.

    (iii)The absolute value of the ration1/n2changes the location of the collision in the two-soliton and three-soliton solutions.

    Solitons maintain their original amplitudes, velocities,and shapes in elastic collisions, with the exception of a little phase shift following the collision.[44]From this point of view,the collisions in Figs.1(a), 1(b), 2, 3, 6, 7, and 8 are elastic,and the collisions in Figs.1(c)and 5 are inelastic.

    It is crucial to keep in mind that the Hirota bilinear method does not work whengn(x,t) =hn(x,t) =fn(x,t) =0, (n= 5,6,...) [orgn(x,t) =hn(x,t) =fn(x,t) = 0, (n=7,8,...)] are not zero in the case of solving two-soliton (or three-soliton) solutions.The result shows that the soliton propagation for the coupled Schr¨odinger equation describing Rossby waves we studied is affected by the above factors but may not limited to them.There should be more cases necessarily to be investigated.Whether the intensity redistribution phenomena we observed in Fig.5 can occur in otherNsoliton cases requires further investigation.We will investigate whetherN-soliton solutions have similar properties in another work.These conclusions are useful for setting a simulation scene in research of Rossby waves.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos.12102205 and 12161065),the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University(Grant Nos.JC2021001 and BR220126),the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2022QN01003),and the Research Program of Inner Mongolia Autonomous Region Education Department(Grant Nos.NJYT23099 and NMGIRT2208).

    18禁国产床啪视频网站| √禁漫天堂资源中文www| 美女福利国产在线| 国产精品蜜桃在线观看| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o | 看免费av毛片| 免费黄色在线免费观看| 巨乳人妻的诱惑在线观看| 波野结衣二区三区在线| 少妇人妻久久综合中文| 午夜福利视频精品| 久久人人97超碰香蕉20202| 亚洲男人天堂网一区| 国产福利在线免费观看视频| 高清av免费在线| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃| 90打野战视频偷拍视频| 国产成人91sexporn| 黄色怎么调成土黄色| 麻豆乱淫一区二区| 午夜福利,免费看| 日韩av在线免费看完整版不卡| 精品午夜福利在线看| 中文字幕高清在线视频| av在线老鸭窝| 久久99一区二区三区| 一级毛片 在线播放| 精品少妇内射三级| 男女午夜视频在线观看| 亚洲第一区二区三区不卡| 国产成人91sexporn| 亚洲国产欧美网| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| av免费观看日本| 久久热在线av| 亚洲成人一二三区av| 免费看不卡的av| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜一区二区 | 国产深夜福利视频在线观看| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 久久久久久人妻| 啦啦啦 在线观看视频| 91aial.com中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 69精品国产乱码久久久| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 亚洲一级一片aⅴ在线观看| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看| 捣出白浆h1v1| 日本色播在线视频| 亚洲成人手机| 搡老岳熟女国产| 欧美xxⅹ黑人| 少妇的丰满在线观看| 亚洲欧美清纯卡通| 免费少妇av软件| 男女之事视频高清在线观看 | 久久午夜综合久久蜜桃| 老司机靠b影院| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 中文字幕高清在线视频| 美女午夜性视频免费| 满18在线观看网站| 欧美精品av麻豆av| 妹子高潮喷水视频| 伦理电影大哥的女人| 少妇人妻 视频| 中文字幕高清在线视频| 青春草视频在线免费观看| 高清黄色对白视频在线免费看| 色综合欧美亚洲国产小说| 女性被躁到高潮视频| 亚洲国产看品久久| 一级,二级,三级黄色视频| 中国国产av一级| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 亚洲国产欧美网| 亚洲成人免费av在线播放| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 一级黄片播放器| 欧美激情 高清一区二区三区| 久久性视频一级片| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品自产自拍| 成人影院久久| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品 | 久久人人爽av亚洲精品天堂| 五月天丁香电影| 国产一区有黄有色的免费视频| 久久人妻熟女aⅴ| 国产成人啪精品午夜网站| 少妇 在线观看| 亚洲,欧美精品.| 久久精品亚洲av国产电影网| 99久久99久久久精品蜜桃| 亚洲精品国产av蜜桃| 成年动漫av网址| 成人亚洲精品一区在线观看| 久久久久视频综合| 秋霞在线观看毛片| 久久久国产精品麻豆| 日日撸夜夜添| 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲 | 搡老乐熟女国产| 美女视频免费永久观看网站| 在线天堂最新版资源| 成人三级做爰电影| 亚洲精品国产区一区二| 亚洲av电影在线进入| 中国三级夫妇交换| 在现免费观看毛片| 亚洲成av片中文字幕在线观看| 欧美日韩视频精品一区| 嫩草影院入口| 一区福利在线观看| 黄片无遮挡物在线观看| 熟女少妇亚洲综合色aaa.| 一本久久精品| 人妻一区二区av| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 日本91视频免费播放| 久久久亚洲精品成人影院| 欧美久久黑人一区二区| 午夜福利视频在线观看免费| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 伊人久久国产一区二区| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 国产成人精品久久二区二区91 | 日韩精品免费视频一区二区三区| 国产 一区精品| 精品卡一卡二卡四卡免费| 少妇精品久久久久久久| 日本av免费视频播放| 9191精品国产免费久久| 蜜桃在线观看..| 99香蕉大伊视频| 王馨瑶露胸无遮挡在线观看| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 一二三四中文在线观看免费高清| 久久精品aⅴ一区二区三区四区| 一区二区三区精品91| 丁香六月欧美| 精品人妻在线不人妻| 成人手机av| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区| 卡戴珊不雅视频在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 美女主播在线视频| 不卡av一区二区三区| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 赤兔流量卡办理| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 午夜福利免费观看在线| 搡老乐熟女国产| 亚洲伊人色综图| 亚洲综合精品二区| 1024香蕉在线观看| 各种免费的搞黄视频| 秋霞在线观看毛片| 亚洲七黄色美女视频| 成人18禁高潮啪啪吃奶动态图| 伊人久久国产一区二区| 制服诱惑二区| 超碰成人久久| 亚洲,欧美精品.| 桃花免费在线播放| 妹子高潮喷水视频| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 免费少妇av软件| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 欧美激情 高清一区二区三区| 色婷婷av一区二区三区视频| 超碰97精品在线观看| 人体艺术视频欧美日本| 精品一区在线观看国产| 无遮挡黄片免费观看| 91国产中文字幕| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 国产男人的电影天堂91| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 黄色毛片三级朝国网站| 国产毛片在线视频| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 国产极品天堂在线| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 欧美av亚洲av综合av国产av | 十八禁高潮呻吟视频| 老鸭窝网址在线观看| 中文字幕高清在线视频| 不卡视频在线观看欧美| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 1024视频免费在线观看| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 国产成人91sexporn| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 看免费av毛片| 尾随美女入室| 亚洲国产中文字幕在线视频| 精品亚洲成a人片在线观看| av在线观看视频网站免费| 一区二区三区乱码不卡18| 亚洲精品一二三| 国产97色在线日韩免费| www.自偷自拍.com| 91aial.com中文字幕在线观看| 在线 av 中文字幕| 亚洲成人av在线免费| 中国国产av一级| 搡老岳熟女国产| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 欧美激情极品国产一区二区三区| 91老司机精品| 秋霞伦理黄片| 爱豆传媒免费全集在线观看| av在线app专区| 满18在线观看网站| 成人漫画全彩无遮挡| av在线老鸭窝| 日本色播在线视频| 一区二区三区乱码不卡18| a级片在线免费高清观看视频| 色吧在线观看| 九九爱精品视频在线观看| av在线观看视频网站免费| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 成人漫画全彩无遮挡| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 亚洲专区中文字幕在线 | 亚洲美女搞黄在线观看| 99香蕉大伊视频| 亚洲精品第二区| 制服丝袜香蕉在线| 中文字幕精品免费在线观看视频| 国产成人精品在线电影| 久久97久久精品| 宅男免费午夜| 精品午夜福利在线看| 亚洲av成人不卡在线观看播放网 | 国产精品久久久久久人妻精品电影 | 精品人妻一区二区三区麻豆| 操出白浆在线播放| 亚洲精品中文字幕在线视频| 婷婷色麻豆天堂久久| 老司机深夜福利视频在线观看 | 欧美激情 高清一区二区三区| 色综合欧美亚洲国产小说| 国产乱人偷精品视频| 99香蕉大伊视频| 亚洲三区欧美一区| 婷婷色麻豆天堂久久| 老司机影院成人| 亚洲成色77777| 久久人人爽av亚洲精品天堂| 亚洲第一青青草原| 亚洲av电影在线观看一区二区三区| 国产淫语在线视频| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 亚洲欧洲国产日韩| 久久久久久人人人人人| 欧美日韩福利视频一区二区| 999精品在线视频| 满18在线观看网站| 中文乱码字字幕精品一区二区三区| 国产av精品麻豆| 国产99久久九九免费精品| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 免费少妇av软件| 日韩大片免费观看网站| 一个人免费看片子| 最新在线观看一区二区三区 | 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 亚洲五月色婷婷综合| 美女大奶头黄色视频| 最近手机中文字幕大全| 美女脱内裤让男人舔精品视频| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av涩爱| 国产片内射在线| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 少妇人妻 视频| 中文字幕亚洲精品专区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一级毛片在线| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 国产成人91sexporn| 亚洲图色成人| 国产麻豆69| 18禁动态无遮挡网站| 日本色播在线视频| 久久久久久人人人人人| 亚洲av成人精品一二三区| 悠悠久久av| 亚洲天堂av无毛| 婷婷色av中文字幕| 午夜av观看不卡| 国产乱来视频区| 色精品久久人妻99蜜桃| 欧美成人午夜精品| 欧美日韩成人在线一区二区| 免费看av在线观看网站| 99精品久久久久人妻精品| 夫妻性生交免费视频一级片| 精品国产国语对白av| 亚洲av电影在线进入| 亚洲成人手机| 在线天堂最新版资源| av电影中文网址| 叶爱在线成人免费视频播放| 欧美国产精品va在线观看不卡| 国产熟女欧美一区二区| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 日本欧美国产在线视频| 伊人亚洲综合成人网| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 久久久久网色| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 美女大奶头黄色视频| 日韩 亚洲 欧美在线| 男女边摸边吃奶| 亚洲欧美精品综合一区二区三区| av在线观看视频网站免费| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 亚洲欧美激情在线| 国产精品无大码| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 欧美精品高潮呻吟av久久| 自拍欧美九色日韩亚洲蝌蚪91| 搡老岳熟女国产| 高清av免费在线| 人妻 亚洲 视频| 亚洲欧洲精品一区二区精品久久久 | 成年美女黄网站色视频大全免费| 女性被躁到高潮视频| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 亚洲精品,欧美精品| 精品国产超薄肉色丝袜足j| 青草久久国产| 中文字幕亚洲精品专区| 七月丁香在线播放| 国产又爽黄色视频| 夫妻午夜视频| 黄片小视频在线播放| xxxhd国产人妻xxx| 老司机影院毛片| 一级毛片我不卡| 国产免费福利视频在线观看| 97人妻天天添夜夜摸| 丝袜人妻中文字幕| 亚洲av综合色区一区| 免费观看a级毛片全部| 伊人久久大香线蕉亚洲五| 色婷婷av一区二区三区视频| 日韩电影二区| √禁漫天堂资源中文www| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 性高湖久久久久久久久免费观看| 一级毛片我不卡| 亚洲av日韩在线播放| 国产精品免费视频内射| 久久性视频一级片| 亚洲av成人不卡在线观看播放网 | 婷婷色综合大香蕉| 成年av动漫网址| 最近最新中文字幕免费大全7| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 免费在线观看完整版高清| 观看美女的网站| 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 久久天躁狠狠躁夜夜2o2o | 国产在线视频一区二区| 99久久综合免费| 国产高清不卡午夜福利| 国产精品嫩草影院av在线观看| 国产成人精品久久二区二区91 | 男女免费视频国产| 97精品久久久久久久久久精品| 久久99精品国语久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲欧洲国产日韩| 日韩视频在线欧美| 成人国产av品久久久| 不卡视频在线观看欧美| 综合色丁香网| 国产成人精品福利久久| 不卡av一区二区三区| 久久精品人人爽人人爽视色| 美国免费a级毛片| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| 日韩人妻精品一区2区三区| 亚洲av综合色区一区| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av| 成人免费观看视频高清| 丰满少妇做爰视频| 久久天躁狠狠躁夜夜2o2o | 1024香蕉在线观看| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区黑人| 亚洲一级一片aⅴ在线观看| 伊人久久国产一区二区| 久久这里只有精品19| 国产野战对白在线观看| 伦理电影免费视频| 亚洲av日韩精品久久久久久密 | 九色亚洲精品在线播放| 在线观看免费日韩欧美大片| 九九爱精品视频在线观看| 亚洲精品乱久久久久久| 尾随美女入室| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 日韩一区二区三区影片| 国产极品粉嫩免费观看在线| 日韩 欧美 亚洲 中文字幕| 国产精品女同一区二区软件| 欧美黄色片欧美黄色片| 91精品伊人久久大香线蕉| 亚洲一码二码三码区别大吗| 激情视频va一区二区三区| 精品久久久久久电影网| 亚洲精品久久成人aⅴ小说| 欧美久久黑人一区二区| 丝袜美腿诱惑在线| 黄色视频在线播放观看不卡| 亚洲熟女精品中文字幕| 波多野结衣av一区二区av| 国产高清国产精品国产三级| 午夜福利在线免费观看网站| 欧美日韩精品网址| 日韩伦理黄色片| 欧美97在线视频| 欧美精品av麻豆av| 亚洲成色77777| 男人爽女人下面视频在线观看| 色精品久久人妻99蜜桃| 国产成人欧美| 中文字幕色久视频| 亚洲,欧美精品.| 欧美乱码精品一区二区三区| 亚洲精品自拍成人| 狂野欧美激情性bbbbbb| 天天操日日干夜夜撸| 一区二区三区激情视频| 亚洲国产av影院在线观看| 久久精品熟女亚洲av麻豆精品| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 免费看av在线观看网站| 精品久久蜜臀av无| 国产在线视频一区二区| 99久国产av精品国产电影| 中文欧美无线码| 波多野结衣av一区二区av| 搡老乐熟女国产| 亚洲成人av在线免费| 一级a爱视频在线免费观看| 婷婷色综合大香蕉| avwww免费| 久久青草综合色| 肉色欧美久久久久久久蜜桃| 国产无遮挡羞羞视频在线观看| 少妇人妻 视频| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看 | 毛片一级片免费看久久久久| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 午夜激情久久久久久久| 大香蕉久久网| 热99国产精品久久久久久7| 日本色播在线视频| 国产免费又黄又爽又色| 高清不卡的av网站| 天天躁夜夜躁狠狠久久av| 亚洲专区中文字幕在线 | www.av在线官网国产| 欧美人与性动交α欧美软件| 波多野结衣一区麻豆| 日韩视频在线欧美| 中文字幕av电影在线播放| 美女大奶头黄色视频| www.自偷自拍.com| 国产成人91sexporn| 国产免费又黄又爽又色| 午夜久久久在线观看| 国产又爽黄色视频| 黄色视频不卡| 多毛熟女@视频| 久久毛片免费看一区二区三区| 成年女人毛片免费观看观看9 | 亚洲精品国产一区二区精华液| 熟女av电影| 久久精品久久精品一区二区三区| 老汉色av国产亚洲站长工具| 丁香六月欧美| 久久久久精品人妻al黑| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区久久| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 免费女性裸体啪啪无遮挡网站| 99久国产av精品国产电影| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 又大又爽又粗| 黄网站色视频无遮挡免费观看| 国产精品国产三级专区第一集| 飞空精品影院首页| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 黑人猛操日本美女一级片| 中文字幕人妻丝袜一区二区 | 国产精品香港三级国产av潘金莲 | 中文字幕av电影在线播放| 国产成人精品在线电影| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 桃花免费在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 天天躁日日躁夜夜躁夜夜| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 午夜激情久久久久久久| 欧美日本中文国产一区发布| 水蜜桃什么品种好| 亚洲一级一片aⅴ在线观看| 岛国毛片在线播放| 国产精品一区二区精品视频观看| 十分钟在线观看高清视频www| 在线天堂中文资源库| 99热全是精品| 日韩中文字幕视频在线看片| 黄色一级大片看看| 侵犯人妻中文字幕一二三四区| 99热网站在线观看| 亚洲在久久综合| 水蜜桃什么品种好|