• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new method of constructing adversarial examples for quantum variational circuits

    2023-09-05 08:47:24JingeYan顏金歌LiliYan閆麗麗andShibinZhang張仕斌
    Chinese Physics B 2023年7期

    Jinge Yan(顏金歌), Lili Yan(閆麗麗),?, and Shibin Zhang(張仕斌)

    1School of Cybersecurity,Chengdu University of Information Technology,Sichuan 610000,China

    2Advanced Cryptography and System Security Key Laboratory of Sichuan Province,Sichuan 610000,China

    Keywords: quantum variational circuit,adversarial examples,quantum machine learning,quantum circuit

    1.Introduction

    Quantum physics and machine learning are currently a focus of research, and based on these a new research field called quantum machine learning has been proposed.[1,2]Machine learning has developed rapidly over the past 20 years.It has solved many challenging problems and effectively promoted the development of artificial intelligence.[3–5]However,some machine learning algorithms are too complex to be implemented on classical computers in a reasonable time.[6]In addition, with the development of machine learning the network structure, parameters and algorithms of machine learning models are becoming larger and more complex.Generally, accurate models can only be trained with the support of a large number of data and calculations, which requires a lot of resources.Therefore, the development of machine learning is limited by the classical computer.Fortunately, the development of quantum computing has solved the above problems faced by machine learning.[7,8]Quantum computers can reduce the time required for large and complex machine learning algorithms.Quantum machine learning has achieved rapid progress in the past 10 years.Based on quantum properties such as quantum superposition, quantum entanglement and quantum measurement, many quantum machine learning algorithms have been proposed,[9,10]for example, Shor, Grover and HHL.[11,12]Quantum walks are another recent example.[13]Researchers have also designed some quantum machine learning algorithms based on classical machine learning algorithms,such as quantum support vector machine[14–16]and quantum principal component analysis.[17]Compared with classical algorithms,these algorithms achieve exponential acceleration.Quantum neural networks are an important branch of quantum machine learning.There are many kinds of quantum neural networks.[18–20]Most of them are constructed using quantum circuits, and the function of the neuron is replaced by quantum gates, with the angles of the quantum gates being the neural parameters.They take quantum states as input data, some take quantum states as output and some take the probabilities of measuring quantum bits as output.[21,22]Recently researchers have found that parameterized quantum circuits, i.e., quantum variational circuits, can be regarded as a kind of quantum neural network.[23]With the development of quantum hardware and corresponding software,quantum variational circuits will have broad application prospects.[24–27]

    In classical machine learning it has been found that machine learning models are vulnerable.Adding a small and imperceptible perturbation to the input of a machine learning model may cause incorrect output of the model.In 2004,Dalviet al.found that linear classifiers are prone to errors in classification results caused by some carefully constructed perturbations.[28]Therefore, how to construct such perturbations and how to make the machine learning model highly robust against such perturbations have become new topics in machine learning research.This has given rise to the emerging field of adversarial machine learning.Szegedyet al.found an obvious example of perturbation in a deep learning environment for the first time, proving the vulnerability of machine learning.They took an image of a panda as the input of a machine learning model and added a small perturbation (imperceptible to the human eye)to it,and the model mistakenly identified it as a gibbon.[29–31]In quantum machine learning it has also been found that the quantum machine learning model is vulnerable to attack by a small imperceptible perturbation which makes the model output incorrect.[32]The example after the addition of a perturbation is called the adversarial example,and the key point in constructing adversarial examples is to obtain the gradient of the loss function with respect to featuresxof the examples.Siruiet al.obtained this gradient by an automatic differentiation method[33]in a classical computer,and they provide a thorough investigation of adversarial examples and attacks on quantum machine learning models.[34]

    In this paper,we propose an innovative method to obtain the gradient,which is realized by quantum circuits in a quantum computer.Firstly, a series of quantum circuits are constructed according to the number of gradient components,and the measurement expectation of a qubit in each quantum circuit is obtained.Finally,the gradient is obtained according to the expectation.Analysis shows that this method is better than the existing automatic differential method and finite difference method.

    2.Existing research

    Suppose there is a trained quantum machine learning model;it is necessary to encodeNfeatures of normalized datax=(x1,x2,...,xN) into a quantum state|?(x)〉=∑Ni=1xi|i〉by amplitude encoding,[35]taking|?(x)〉as its input.Its loss functionL(|?(x)〉,θ,y) is determined by its trained parametersθand the model inputxand labely.To construct a suitable adversarial example, we only need to search for a small perturbationδwithin an appropriate regionΔand add it to|?(x)〉, which makes the value of loss function as large as possible so that the output of the model can deviate from the labely:

    We add the perturbationδtoxthen the adversarial example

    can be obtained.Specifically,the exact perturbationδcan be obtained by evaluating the gradient of the loss function with respect toxand multiplying it by a perturbation factorε;εdetermines the magnitude of perturbation

    A quantum variational circuit can also be regarded as a quantum machine learning model,it consists of three parts:

    (i)A prepared quantum state|?(x)〉as its input.

    (ii)A quantum circuitU(θ),which is parameterized by a set of free parametersθas its model.

    (iii)Measurement of an observableMat the output as its output; this observable may be made up from local observables for each wire in the circuit, or just a subset of wires.It can be written as〈?(x)|U(θ)?MU(θ)|?(x)〉.

    A simple example of a quantum variational circuit can be seen in Fig.1.It takes the expectation of a Pauli-Zbased measurement of just one wire as output and such a model can be a classifier.

    Fig.1.A simple example of quantum variational circuit.

    To train such a quantum variational circuit, we need to evaluate the gradient of the loss function with respect to parametersθ,and the parameter-shift method[36]is usually used for this:

    whereL(|?(x)〉,θ,y) is the loss function,?is a single parameter of parametersθ,|?(x)〉is the input andyis the label.We assume that the parameters of the quantum variational circuit have been trained well.To construct adversarial examples,we only need to define a perturbation factorε, then evaluate the gradients of the loss function with respect toxaccording to Eq.(3)to obtainδand then add it to|?(x)〉to get the adversarial example|?(x′)〉.Existing research[34]on evaluating the gradient of the loss function with respect toxuses the automatic differentiation method,[33]which is a method of calculating the gradient in classical computers by differentiating.

    3.The proposed method

    In this section,we propose a new method to evaluate the gradient of the loss function with respect toxfor quantum variational circuits and compare it with existing methods.

    Suppose there is a trained quantum variational circuit.It takes|?(x)〉 = ∑1xi|i〉 as input and the outputy′=〈?(x)|U(θ)?MU(θ)|?(x)〉, so its loss function?can be written as

    whereyis the label of the input datax.The gradient of?with respect toxis ?x?=(??/?x1,??/?x2,...,??/?xN), and each component of the vector is??/?xi=(y′?y)κi, wherei=1,2,...,Nandκiis

    where|A〉=U(θ)?|?(x)〉/?xiand|B〉=U(θ)|?(x)〉.Obviously the key point to getting??/?xiis to obtainκi.Next,we will introduce a method to obtainκi.

    Firstly,nqubits|0〉called the‘data register’and one|0〉called the‘a(chǎn)ncilla qubit’are prepared,wheren=log2N.Next,we operate a Hadamard gate on the ancilla qubit|0〉 to get(|0〉+|1〉).We defnie a series of operators asC; this can convertnqubits|0〉 to|?(x)〉 by amplitude encoding.Then we take the ancilla qubit as the control qubit to operate the operatorCon the data register.The state of the circuit becomes

    Next, we define a series of operators asF.This can convertnqubits|0〉 to?|?(x)〉/?xi, and this is easy to do.For example,suppose that|?(x)〉=x1|0〉+x2|1〉+x3|2〉+x4|3〉,so?|?(x)〉/?xi=|2d〉=|10〉wherei=3,d means decimal and if there is no subscript it means binary.Obviously,it is easy to convert|00〉to|10〉—we just need anXgate.The example goes the same way forF.We operate aXgate on the ancilla qubit,and then take it as the control qubit to operateFon the data register.We finally operate aXgate on the ancilla qubit,and the state of the circuit becomes

    Next, we operateU(θ) of the quantum variational circuit on the data register,and the state of the circuit becomes

    Then, according to the observableMchosen from the quantum variational circuit,we take the ancilla qubit as the control qubit and operate Pauli-Moperators on the data register.The state of the circuit becomes

    We then operate a Hadamard gate on the ancilla qubit.The state of the circuit becomes

    Finally,we obtain the expectation valuepof the ancilla qubit in the Pauli-Zbasis

    According to Eq.(6),pis equal toκi,which is the key point to get??/?xi,so using the method we proposed??/?xican be evaluated by one measurement in a quantum circuit.It can also be evaluated by finite difference, but this requires two measurements and is just an approximation.It can also be evaluated by automatic differentiation, and requires only one calculation, but this consumes more resources.The specific comparison is shown in Table 1.

    Table 1.Method comparison.

    The analysis shows that the proposed method requires fewer resources and is more efficient.

    4.Implementation

    In this section,we construct a quantum variational circuit classifier model by using the PennyLane framework.[37]We use the MNIST handwritten digital classification dataset[38]as the training set and verification set for our model; this is widely considered as the real testbed for new machine learning paradigms.The MNIST dataset consists of hand-drawn digits from 0 to 9 in the form of gray-scale images.Each image contains 28×28 pixels, or in other words 784 features.Each feature is a integer ranging from 0 to 255 with 0 meaning the whitest and 255 the darkest color.To fit our model, a principal component analysis dimensionality reduction algorithm is used to reduce the image features from 28×28=784 to 16×16=256, so that the featuresxof one image can be encoded to a quantum state|?(x)〉with 8 qubits by amplitude encoding(28=256).

    The measurement of an observableMchosen from our model here is a Pauli-Zbasis measurement in one wire; such a model can be a two-category classifier.The quantum variational circuit classifier model is shown in Fig.2.

    Fig.2.The quantum variational circuit classifier.The depth of U(θ) is 10,and the“amplitude encoding”can convert|0〉?8 to|?(x)〉.

    We select all images labeled 0 and 1 from the MNIST data set and choose Eq.(5) as the loss function.To train the classifier, we use the Nesterov momentum optimizer with a batch size of 10 and a learning rate of 0.05 to minimize the loss function.The average accuracy and loss as a function of the number of training steps can be seen in Fig.3.

    Fig.3.The average loss and accuracy as a function of the number of training steps.

    Next,we select two images labeled 0 and two images labeled 1, respectively, and they can be correctly classified by our model,as shown in Fig.4.

    Fig.4.Images correctly classified by our model.

    According to the method proposed in Section 3,we construct the corresponding quantum circuit to getκi, which can be seen in Fig.5,evaluate the gradient of the loss function of the four images above with respect tox,then define the value ofεrespectively, construct the adversarial examples of these four images in Fig.4 according to Eqs.(2)and(3).

    Fig.5.The quantum circuit of getting κi,because the observable M chosen from our model is a Pauli-Z basis measurement in one wire,there is a control-Z gate on it.

    We take the adversarial examples as the input of the model but the output of the model does not match their label,as shown in Fig.6.

    Fig.6.The adversarial examples.

    Next, we construct adversarial examples for all the images labeled 0 and 1.

    Although malicious attackers can attack some quantum variational circuit models by using adversarial samples, the robustness of the model can also be enhanced by using adversarial examples to train the model.Due to different images theεneeded for constructing the adversarial examples may not be at the same scale,so for measuring the difference between the legitimate and adversarial images we define fidelity between quantum states that encode the legitimate and adversarial examples:|〈?(x′)|?(x)〉|2.In order to give a positive role to adversarial examples, we use adversarial examples with a fidelity of 0.9 to continue training the model, and we use the Nesterov momentum optimizer with a batch size of 10 and a learning rate of 0.05 to minimize the loss function.The average accuracy and loss as a function of the number of training steps can be seen in Fig.7.

    Fig.7.The average accuracy and loss as a function of the number of training steps when using adversarial examples with a fidelity of 0.9 as the training data.

    Then,we compare the present model with the model that has not been trained with adversarial examples.The average accuracy as a function of the fidelity can be seen in Fig.8.

    Fig.8.The average accuracy as a function of the fidelity.“Adv.” refers to the model has been trained with adversarial examples,“normal”refers to the model that has not been trained with adversarial examples.

    It is obvious that the ‘Adv.’ model has higher accuracy for adversarial examples with lower fidelity,which means that the model trained with adversarial examples is more robust.

    5.Conclusion

    In summary, we propose a method to calculate the gradient of loss function of a quantum variational circuit with respect toxby quantum circuits,which is a key point to construct adversarial examples.Compared with the automatic differentiation method and finite difference method,our method has advantages in efficiency and resource consumption.We use the MNIST handwritten digit classification dataset to train a two-category quantum variational circuit classifier, and use the method proposed to calculate the gradient of loss function with respect toxto construct adversarial examples.These adversarial examples are predicted wrongly by the classifier.We use the adversarial examples as a new dataset to train the model,and the new model is more robust than the model without the adversarial examples training.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.62076042 and 62102049),the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC0535), the Key Research and Development Project of Sichuan Province(Grant Nos.2021YFSY0012 and 2021YFG0332), the Key Research and Development Project of Chengdu(Grant No.2021-YF05-02424-GX),and the Innovation Team of Quantum Security Communication of Sichuan Province(Grant No.17TD0009).

    人人妻人人澡人人爽人人夜夜| 午夜福利视频1000在线观看| 观看美女的网站| 最近2019中文字幕mv第一页| 婷婷色综合www| 中国三级夫妇交换| 少妇熟女欧美另类| 黄色日韩在线| 精品久久久噜噜| 日韩免费高清中文字幕av| 欧美最新免费一区二区三区| 99久久人妻综合| 久久久精品94久久精品| 亚洲性久久影院| 成年免费大片在线观看| 天堂中文最新版在线下载 | 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 国产视频内射| 午夜福利网站1000一区二区三区| 亚洲欧美日韩另类电影网站 | 嫩草影院精品99| 熟女人妻精品中文字幕| 日韩av免费高清视频| 日本免费在线观看一区| 男人添女人高潮全过程视频| 亚洲精品日本国产第一区| 欧美另类一区| 国产乱人视频| 一级av片app| videossex国产| 国产伦精品一区二区三区视频9| 伦精品一区二区三区| 麻豆乱淫一区二区| 18禁在线播放成人免费| av网站免费在线观看视频| 女人被狂操c到高潮| 亚洲精品久久午夜乱码| 亚洲国产色片| 有码 亚洲区| 色网站视频免费| 成人二区视频| 最近最新中文字幕免费大全7| 久久久久国产网址| 嘟嘟电影网在线观看| 国产高清有码在线观看视频| 久久99热这里只有精品18| 永久网站在线| 极品少妇高潮喷水抽搐| 丝袜美腿在线中文| 亚州av有码| 插逼视频在线观看| 亚洲精品一二三| 一级a做视频免费观看| 一个人看视频在线观看www免费| 高清在线视频一区二区三区| 欧美xxxx性猛交bbbb| 久久精品久久精品一区二区三区| 少妇人妻久久综合中文| 国产成人一区二区在线| 99热这里只有精品一区| 18禁裸乳无遮挡免费网站照片| 日产精品乱码卡一卡2卡三| 国产爽快片一区二区三区| 国语对白做爰xxxⅹ性视频网站| 在线看a的网站| 99久久人妻综合| 男插女下体视频免费在线播放| 国产黄色免费在线视频| 99re6热这里在线精品视频| 中文字幕人妻熟人妻熟丝袜美| 91在线精品国自产拍蜜月| 99久久精品热视频| 你懂的网址亚洲精品在线观看| 精品99又大又爽又粗少妇毛片| 国国产精品蜜臀av免费| 国产成人精品久久久久久| 另类亚洲欧美激情| 亚洲精品一区蜜桃| 国产亚洲一区二区精品| 亚洲欧美清纯卡通| 亚洲欧洲日产国产| 亚洲av成人精品一二三区| 欧美日本视频| 乱系列少妇在线播放| 青春草亚洲视频在线观看| 日韩精品有码人妻一区| 91aial.com中文字幕在线观看| 大话2 男鬼变身卡| 国产探花极品一区二区| 欧美日韩亚洲高清精品| 亚洲欧美中文字幕日韩二区| 18禁裸乳无遮挡免费网站照片| 久久ye,这里只有精品| 国产v大片淫在线免费观看| 一区二区av电影网| 成人高潮视频无遮挡免费网站| 最近的中文字幕免费完整| 日韩强制内射视频| 大话2 男鬼变身卡| 人妻 亚洲 视频| 精品99又大又爽又粗少妇毛片| 日韩强制内射视频| 国产高潮美女av| 另类亚洲欧美激情| 女的被弄到高潮叫床怎么办| av在线播放精品| 国产欧美亚洲国产| 国产色爽女视频免费观看| 一级二级三级毛片免费看| 久久国产乱子免费精品| 久久精品国产亚洲av涩爱| 中文乱码字字幕精品一区二区三区| 欧美少妇被猛烈插入视频| 寂寞人妻少妇视频99o| 高清在线视频一区二区三区| 久久久久精品性色| www.色视频.com| 欧美三级亚洲精品| 国产精品一二三区在线看| 国模一区二区三区四区视频| 一边亲一边摸免费视频| av网站免费在线观看视频| 国产成人精品福利久久| tube8黄色片| 欧美日韩精品网址| 日韩免费高清中文字幕av| 国产一区亚洲一区在线观看| 一级爰片在线观看| 九九爱精品视频在线观看| 亚洲欧美一区二区三区国产| 亚洲国产最新在线播放| 亚洲精品国产色婷婷电影| 色精品久久人妻99蜜桃| 99re6热这里在线精品视频| 亚洲第一av免费看| 欧美日韩av久久| 校园人妻丝袜中文字幕| 国产一区二区三区av在线| 涩涩av久久男人的天堂| 国产片内射在线| 免费黄频网站在线观看国产| 老司机靠b影院| 国产男女内射视频| 少妇被粗大猛烈的视频| 欧美变态另类bdsm刘玥| 老司机影院成人| 在线观看免费高清a一片| 夫妻午夜视频| 99精品久久久久人妻精品| 一级片免费观看大全| 国产xxxxx性猛交| 国产精品一二三区在线看| 丰满乱子伦码专区| 天天操日日干夜夜撸| 欧美97在线视频| 亚洲欧美日韩另类电影网站| 亚洲欧美清纯卡通| 黄色毛片三级朝国网站| 日韩一卡2卡3卡4卡2021年| 成年美女黄网站色视频大全免费| 亚洲国产日韩一区二区| 美女中出高潮动态图| 久久久久精品性色| 免费在线观看视频国产中文字幕亚洲 | 美女主播在线视频| 中文字幕制服av| 国产精品免费视频内射| 精品一区二区三卡| 国产 精品1| 免费日韩欧美在线观看| 2021少妇久久久久久久久久久| 人人妻人人添人人爽欧美一区卜| 精品一区二区三区av网在线观看 | 精品少妇黑人巨大在线播放| 亚洲久久久国产精品| 久久久国产精品麻豆| 中文字幕人妻丝袜制服| 亚洲精品视频女| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 亚洲精品乱久久久久久| 久久久久精品国产欧美久久久 | 男人爽女人下面视频在线观看| 老司机在亚洲福利影院| 国产无遮挡羞羞视频在线观看| 国产深夜福利视频在线观看| 日本91视频免费播放| 欧美在线黄色| 午夜福利,免费看| 香蕉丝袜av| 成人手机av| 爱豆传媒免费全集在线观看| 久久久久精品国产欧美久久久 | 婷婷色av中文字幕| 嫩草影视91久久| 少妇被粗大的猛进出69影院| 国产毛片在线视频| 制服丝袜香蕉在线| 婷婷色麻豆天堂久久| 国产黄频视频在线观看| 日韩精品有码人妻一区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久 | 国产一级毛片在线| 黑人巨大精品欧美一区二区蜜桃| av在线app专区| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 大陆偷拍与自拍| 亚洲一区二区三区欧美精品| 99久久精品国产亚洲精品| 午夜久久久在线观看| 成人国产av品久久久| 一级片免费观看大全| 亚洲精品自拍成人| 一级,二级,三级黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 制服人妻中文乱码| 国产免费一区二区三区四区乱码| 国产乱来视频区| 高清在线视频一区二区三区| 1024香蕉在线观看| 女性生殖器流出的白浆| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品一区三区| 精品一区二区三区四区五区乱码 | 国产av码专区亚洲av| 亚洲国产欧美一区二区综合| 日本午夜av视频| 久久热在线av| 秋霞在线观看毛片| 午夜福利,免费看| av在线观看视频网站免费| 777米奇影视久久| 国精品久久久久久国模美| av不卡在线播放| 蜜桃国产av成人99| 无遮挡黄片免费观看| 久久鲁丝午夜福利片| 亚洲av电影在线进入| 天天操日日干夜夜撸| 亚洲天堂av无毛| 精品国产露脸久久av麻豆| 两性夫妻黄色片| 欧美国产精品一级二级三级| 亚洲国产欧美网| 亚洲精品在线美女| 精品一品国产午夜福利视频| 欧美日韩综合久久久久久| 成人手机av| 一级毛片电影观看| 又黄又粗又硬又大视频| 成年av动漫网址| 国产午夜精品一二区理论片| 制服丝袜香蕉在线| 久久久精品国产亚洲av高清涩受| www.熟女人妻精品国产| 国产在视频线精品| 丰满饥渴人妻一区二区三| 日韩一区二区视频免费看| 国产在线视频一区二区| 亚洲一码二码三码区别大吗| 别揉我奶头~嗯~啊~动态视频 | 天堂俺去俺来也www色官网| 伊人久久国产一区二区| 99re6热这里在线精品视频| 永久免费av网站大全| 免费观看a级毛片全部| 中国三级夫妇交换| xxxhd国产人妻xxx| 亚洲欧美精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲中文av在线| 亚洲精品视频女| 亚洲伊人久久精品综合| 久久综合国产亚洲精品| 日韩欧美精品免费久久| 久久久久久人妻| 国产成人一区二区在线| 亚洲第一区二区三区不卡| 美女主播在线视频| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 亚洲精品在线美女| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 成人国产麻豆网| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲| 欧美日韩综合久久久久久| 亚洲国产av新网站| 在线观看免费高清a一片| 狠狠精品人妻久久久久久综合| 亚洲欧美成人精品一区二区| 最近最新中文字幕大全免费视频 | 人人妻人人澡人人看| 观看美女的网站| 老汉色∧v一级毛片| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| 亚洲情色 制服丝袜| 一区二区三区激情视频| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版| 可以免费在线观看a视频的电影网站 | 曰老女人黄片| 久久国产精品男人的天堂亚洲| 天堂中文最新版在线下载| e午夜精品久久久久久久| 热re99久久国产66热| www.自偷自拍.com| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 9色porny在线观看| 99热全是精品| 亚洲视频免费观看视频| 久久99精品国语久久久| 亚洲国产精品一区三区| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 一二三四中文在线观看免费高清| 自线自在国产av| 国产成人精品福利久久| 欧美日韩福利视频一区二区| 午夜福利视频精品| 伊人久久国产一区二区| 国产福利在线免费观看视频| 国产男人的电影天堂91| 亚洲国产欧美网| videos熟女内射| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 欧美 亚洲 国产 日韩一| 亚洲成人免费av在线播放| 大陆偷拍与自拍| 国产成人91sexporn| 中文字幕高清在线视频| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 十分钟在线观看高清视频www| 一区二区三区乱码不卡18| 国产免费一区二区三区四区乱码| 老熟女久久久| 精品国产露脸久久av麻豆| 少妇的丰满在线观看| a级毛片黄视频| 午夜免费观看性视频| 亚洲av中文av极速乱| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| videos熟女内射| 精品国产露脸久久av麻豆| 爱豆传媒免费全集在线观看| 777久久人妻少妇嫩草av网站| 欧美黑人精品巨大| av在线观看视频网站免费| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 日日撸夜夜添| 亚洲四区av| avwww免费| 成人毛片60女人毛片免费| 成人国产av品久久久| 亚洲成国产人片在线观看| 无限看片的www在线观看| 精品亚洲成国产av| 国产高清不卡午夜福利| 爱豆传媒免费全集在线观看| 女性被躁到高潮视频| 午夜免费观看性视频| 18在线观看网站| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| www.精华液| 久久久精品区二区三区| 伦理电影大哥的女人| 国产97色在线日韩免费| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 免费在线观看黄色视频的| 亚洲欧美清纯卡通| 久久久精品免费免费高清| 看非洲黑人一级黄片| 夜夜骑夜夜射夜夜干| 久久久精品免费免费高清| 日本av免费视频播放| 午夜福利视频精品| 国产成人系列免费观看| 欧美精品人与动牲交sv欧美| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 91成人精品电影| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 欧美精品av麻豆av| 伊人久久大香线蕉亚洲五| 国产免费福利视频在线观看| av天堂久久9| 日日啪夜夜爽| 午夜日本视频在线| 日日爽夜夜爽网站| 国产精品久久久av美女十八| 久久99精品国语久久久| 午夜日韩欧美国产| avwww免费| 国产精品一国产av| 大片免费播放器 马上看| 免费少妇av软件| 青草久久国产| 国产在视频线精品| 国产精品久久久人人做人人爽| 欧美日韩成人在线一区二区| 久久97久久精品| tube8黄色片| 国产黄频视频在线观看| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 99精品久久久久人妻精品| 女性被躁到高潮视频| 亚洲成av片中文字幕在线观看| 日韩制服骚丝袜av| 9热在线视频观看99| 国产成人一区二区在线| 日日撸夜夜添| 国产亚洲av高清不卡| 亚洲中文av在线| 熟女少妇亚洲综合色aaa.| 三上悠亚av全集在线观看| 欧美在线一区亚洲| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲 | 美女高潮到喷水免费观看| 777米奇影视久久| 飞空精品影院首页| 欧美xxⅹ黑人| 我的亚洲天堂| 国产精品久久久av美女十八| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频| 国产不卡av网站在线观看| 亚洲国产av新网站| 在线免费观看不下载黄p国产| 亚洲av日韩精品久久久久久密 | 久久人妻熟女aⅴ| 天堂8中文在线网| videos熟女内射| 久久精品亚洲av国产电影网| 亚洲自偷自拍图片 自拍| a级片在线免费高清观看视频| 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 51午夜福利影视在线观看| 久久99热这里只频精品6学生| 久久国产精品男人的天堂亚洲| 欧美精品一区二区免费开放| 一本大道久久a久久精品| 欧美黄色片欧美黄色片| 操美女的视频在线观看| 青春草国产在线视频| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 青春草视频在线免费观看| 最黄视频免费看| 九色亚洲精品在线播放| 色94色欧美一区二区| 在线观看国产h片| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 精品少妇一区二区三区视频日本电影 | 欧美97在线视频| 亚洲精品一区蜜桃| 久久女婷五月综合色啪小说| 亚洲天堂av无毛| 久久精品久久精品一区二区三区| 妹子高潮喷水视频| 在线精品无人区一区二区三| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 久久综合国产亚洲精品| 日韩中文字幕欧美一区二区 | 国产精品久久久久成人av| 国产精品久久久av美女十八| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 青草久久国产| 亚洲,一卡二卡三卡| 日韩制服丝袜自拍偷拍| 国产伦人伦偷精品视频| 久久99热这里只频精品6学生| 午夜福利乱码中文字幕| 操美女的视频在线观看| 免费看av在线观看网站| 欧美精品人与动牲交sv欧美| 欧美乱码精品一区二区三区| 亚洲精华国产精华液的使用体验| 久久久久国产一级毛片高清牌| 999精品在线视频| 这个男人来自地球电影免费观看 | 看十八女毛片水多多多| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 狂野欧美激情性xxxx| 天天躁夜夜躁狠狠躁躁| 国产极品天堂在线| 曰老女人黄片| 制服丝袜香蕉在线| 色播在线永久视频| 久久久欧美国产精品| 国产精品人妻久久久影院| 晚上一个人看的免费电影| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 波野结衣二区三区在线| 中文字幕色久视频| 久久久久久人人人人人| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区| 丰满乱子伦码专区| 日本91视频免费播放| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 亚洲五月色婷婷综合| 日韩人妻精品一区2区三区| 不卡av一区二区三区| videosex国产| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| 国产精品香港三级国产av潘金莲 | 69精品国产乱码久久久| 99热全是精品| 午夜日本视频在线| 国产精品99久久99久久久不卡 | 咕卡用的链子| 看免费成人av毛片| 黄色怎么调成土黄色| 中文字幕人妻丝袜一区二区 | 成年动漫av网址| 国产精品人妻久久久影院| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 国产精品蜜桃在线观看| 如日韩欧美国产精品一区二区三区| 一级黄片播放器| 男女边摸边吃奶| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 久久久国产一区二区| 久久精品国产a三级三级三级| 亚洲国产av新网站| 三上悠亚av全集在线观看| 69精品国产乱码久久久| 老司机靠b影院| 在线观看免费午夜福利视频| 亚洲精品国产av蜜桃| 在线观看免费午夜福利视频| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 晚上一个人看的免费电影| av免费观看日本| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 在线观看www视频免费| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 久热爱精品视频在线9| 最新的欧美精品一区二区| a 毛片基地| 亚洲国产欧美一区二区综合| 少妇 在线观看| 一级片免费观看大全| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费| 欧美国产精品va在线观看不卡| 国产女主播在线喷水免费视频网站| 色播在线永久视频| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 在线天堂最新版资源| 热99国产精品久久久久久7| 亚洲精品aⅴ在线观看| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 韩国高清视频一区二区三区| 男人操女人黄网站| 日韩一区二区三区影片| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 亚洲欧美激情在线|