• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal

    2023-09-05 08:48:04XiaorongWang王曉蓉HongmingFei費(fèi)宏明HanLin林瀚MinWu武敏LijuanKang康麗娟MingdaZhang張明達(dá)XinLiu劉欣YibiaoYang楊毅彪andLiantuanXiao肖連團(tuán)
    Chinese Physics B 2023年7期
    關(guān)鍵詞:劉欣

    Xiaorong Wang(王曉蓉), Hongming Fei(費(fèi)宏明),?, Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康麗娟),Mingda Zhang(張明達(dá)), Xin Liu(劉欣), Yibiao Yang(楊毅彪), and Liantuan Xiao(肖連團(tuán))

    1College of Physics,Taiyuan University of Technology,Taiyuan 030024,China

    2Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

    3School of Science,RMIT University,Melbourne,Victoria 3000,Australia

    Keywords: topological photonics,topological edge state,valley photonic crystal,all-optical logic gate

    1.Introduction

    Due to the development of augmented reality(AR)/virtual reality (VR) and big data, the increase in information traffic demands large bandwidth and reliable information processing.Optical communication and information processing have the advantages of large bandwidth,fast speed,high energy efficiency, and low heat generation.An all-optical network[1]is that the signal always exists in the form of light during the propagation and information processing, which overcomes the”electronic bottleneck”phenomenon caused by the previous optical-electrical-optical conversion.[2]It is necessary to develop an entire family of different all-optical components for all-optical networks, such as waveguides, optical switches,[3–8]wavelength division multiplexing (WDM)devices, optical delay lines, logic gates, and so forth.Currently, information processing is realized by electrical logic gates (AOLGs) based on electro-optic conversion all the time[9,10]due to the limited performance of current AOLG designs that cannot meet the requirements in applications.As a result, the speed is ultimately limited by the relatively slow electric logic gates.Therefore, designing high-performance AOLGs has become a stringent request and is key to realizing all-optical information processing.

    An ideal logic gate performs operations on Boolean values, which should dissipate no power and change states instantaneously, similar to a step function.Such gates operate on discrete logic inputs and should have no propagation delay.For AOLGs, the propagation delay is neglectable due to the high speed of light.In addition,power dissipation can be minimized by achieving high transmittance.Furthermore,for photonic integrated circuit (PIC) operation, AOLGs should have a miniaturized footprint for high-density integration.In general,AOLGs that work with different spin states of photons are required for quantum computing.Therefore, AOLGs should have chiral responses to work with spin-up(right-handed circularly polarized,RCP)and spin-down(left-handed circularly polarized,LCP)photons.

    Many designs of AOLGs based on different working principles have been demonstrated, such as semiconductor optical amplifier (SOA),[11–14]periodically poled lithium niobate(PPLN)waveguide,[15,16]ring resonators,[17–19]and photonic crystals(PCs).[20–22]The performance of SOA-based AOLGs is limited by spontaneous emission noise and high integration complexity.In comparison, the AOLGs based on semiconductor ring resonators have the advantages of simplicity and low input power.But the speed is slow.Meanwhile,the AOLGs based on PPLN waveguides have fast switching speeds and low spontaneous emission noise.However,those AOLGs strongly depend on the working temperature and the incident light’s polarization states,which hinder their applications.All the AOLGs mentioned above have relatively large footprints,which makes them unsuitable for highdensity on-chip integration.In comparison, the footprint of AOLGs can be significantly reduced by using nanostructures,in which PC structures[23–32]are the most widely used.Different effects and principles of PC structures have been applied to design AOLGs, such as self-collimation,[33,34]multimode interference,[35,36]interference waveguides,[37,38]and nonlinear effects.[39,40]However, all the designs above have relatively low transmittance due to the scattering loss introduced by structural defects.In addition,none of the AOLG designs,including all conventional and PC designs,can work with circularly polarized light(CPL)to maintain the spin states,which is important for quantum computing.[41–43]

    The recent development of topological photonic crystals(TPCs)[44–50]allows defect-immune unidirectional transmission of topological edge states, which opens new possibilities in designing photonic devices.Among different TPC designs, valley photonic crystals(VPCs)can be achieved based on dielectric materials without an external magnetic field,thus pushing the working wavelength to the telecommunication and the visible region.[51,52]Here based on the unique spin-valley locking effect of VPCs, we design a high-performance integratable all-optical logic OR gate based on the tunable topological edge states of VPCs.We tune the working bands of the two input channels to minimize their interference,achieving stable and high-fidelity outputs.The spin-valley locking effect allows robust unidirectional transmission of CPL.The transmittance of both channels is higher than 0.8, which meets the requirements of an ideal all-optical logic gate.In addition, an ultrahigh contrast ratio of 28.8 dB is achieved.Currently, the contrast ratio of AOLGs based on conventional PC structures is mainly in the range of 10 dB–20 dB.So our design has a much higher contrast ratio than those AOLGs in recent references.[37]Furthermore, the chiral responses of the AOLGs allow using CPL with different handedness as logic inputs (logic “1” or logic “0”), which meets the requirements of quantum computing.[41–43]The footprint of the entire AOLG device is as small as 18 μm×12 μm,allowing high-density on-chip integration.The device can be manufactured by the mature complementary metal–oxide–semiconductor (CMOS) nanofabrication technique and will find broad applications in optical information processing and quantum computing.

    2.Design of the all-optical OR gate

    An OR logic gate (symbolized by “‖” or “+”) outputs a logic“1”if one or both the inputs are logic“1”; otherwise,it outputs a logic“0”.Here,the logic“1”in an AOLG is defined as the input or the output having an incident or transmitted optical wave with a transmittance higher than 0.7.And the logic“0”is determined when the criterion is not met.According to this definition, an all-optical OR gate based on a VPC structure is designed and shown in Fig.1(d).The gate comprises two mirror-symmetrical VPC structures,consisting of two input waveguides (INA and INB) and two output waveguides(OUT1 and OUT2).To minimize the interference between the two inputs, we tune the working bands of INA (centered atλ1,figures 1(a)and 1(c))and INB(centered atλ2,figures 1(b)and 1(c)) by adjusting the radii of the lattice at the boundary(highlighted by different colors in Fig.1(d)).Meanwhile,the working band of the output waveguide OUT1 can cover the two working bands of INA and INB.In contrast,the OUT2 is designed to have extremely low transmittance in those working bands to prevent the undesired loss through the waveguide to maximize the transmittance through OUT1.The schematics in Fig.1 show the four possible cases of the AOLG, namely 1‖0=1, 0‖1=1, 1‖1=1, and 0‖0=0.The two numbers on the left side correspond to the inputs from INA and INB,respectively.The number on the right side shows the output of OUT1.

    Fig.1.The working diagrams of an all-optical OR logic gate: (a) light inputs only from INA, as 1‖0=1; (b) light inputs only from INB, as 0‖1=1; (c) light inputs from both INA and INB, as 1‖1=1; (d) light inputs from neither INA nor INB,as 0‖0=0.

    The design process started with creating a honeycomb PC structure(Fig.2(a))composed of circular air holes embedded in a free-standing silicon substrate.The refractive index of silicon is shown in supporting information S1.The thickness of the free-standing silicon substrate(the dispersive refractive index of pure silicon is used) ish=220 nm.The unit cell of this structure is composed of two sets of air holes (A and B)with the same radius(rA=rB=80 nm),which has aC6Vrotational symmetry.The lattice constant isa=450 nm.Here we use commercial three-dimensional (3D) time–domain finite difference(FDTD)software(Lumerical FDTD Solutions)to calculate the photonic band structure.The band diagram of the transverse electric(TE)mode is shown in Fig.2(c)by the dashed lines,which show a Dirac point.Then theC6Vsymmetry is reduced toC3symmetry by simultaneously increasingrA(to 120 nm) and decreasingrB(to 40 nm) to introduce a topological photonic bandgap(1410 nm–1676 nm)due to the degeneracy of theKandK′valleys,indicated by the blue dot lines in Fig.2(c).In this way, VPC1 is designed (left panel in Fig.2(b)),which can be converted to VPC2(right panel in Fig.2(b)) by applying mirror symmetry operation.The values of the Berry curvature and topologically invariant valley Chern numberCVcorresponding to the two VPCs were calculated,which areCV=?1 for VPC1 andCV=1 for VPC2,[51]respectively.

    Fig.2.Structure parameters and photonic band diagrams of PCs.(a)3D schematics of the honeycomb PC structure;(b)3D schematics of VPC1 and VPC2;(c)the photonic band diagram of the honeycomb PC(red dot line)and VPC1(blue dot line),the blue shaded area marks the bandgap;the gray region marks the air cone.

    3.Tuning of topological edge states

    There are two possible types of boundaries, the zigzagshape and beard-shape boundaries, which can support topological edge states.The study of the edge states of the two boundaries shows that the working bandwidth of the beardshape boundary is narrower than the bandgap, which allows tuning the position of the working bands within the bandgap.The detail is shown in supporting information S2.In this study,we choose the beard-shape boundary as required to achieve different working bands within the bandgap.Depending on the small or large circles at the boundary,two kinds of beard-shape boundaries can be constructed: S-interface and L-interface.Due to the high transmittance of the L-interface, it is chosen for INA, INB, and OUT1.Figure 3(a) shows the schematic of a straight waveguide using the L-interface boundary.We define the radius of the large air holes at the boundary asre.By tuning there,the working band of each waveguide can be controlled.As shown in Fig.3(b),the decrease ofre(120 nm,116 nm,110 nm)results in a redshift of the working bands due to the increased effective refractive index of the edge states.

    We performed numerical simulations on 11 sets of straight waveguides using RCP incident light, withregradually decreasing from 120 nm to 110 nm at a step of 1 nm.The transmittance spectra are shown in Fig.3(c).The tuning aims to separate the working bands of INA and INB to minimize interference and achieve a stable output.According to the definition of logic “1”, the working band is defined as where the forward transmittance is higher than 0.7(TF> 0.7).The plot of the working bandversusdifferent radii is shown in Fig.3(d).The working band is quite sensitive to the radius change,which presents a linear relationship withre(the slope is 5.792).Therefore, whenredecreases by 1 nm, the central wavelength of the working band increases by 5.792 nm.We find threerevalues meeting our requirements,which arere=120 nm(the working band is 1476 nm–1512 nm),re= 116 nm (the working band is 1489.7 nm–1542 nm), andre=110 nm (the working band is 1522 nm–1582 nm),respectively.As one can see,the working bands in the cases ofre=120 nm andre=110 nm can be well separated.Meanwhile,the working band in the case ofre=116 nm overlaps with bothre=120 nm andre=110 nm.Therefore,we user1=120 nm for INA andr2=110 nm for INB, respectively.Meanwhile,r3=116 nm is used for OUT1.As a result, inputs from INA and INB can highly efficiently transmit through OUT1.In addition,to minimize the light leakage from OUT2,the air holes at the boundary are removed.Thus,the transmittance of OUT2 approaches zero in the range of 1450 nm–1530 nm.The detail is shown in supporting information S3.

    We design Z-shape waveguides with INA or INB combined with OUT1 to study the transmission properties of different combinations.The schematics of the Z-shape waveguides are shown in Figs.4(a)and 4(b),respectively.The green and red circles in the Z1 and Z2 waveguides (Figs.4(a) and 4(b)) haver1=120 nm andr2=110 nm, respectively.The purple circles in both waveguides have anr3=116 nm.The transmittance spectra are plotted in Fig.4(e).Here we choose two working wavelengths for INA and INB to achieve the function of an AOLG, which areλ1= 1490 nm andλ2=1528 nm (marked by the dashed lines in Fig.4(e)), respectively.Those wavelengths are chosen due to the high transmittance (TF>0.75).The intensity distributions in the Z-shape waveguides at the two working wavelengths in Figs.4(c)and 4(d) show that the light waves are well confined within the waveguides.

    Fig.3.(a)A schematic diagram of a straight waveguide based on the L-interface boundary(the big circles in the purple area are the air holes at the boundary, and the radius is re).(b) Band diagram of the valley-dependent edge states (the green, purple, and red lines correspond to re =120 nm,re =116 nm,and re =110 nm,respectively).(c)Transmittance spectra of straight waveguides with different re.(d)The plot of working band versus different re.

    Fig.4.Z-shape waveguide designs and transmittance.(a) Schematic diagram of Z1 waveguide composed of INA and OUT1.(b) Schematic diagram of Z2 waveguide composed of INB and OUT1.(c)The electric field intensity distributions in Z1 waveguide at λ1=1490 nm.(d)The electric field intensity distributions in Z2 waveguide at λ2=1528 nm.(e)Transmittance spectra of the two Z-shape waveguides.

    4.Performance analysis of the designed alloptical OR gate

    We then combine the two Z-shape waveguides to form the all-optical OR gate,shown in Fig.5(a).The boundary conditions of FDTD are PML in thex–ydirection and symmetric in thezdirection.The input light source is RCP, a superposition of two dipole sources.The transmittance spectra of the AOLG are shown in Fig.5(b), in which one can see different input cases from INA(1‖0),INB(0‖1),and INA+INB(1‖1).In all three cases, the output from OUT1 has a transmittance higher than 0.7 at eitherλ1=1490 nm orλ2=1528 nm.The corresponding intensity distributions are plotted in Figs.5(c)–5(f).When the light waves at the designed working wavelengths are input from INA(Fig.5(c))and INB(Fig.5(d))separately,they can highly efficiently transmit through the AOLG.The transmittances are 0.86 and 0.90 at the wavelengths ofλ1=1490 nm orλ2=1528 nm, respectively.In comparison, due to the well-separated work bands of INA and INB,when light waves at the two wavelengths are input from both INA and INB (1‖1) (Figs.5(e) and 5(f)), they do not interfere.Because the light waves atλ1=1490 nm can not transmit through INB.Similarly, the light waves atλ2=1528 nm have very low transmittance in INA.Here we notice that there is a small portion of light transmitting from one input to the other input (for example, from INA to INB atλ1=1490 nm and from INB to INA atλ2= 1528 nm) at the junction of INA, INB, and OUT1 (shown in Figs.5(c) and 5(d)).However,this effect does not influence the overall performance of the AOLG,as shown in Table 1.

    Table 1.All-optical logic or gate truth table.

    Fig.5.The designed AOLG and its function.(a) 3D structural diagram of the ALOG gate.(b) Transmittance spectra of the AOLG in three different cases.Electric field intensity distributions at the wavelength of λ1=1490 nm input from INA alone.(c)(1‖0=1)and both INA and INB(e)(1‖1=1),respectively.Electric field intensity distributions at the wavelength of λ2=1528 nm input from INB alone.(d)(0‖1=1)and both INA and INB.(f)(1‖1=1),respectively.

    The performance of the AOLG can be further studied by using the logic gate contrast function,which is defined as

    whereP1andP0are the transmittances of the output and the unexcited input,respectively.Most applications desire a high contrast ratio,which is challenging based on reported designs.The contrast ratio curves are shown in Figs.6(a)and 6(b)for the inputs from INA and INB, respectively.The wavelength ranges are decided according to the working bands of INA and INB.The contrast ratios are 28.8 dB atλ1=1490 nm in INA and 20.5 dB atλ2=1528 nm in INB,which are much higher compared to state-of-the-art AOLGs.[34,36,37,40]

    To show the advantages of using two well-separated working bands for the two inputs, we also perform the simulation on the logic gate composed of identical straight waveguides(details in supporting information S4).In this case, the transmittance in each case is relatively lower compared to the separate design.That is due to the light transmitting from one input (INA or INB) to the other (INB or INA).Because both INA and INB can support the same edge states.The situation can be avoided by using different working bands for INA and INB, as demonstrated in this work.In this way, the forward transmittance of each input can be maximized,which is essential for any AOLGs for quantum computing since single photon transmission is necessary.Further,to demonstrate our design can work with different spin states(LCP or RCP light)due to the spin-valley locking effect, we perform the simulation on the input with different handedness (details in supporting information S5).Here LCP and RCP light is defined as logic “1” and “0”, respectively.The output transmittance(TF>0.7) is still designated as logic “1”.Due to the spinvalley locking effect, the LCP and RCP light propagates in opposite directions, resulting in high and low transmittances corresponding to the logic“1”and“0”states,respectively.In this way, the chirality of the logic gate allows using different spin states as different logic states, which is achieved among various AOLGs based on PC structures for the first time to the best of our knowledge.

    Fig.6.Contrast ratio plots when light is only input from INA(a)and INB(b).

    In order to demonstrate the unique defect immune transmission property of the our topological OR gate structures,we simulate the light transmission in the topological waveguides and the logic gates with defects, which could be introduced by fabrication errors.Here we simulated two types of defects: (i) Missing air holes in the waveguide (as shown in Fig.S7(a)in supporting information);(ii)Changing the radius of air holes(as shown in Fig.S7(b),10%reduction in radius).The resulting transmittance spectra are shown in Fig.S7(c),in which only slight changes in the transmittance spectrum are observed,confirming the robustness of our design(details in supporting information S6).This property demonstrates high feasibility in the experimental realization of the designed structures.

    5.Conclusion and perspectives

    We have demonstrated a high-performance AOLG design based on a VPC structure.By tuning the working bands of the two inputs, we minimize the interference and cross-coupling between the inputs to ensure high transmittance output (up to 0.9) and high contrast ratio (up to 28.8 dB).Moreover,the chiral response of the logic gate due to the spin-valley locking effect allows using different spin states as inputs for quantum computing.The device’s footprint is as small as 18μm×12μm,which is suitable for high-density on-chip integration.In addition,the device is compatible with the CMOS nanofabrication technique.The design principle can be generally applied to design other photonic devices based on VPCs for broad applications.

    Acknowledgments

    Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No.2022YFA1404201), the National Natural Science Foundation of China (Grant No.11904255),and the Key Research and Development Program of Shanxi Province (International Cooperation) (Grant No.201903D421052).

    猜你喜歡
    劉欣
    Unconventional photon blockade in the two-photon Jaynes–Cummings model with two-frequency cavity drivings and atom driving
    Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation
    外星人到我家⒂
    清明節(jié)與介子推
    疏血通注射液與奧扎格雷納聯(lián)合治療腦血栓臨床效果觀察
    小年趕集
    跳舞的長發(fā)
    該您了
    劉欣藝術(shù)作品欣賞
    The use of Cooperative Language Learning to improve Chinese students’ listening comprehension
    哪里可以看免费的av片| 又紧又爽又黄一区二区| 免费看日本二区| 久久久久九九精品影院| 搡老妇女老女人老熟妇| 久久婷婷人人爽人人干人人爱| 黄色成人免费大全| 国产亚洲欧美精品永久| 成在线人永久免费视频| 亚洲全国av大片| 国产熟女xx| 在线av久久热| 亚洲七黄色美女视频| 午夜福利欧美成人| 国产亚洲精品久久久久久毛片| 亚洲精品av麻豆狂野| 日本在线视频免费播放| 国产日本99.免费观看| 麻豆成人午夜福利视频| a级毛片a级免费在线| 日韩欧美一区视频在线观看| 国产成人欧美| 在线观看舔阴道视频| 精品午夜福利视频在线观看一区| 日本 欧美在线| 亚洲精品中文字幕一二三四区| 免费观看人在逋| 国产精品久久久久久精品电影 | 国产精品香港三级国产av潘金莲| 好男人电影高清在线观看| 一级a爱视频在线免费观看| 成人国产综合亚洲| 国产成人av激情在线播放| 1024手机看黄色片| 给我免费播放毛片高清在线观看| 给我免费播放毛片高清在线观看| 久久99热这里只有精品18| 999精品在线视频| 亚洲午夜理论影院| √禁漫天堂资源中文www| 啪啪无遮挡十八禁网站| 亚洲国产欧洲综合997久久, | 一级片免费观看大全| 亚洲片人在线观看| 国产一区在线观看成人免费| ponron亚洲| 国产亚洲精品av在线| 人妻久久中文字幕网| 欧美成狂野欧美在线观看| 亚洲狠狠婷婷综合久久图片| 91成人精品电影| 日本成人三级电影网站| 亚洲精品av麻豆狂野| 桃色一区二区三区在线观看| 男女视频在线观看网站免费 | 欧美激情 高清一区二区三区| 少妇 在线观看| 啦啦啦观看免费观看视频高清| 三级毛片av免费| 亚洲aⅴ乱码一区二区在线播放 | 人人妻,人人澡人人爽秒播| 色婷婷久久久亚洲欧美| 亚洲av成人一区二区三| 免费在线观看日本一区| 最新美女视频免费是黄的| 成年女人毛片免费观看观看9| 国产成人影院久久av| 日韩欧美一区视频在线观看| 无遮挡黄片免费观看| 日韩欧美一区二区三区在线观看| 国产一卡二卡三卡精品| 亚洲无线在线观看| 日韩 欧美 亚洲 中文字幕| 不卡一级毛片| 在线观看www视频免费| 国产精品国产高清国产av| netflix在线观看网站| svipshipincom国产片| 国产单亲对白刺激| 人人妻人人澡人人看| 欧美成狂野欧美在线观看| 久久亚洲真实| 免费看美女性在线毛片视频| 国产亚洲欧美在线一区二区| 免费看美女性在线毛片视频| 一个人观看的视频www高清免费观看 | 日韩中文字幕欧美一区二区| 久久国产精品人妻蜜桃| 热99re8久久精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色视频,在线免费观看| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 国产三级在线视频| 91成人精品电影| 村上凉子中文字幕在线| 国产av一区二区精品久久| 他把我摸到了高潮在线观看| www.自偷自拍.com| 亚洲精品在线美女| 亚洲欧美精品综合一区二区三区| 成年版毛片免费区| 国产亚洲精品av在线| 国内精品久久久久精免费| 午夜久久久久精精品| 中出人妻视频一区二区| 久久这里只有精品19| 91国产中文字幕| 最近在线观看免费完整版| 午夜精品在线福利| 麻豆国产av国片精品| 亚洲精华国产精华精| 中亚洲国语对白在线视频| 麻豆av在线久日| 最近最新免费中文字幕在线| 亚洲av熟女| 俺也久久电影网| 高清毛片免费观看视频网站| 又大又爽又粗| 色精品久久人妻99蜜桃| 99riav亚洲国产免费| 桃红色精品国产亚洲av| 麻豆av在线久日| 久久久久九九精品影院| 成在线人永久免费视频| 18禁国产床啪视频网站| 国产高清视频在线播放一区| 999精品在线视频| 一级a爱视频在线免费观看| 国产99久久九九免费精品| 精品久久蜜臀av无| 免费在线观看亚洲国产| 午夜福利视频1000在线观看| 亚洲aⅴ乱码一区二区在线播放 | www.自偷自拍.com| 久久久久亚洲av毛片大全| 亚洲三区欧美一区| 成人永久免费在线观看视频| 亚洲国产日韩欧美精品在线观看 | 国产成人av激情在线播放| 国产成人欧美在线观看| 最近在线观看免费完整版| 中国美女看黄片| 欧美zozozo另类| 久久中文字幕人妻熟女| 国产亚洲欧美在线一区二区| 中文字幕人妻丝袜一区二区| 久久久久久久午夜电影| 岛国视频午夜一区免费看| 国产精品,欧美在线| 在线永久观看黄色视频| 88av欧美| 极品教师在线免费播放| cao死你这个sao货| 久久午夜亚洲精品久久| 午夜激情福利司机影院| 精品日产1卡2卡| 亚洲中文字幕日韩| 可以在线观看的亚洲视频| 午夜免费激情av| 亚洲成av人片免费观看| 后天国语完整版免费观看| 99热6这里只有精品| 少妇的丰满在线观看| 久久人妻av系列| 中文资源天堂在线| 国产午夜福利久久久久久| 大型黄色视频在线免费观看| 最好的美女福利视频网| 久久久久久大精品| 国产精品九九99| 亚洲av美国av| 老汉色av国产亚洲站长工具| 黄色女人牲交| 岛国视频午夜一区免费看| or卡值多少钱| av视频在线观看入口| 香蕉国产在线看| 很黄的视频免费| 黄色丝袜av网址大全| 国产激情偷乱视频一区二区| 国产成+人综合+亚洲专区| 色婷婷久久久亚洲欧美| 妹子高潮喷水视频| 韩国精品一区二区三区| 大型黄色视频在线免费观看| 男人舔女人的私密视频| 国内少妇人妻偷人精品xxx网站 | 日本a在线网址| 成人手机av| e午夜精品久久久久久久| 在线av久久热| 国产精品永久免费网站| 精品国产国语对白av| 一区二区三区高清视频在线| 1024香蕉在线观看| 淫秽高清视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 午夜久久久在线观看| 国产激情欧美一区二区| 欧美绝顶高潮抽搐喷水| 午夜两性在线视频| 91字幕亚洲| 999久久久精品免费观看国产| 又黄又爽又免费观看的视频| 一本综合久久免费| 欧美 亚洲 国产 日韩一| 国产成人精品久久二区二区免费| 国产亚洲精品一区二区www| 欧美 亚洲 国产 日韩一| 99国产精品一区二区三区| 老司机在亚洲福利影院| 一边摸一边做爽爽视频免费| 国产99白浆流出| 国产精品综合久久久久久久免费| 男人舔奶头视频| 18禁国产床啪视频网站| 国产精品av久久久久免费| 一区二区三区精品91| 精品欧美一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 午夜免费激情av| 免费女性裸体啪啪无遮挡网站| 两个人视频免费观看高清| 国产麻豆成人av免费视频| 国产激情久久老熟女| 成人18禁高潮啪啪吃奶动态图| 国产精品野战在线观看| av电影中文网址| av免费在线观看网站| 999精品在线视频| 91成人精品电影| 亚洲男人天堂网一区| 成在线人永久免费视频| av超薄肉色丝袜交足视频| 国产区一区二久久| 一级毛片女人18水好多| 成人永久免费在线观看视频| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 俄罗斯特黄特色一大片| 久久午夜亚洲精品久久| 在线看三级毛片| 成人18禁高潮啪啪吃奶动态图| 黑人操中国人逼视频| 国产亚洲av高清不卡| 国产av在哪里看| 久久精品国产清高在天天线| 一个人免费在线观看的高清视频| 亚洲国产欧美一区二区综合| 午夜激情福利司机影院| 国产av一区在线观看免费| 99久久99久久久精品蜜桃| 中文亚洲av片在线观看爽| 国产成人系列免费观看| 俄罗斯特黄特色一大片| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 波多野结衣巨乳人妻| 亚洲专区中文字幕在线| 18禁国产床啪视频网站| 制服丝袜大香蕉在线| 久9热在线精品视频| 国产久久久一区二区三区| 日韩国内少妇激情av| 天天躁夜夜躁狠狠躁躁| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| 特大巨黑吊av在线直播 | 每晚都被弄得嗷嗷叫到高潮| 日韩精品免费视频一区二区三区| 日韩三级视频一区二区三区| 麻豆成人午夜福利视频| 性欧美人与动物交配| 日韩欧美国产在线观看| 欧美日本视频| 亚洲 欧美 日韩 在线 免费| 精品久久久久久,| 久久久水蜜桃国产精品网| 亚洲精品中文字幕一二三四区| 成年人黄色毛片网站| 91麻豆av在线| 窝窝影院91人妻| 国产精品免费视频内射| 美女大奶头视频| 亚洲第一青青草原| 免费搜索国产男女视频| 成人国语在线视频| 国产伦在线观看视频一区| 麻豆久久精品国产亚洲av| av在线播放免费不卡| 女性生殖器流出的白浆| 国产亚洲精品久久久久5区| 香蕉国产在线看| 女人被狂操c到高潮| 脱女人内裤的视频| 国产精品1区2区在线观看.| 12—13女人毛片做爰片一| 在线观看一区二区三区| videosex国产| 日韩高清综合在线| 最新在线观看一区二区三区| 窝窝影院91人妻| 欧美国产精品va在线观看不卡| 国产av在哪里看| 琪琪午夜伦伦电影理论片6080| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 亚洲欧美精品综合一区二区三区| 无遮挡黄片免费观看| 极品教师在线免费播放| 99久久精品国产亚洲精品| 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 波多野结衣高清作品| 亚洲精品久久国产高清桃花| 精品久久久久久成人av| 欧美精品啪啪一区二区三区| 国产三级在线视频| a级毛片a级免费在线| 无人区码免费观看不卡| 午夜日韩欧美国产| av天堂在线播放| 狠狠狠狠99中文字幕| 久久伊人香网站| 亚洲精品在线美女| 久久香蕉国产精品| 午夜激情福利司机影院| av电影中文网址| 亚洲国产精品999在线| 中文字幕另类日韩欧美亚洲嫩草| 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 一区二区三区激情视频| 日韩欧美一区二区三区在线观看| 久久久久久久精品吃奶| www.精华液| 一二三四在线观看免费中文在| 亚洲片人在线观看| 欧美成人性av电影在线观看| 精品午夜福利视频在线观看一区| 欧美日韩瑟瑟在线播放| 少妇的丰满在线观看| 国产成人av激情在线播放| 色哟哟哟哟哟哟| av在线天堂中文字幕| 99热这里只有精品一区 | 精品欧美国产一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品中文字幕看吧| 波多野结衣av一区二区av| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女| 日韩欧美一区二区三区在线观看| 中国美女看黄片| 日韩欧美国产在线观看| 亚洲人成网站在线播放欧美日韩| 天堂动漫精品| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 国产亚洲欧美98| 757午夜福利合集在线观看| 中文字幕人成人乱码亚洲影| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 精品国产超薄肉色丝袜足j| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 欧美日韩亚洲综合一区二区三区_| 老司机福利观看| 少妇 在线观看| 一二三四社区在线视频社区8| 中文字幕人妻熟女乱码| 在线国产一区二区在线| 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 免费高清视频大片| x7x7x7水蜜桃| 在线十欧美十亚洲十日本专区| 久久99热这里只有精品18| 高清毛片免费观看视频网站| 欧美最黄视频在线播放免费| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 18禁美女被吸乳视频| 国产精品永久免费网站| 亚洲国产高清在线一区二区三 | a在线观看视频网站| 观看免费一级毛片| 18禁观看日本| 亚洲人成77777在线视频| 麻豆成人午夜福利视频| 丁香六月欧美| 国产av一区二区精品久久| 1024手机看黄色片| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 99热6这里只有精品| 亚洲一区中文字幕在线| 国产精品久久久久久精品电影 | 精品福利观看| 欧美黑人精品巨大| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 亚洲一码二码三码区别大吗| 精品久久久久久久久久免费视频| 精品电影一区二区在线| 黄频高清免费视频| 淫妇啪啪啪对白视频| 精品人妻1区二区| 免费人成视频x8x8入口观看| 国产成人精品久久二区二区免费| 午夜a级毛片| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 国产黄片美女视频| videosex国产| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 国产精品久久电影中文字幕| 亚洲免费av在线视频| 成人亚洲精品av一区二区| 欧美日韩黄片免| 精品免费久久久久久久清纯| 欧美久久黑人一区二区| 村上凉子中文字幕在线| 男人的好看免费观看在线视频 | 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 亚洲成av人片免费观看| 白带黄色成豆腐渣| 成人亚洲精品一区在线观看| www.精华液| ponron亚洲| cao死你这个sao货| 午夜免费鲁丝| 最新美女视频免费是黄的| 中文字幕人成人乱码亚洲影| 最新在线观看一区二区三区| 嫩草影视91久久| 成人av在线播放网站| 亚洲欧美精品自产自拍| 欧美xxxx黑人xx丫x性爽| 国产精品人妻久久久久久| 欧美bdsm另类| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 精品午夜福利在线看| 老司机午夜福利在线观看视频| 全区人妻精品视频| 日本爱情动作片www.在线观看 | 3wmmmm亚洲av在线观看| 久久午夜亚洲精品久久| 欧美人与善性xxx| 97超视频在线观看视频| 精品久久久久久成人av| 国产 一区精品| 麻豆精品久久久久久蜜桃| ponron亚洲| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜 | 精品一区二区三区视频在线观看免费| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 91av网一区二区| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 久久久色成人| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 九色成人免费人妻av| 午夜视频国产福利| 国产精品日韩av在线免费观看| 成人综合一区亚洲| 免费电影在线观看免费观看| 直男gayav资源| 3wmmmm亚洲av在线观看| 国产精品久久电影中文字幕| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| 如何舔出高潮| 深夜a级毛片| 一级黄片播放器| 国产高潮美女av| 男女视频在线观看网站免费| 午夜日韩欧美国产| 天堂动漫精品| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 免费黄网站久久成人精品| 久久人人精品亚洲av| 1024手机看黄色片| 波野结衣二区三区在线| 偷拍熟女少妇极品色| 欧美潮喷喷水| 我的女老师完整版在线观看| 国产单亲对白刺激| 色哟哟哟哟哟哟| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 黑人高潮一二区| 久久精品国产亚洲av天美| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 人妻制服诱惑在线中文字幕| 舔av片在线| 在线国产一区二区在线| 波多野结衣高清作品| 免费黄网站久久成人精品| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 久久热精品热| 人妻少妇偷人精品九色| 全区人妻精品视频| 插阴视频在线观看视频| 三级经典国产精品| 男女之事视频高清在线观看| a级一级毛片免费在线观看| 黑人高潮一二区| 天堂影院成人在线观看| 久久精品国产自在天天线| 色视频www国产| 亚洲激情五月婷婷啪啪| 日本欧美国产在线视频| 看十八女毛片水多多多| 日韩欧美免费精品| 中文字幕av在线有码专区| 美女黄网站色视频| 99热这里只有精品一区| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 一级黄色大片毛片| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久久久| 天堂√8在线中文| 精品人妻一区二区三区麻豆 | 91在线观看av| 精品乱码久久久久久99久播| 亚洲人成网站在线播| 美女大奶头视频| aaaaa片日本免费| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 欧美三级亚洲精品| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 人妻制服诱惑在线中文字幕| 在线观看美女被高潮喷水网站| 国产精品人妻久久久久久| 亚洲无线在线观看| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 日本一本二区三区精品| 亚洲综合色惰| 国产乱人偷精品视频| 18禁黄网站禁片免费观看直播| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 国产亚洲av嫩草精品影院| 在线观看免费视频日本深夜| 国产成人a∨麻豆精品| 国产探花极品一区二区| 中国国产av一级| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 可以在线观看毛片的网站| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 国产精品av视频在线免费观看| 亚洲美女搞黄在线观看 | 99久久精品国产国产毛片| 亚洲电影在线观看av| 99久久精品国产国产毛片| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 日本黄色视频三级网站网址| 禁无遮挡网站| 日本黄大片高清| 能在线免费观看的黄片| 国产爱豆传媒在线观看|