• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals

    2023-09-05 08:48:04QiwenZheng鄭棋文WenguangLu盧文廣JiaqingXu胥加青YunyangYe葉云洋XinminZhao趙新民andLeyongJiang蔣樂(lè)勇
    Chinese Physics B 2023年7期
    關(guān)鍵詞:文廣新民

    Qiwen Zheng(鄭棋文), Wenguang Lu(盧文廣), Jiaqing Xu(胥加青),Yunyang Ye(葉云洋),?, Xinmin Zhao(趙新民),?, and Leyong Jiang(蔣樂(lè)勇)

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2School of Intelligent Manufacturing and Electronic Engineering,Wenzhou University of Technology,Wenzhou 325035,China

    3School of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China

    Keywords: group delay,Tamm plasmons,Dirac semimetals

    1.Introduction

    Group delay generally indicates the speed of the phase change relative to angular frequency when an electromagnetic wave pulse passes through a medium or structure.It is a typical optical phenomenon in the transmission of optical pulses.[1,2]Since the delay time of reflected and transmitted pulses can be manipulated from subluminal to superluminal by controlling the dispersive properties of the medium,[3]it is clear that research on group delay plays an important role in many fields, such as optical communications,[4,5]signal modulation,[6]delay lines,[7]optical storage[8]and fiber laser systems.[9]Therefore,researchers have investigated group delay enhancement and regulation in various structures.For example,the delay phenomenon in an analog circuit model,[10,11]photonic crystal (PC) structure[12]and Fabry–Perot cavity structures[13]has attracted extensive attention.In addition,Wang and Zhu studied the phenomenon of reflected optical pulse group delay of a weakly absorbing dielectric slab, and obtained a negative group delay of?4 ps.[14]Yaoet al.studied the tunable group delay in a Fabry–Perot cavity, and regulated the negative group delay by adjusting the polarization azimuthal angle of the incident pulse.[15]Recently, Xuet al.realized microsecond level reflected and transmitted group delay based on excitation of a topological edge state in a PC heterostructure.[16]Although researchers have studied many delay phenomena based on various structures and proposed many methods to enhance group delay,it is still a challenge to study delay approaches and schemes with large group delay.The exploration of micro-nanostructures with large group delay combined with new materials has attracted much attention.Graphene, a two-dimensional (2D) material, can be taken as a representative example; it has obvious advantages not only in electrically controllable optical phenomena and devices,2D optics and other fields,[17–19]but also in realizing enhanced delay due to its excellent photoelectric characteristics.[20,21]Researchers have studied many ways to enhance and manipulate the reflected group delay of optical pulses in graphene-based micro-nanostructures.For example, Wanget al.studied the regulation characteristics of reflected group delay in the mechanisms of both resonances and the excitations of surface plasmon resonances in graphene-based layered systems.[22]Xuet al.studied the tunable bistable reflected group delay based on a modified Otto configuration with the insertion of monolayer graphene and a nonlinear substrate.[23]It is not difficult to see that the enhancement and regulation approach to group delay based on 2D materials will be a feasible direction to realize practical delay devices, and this still represents the direction of study of optical delay,with large group delay,easier adjustment and a simple structure.

    In terms of mechanism, the optical Tamm state (OTS),as a lossless interface mode localized at the boundary of two different periodic dielectric structures, also has advantages in the field of enhanced group delay.[24]Compared with surface plasmons, the OTS does not need a specific incident angle to achieve wave vector matching, and can even be excited at vertical incidence.[25]At present, the structures which excite the OTS are mainly one-dimensional(1D)crystal heterostructures[26]and metal-distributed Bragg reflector(DBR)structures.[27]In addition,when the OTS is excited,it will be accompanied by a strong local field enhancement effect,and the OTS corresponds to the reflected resonance peak in the photonic band gap range.[28]These characteristics of the OTS mean that it has been widely studied in relation to absorption characteristics,[29]the nonlinear Kerr effect[30]and optical sensors.[31]The excitation of an OTS is often accompanied by phase mutation,thus creating conditions for the realization of large delay.Therefore, this provides an effective way to design optical devices with large group delay.In recent years,bulk Dirac semimetals(BDSs)have attracted attention.Such materials can be roughly regarded as‘3D graphene’,because BDSs are similar to graphene in many ways and their Fermi energy can be adjusted by chemical doping and changing the bias voltage,[32]so as to change the permittivity.[33,34]At present, BDSs have been applied in the fields of light absorbers and optical sensors.For example,Liuet al.proposed a terahertz tunable narrowband absorber based on a BDS which realizes dynamic regulation of the absorption frequency by adjusting the Fermi energy.[35]Yeet al.proposed a highsensitivity tunable terahertz sensor based on a BDS to solve the problem of low figure of merit (FOM); they verified that the FOM of the sensor reached 6001.[36]At the same time,BDSs show a metal response at frequencies lower than the Fermi energy and a dielectric response at frequencies higher than the Fermi energy.[37]Therefore, adding a BDS to a specific optical structure to excite OTS is a way to obtain adjustable large group delay.The conductivity characteristics of a BDS are similar to those of graphene, and the advantages in design of delay devices can therefore be retained.However,BDSs have a certain thickness, so requirements for preparation, transfer and processing are lower than those for graphene.In order to control the reflected group delay, a multilayer composite structure composed of a BDS and DBR is proposed in this paper.The OTS is excited by the BDS and 1D PC structure,combined with the optimization of the structural parameters to obtain a large positive and negative group delay.We believe that tunable and large group delay based on a BDS composite structure can find potential applications in photoelectric detection,sensing,communication and other fields.

    2.Theoretical model and method

    We consider a composite structure composed of a BDS and 1D PC to excite the OTS.The spacer layer is placed between the BDS and the PC,as shown in Fig 1.The 1D PC is composed ofTalternating cycles of dielectric layer A and dielectric layer B.We set the refractive index of dielectric layer A with thicknessdAasnA=1.47 and that of dielectric layer B with thicknessdBasnB=1.9.Their refractive indices in the terahertz band can be obtained from polymethylpentene and SiO2,respectively.This simple multilayer structure based on actual material parameters is not difficult to realize with current preparation processes.This also lays a foundation for the experimental implementation based on this scheme.There are also many schemes for the experimental measurement of group delay.[38,39]In the following calculation, we set the periodT=20, the central wavelength isλc=60 μm and the thickness of media A and B aredA=λc/(4nA) anddB=λc/(4nB).In order to simplify the calculation, only the case of TE polarization is considered.When low-temperature conditionsT ?EFare met, the conductivity of the BDS can be approximately expressed as[37]

    wheregrepresents the degeneracy factor.Its different values correspond to different specific BDS materials.[40]After calculation and comparison, we found that a BDS corresponding tog= 40 (AlCuFe quasicrystal[41]) meets most of our demands for large group delay.Also in these equationsfrepresents the frequency, Fermi velocityvFis 106m·s?1,EFis Fermi energy, the Fermi momentum iskF=EF/ˉhvF, ˉhis the reduced Planck constant,?(f)=2πˉhf/EF+iˉhτ?1/EF,whereτ=μEF/v2Fis the electron relaxation time,μis the carrier mobility andεc=Ec/EF, whereEcis the cut-off energy.Once this energy is exceeded,the Dirac spectrum will no longer be linear.Based on the above formula,the relationship between the dielectric constant of the BDS and its conductivity can be expressed as

    whereεb=1 is the effective background dielectric constant andε0is the permittivity of a vacuum.It can be seen from the above expression that the Fermi energy plays a key role in characterizing the conductivity of the BDS, and the Fermi energyEFcan be controlled by applying an external voltage,which provides an effective way to regulate the reflected group delay of the composite structure.

    Fig.1.Schematic diagram of a 1D PC structure containing a BDS.

    In order to calculate the reflected group delay of the structure in Fig.1, we use the transfer matrix method to calculate the reflection coefficient of the BDS–DBR structure.The interaction between a medium and light waves can be completely determined by the characteristic matrix of the medium layer.Based on the boundary conditions, the characteristic matrixMjof a single-layer medium can be obtained from

    whereηj=Kj/εj.For a structure with a multilayer medium,the characteristic matrix of the multilayer mediumMtotalcan be obtained by multiplying the characteristic matrix of each layer

    Based on the characteristic matrix of the whole composite structure, the matrixMfor the whole structure can be obtained as follows:

    By defining the optical admittanceY=C/Bof the structure,the reflection coefficient of the structure can be obtained by

    Based on the transfer matrix method, on the condition of a narrow spectrum Gaussian pulse,it is easy to calculate the reflected group delay as follows:

    In the following calculations, we set as the initial conditions a Fermi energyEF=0.3 eV, relaxation timeτ=0.9 ps and thickness of the BDS layerdBDS=20 nm;the dielectric constant and thickness of the spacer layer are consistent with those of dielectric layer B.

    3.Results and discussions

    First we discuss the reflectance of a 1D PC composite structure with or without a BDS, 1D PC and separate BDS layer,as shown in Fig.2.It is obvious from Fig.2 that when there is no BDS the reflectance of the 1D PC is almost 1 in a certain frequency range due to the band gap, which indicates that the PC has a blocking effect on the photons in this frequency band, forming the photonic band gap.The addition of a BDS makes the curve of reflectance show an obviously reflected dip (nearf=4.84 THz) in the photonic band gap.Whenf=4.84 THz is obtained from Fig.2,the reflection coefficientrBDSof an electromagnetic wave incident from the spacer layer to the BDS and the reflection coefficientrDBRof an electromagnetic wave incident from the spacer layer to the PC can be found to satisfyrBDSrDBRexp(2iδ)≈1,Arg(rBDSrDBRexp(2iδ))≈0.These expressions mean that the OTS will be excited.[25]It should be noted that the structure of Fig.1 can also be seen as an optical Fabry–Perot cavity composed of a BDS and DBR.Therefore, the reflected peak in Fig.2 is also very similar to excitation of the Fabry–Perot mode.However, the numerical calculation shows that the thickness of the spacer layer does not meet the minimum thickness required for the Fabry–Perot mode.This further verifies that the reflected peak in Fig.2 is caused by OTS excitation: the excitation of OTS leads to dramatic changes in the reflected phase, creating conditions for achieving large group delay.

    Fig.2.(a)Dependence of the reflection spectra on frequency for different structures.(b)Dependence of the reflected phase on frequency.

    Next,we discuss the influence of the Fermi energy of the BDS on the reflected group delay.Figure 3 shows the dependence between the reflected phase and reflected group delay on frequency of the composite structure for different Fermi energies.According to formulae(1)–(3),when the Fermi energy changes,the conductivity of the BDS also changes,which further affects the permittivity of the BDS and finally leads to different group delays.Therefore, by applying an external voltage to change the Fermi energy of the BDS we can dynamically adjust the value of reflected group delay.When the Fermi energy increases,the position of resonant frequency shifts to the right,and the curve of the reflected phase becomes steep, as shown in Fig.3(a).The change in the phase is directly reflected in the value of the group delay.As shown in Fig.3(b),when the Fermi energy is 0.25 eV a reflected group delay of about?11.75 ps can be obtained.Continuing to increase the Fermi energy can help us obtain a greater negative group delay.For example, when the Fermi level is 0.4 eV,the reflected group delay is about?65.7 ps.At the same time,the resonance frequency of the OTS also moves towards a higher frequency with increase in the Fermi energy.These phenomena show that the reflected group delay of the composite structure is very sensitive to changes in the Fermi energy.The Fermi energy plays an important role in determining the value of group delay.In practical manipulations we can adjust the Fermi energy by adding electrodes between the BDS and the substrate.[42]This electronic control characteristic of the reflected group delay provides a way to design tunable group delay devices.For the convenience of discussion, we set the Fermi energy as 0.4 eV in the next calculation.

    Fig.3.Dependence of the(a)reflected phase and the(b)reflected group delay on frequency of composite structures for different Fermi energies.

    Apart from the dynamic manipulation of group delay by Fermi energy,it is known from formulae(1)–(3)that the electron relaxation time of a BDS also has a significant impact on its conductivity.According to calculations by the transfer matrix method,the reflected group delay will also be very sensitive to the electron relaxation time.This characteristic provides a new way to regulate the reflected group delay.With the Fermi energy taking the fixed value set previously we plotted the dependence of the reflected group delay and the reflected phase on frequency for different electron relaxation times, as shown in Fig.4.Compared with the influence of Fermi energy on the reflected phase and the reflected group delay,the influence of electron relaxation time on the reflected group delay is mainly shown by the value of the peak of group delay,and the resonance frequency of the reflected phase and the reflected group delay will not be changed.Further,we find that changing the electron relaxation time of the BDS can change the monotonicity of the reflected phase,thus changing the positive and negative phases of the reflected group delay.Excitation of the OTS will make the reflected phase an obvious monotonic decreasing or monotonic increasing process.Referring to the calculation of reflected group delay,this monotonous process of the reflected phase corresponds to a specific group delay peak.This regulation characteristic provides a way to convert positive and negative reflected group delay.However,it should be noted that, for a certain structure, once the Fermi energy takes a fixed value and the structure is determined it will become difficult to change the relaxation time.However,for the BDS–DBR composite structure, according to the expression for electron relaxation time of the BDS,the relaxation time is regulated by the Fermi energy,so the relaxation time can also be regulated by adjusting the external voltage.

    Fig.4.Dependence of(a)the reflected phase and(b)the reflected group delay on frequency for different relaxation times.

    Fig.5.(a) Reflected group delay of the system as a function of the thickness of the BDS and frequency.(b)Dependences of the maximum group delay value on the thickness of BDS.

    Next, we discuss the effect of structural parameters of the BDS–DBR composite structure on reflected group delay.These conclusions will provide key references for the design of regulable group delay devices.Figure 5 shows the group delay according to the thickness of the BDS for different frequencies and the dependence of the maximum group delay value on the thickness of the BDS.It is not difficult to find from Fig.3 or Fig.4 that excitation of the OTS will make the reflected phase an obvious monotonic decreasing or monotonic increasing process.Referring to the formula for calculating reflected group delay, this monotonous process of the reflected phase corresponds to the specific group delay peak.The material parameters or structural parameters of the scheme have similar effects on group delay.As shown in Fig.5, change in BDS thickness essentially regulates its permittivity.With increase in BDS thickness,the slope of the monotonically decreasing reflected phase at the resonance frequency gradually decreases and tends to negative infinity.In terms of group delay,this trend is reflected as a negative group delay with an increasing absolute value.As the BDS thickness continues to increase,the reflected phase will jump from negative to positive due to the jump from negative infinity to positive infinity,resulting in a sudden jump from a negative group delay peak to a positive group delay peak, which is exactly what is seen in Fig.5(b).After the scheme has relatively optimized the initial parameters,the maximum group delay caused by surface waves shows a similar hyperbolic trend with change in thickness of the BDS layer.From this trend,we can easily estimate the thickness of the BDS layer that corresponds to a large reflection group delay.

    4.Conclusions

    In conclusion, we have theoretically studied the regulation of reflected group delay when the OTS is excited in a BDS–DBR structure.The numerical calculation results show that large group delay in this configuration can be realized due to the excitation of the OTS at a BDS–dielectric interface.The regulation of group delay mainly depends on the conductivity characteristics of the BDS.We also found that the reflected group delay is very sensitive to BDS material and structural parameters.These results provide a feasible way to control the delay characteristics of terahertz pulses.We believe that this scheme will be helpful for the design and preparation of controllable group delay devices.

    Acknowledgements

    Project supported by the Scientific research project of Zhejiang Provincial Department of Education (Grant No.Y202250547),the Scientific Research Project of Wenzhou University of Technology(Grant No.ky202205),and the Hunan Provincial Natural Science Foundation of China (Grant No.2022JJ30394).

    猜你喜歡
    文廣新民
    大道同行
    心聲歌刊(2022年3期)2022-06-06 06:31:36
    培優(yōu)輔差小組教學(xué)活動(dòng)的實(shí)踐研究
    送給媽媽的賀卡
    Practice Makes Perfect吸煙有害
    摸鯊魚(yú)牙齒
    “討書(shū)老人”汪新民
    百視通東方明珠合并上海文廣重大資產(chǎn)重組
    聲屏世界(2014年10期)2014-02-28 15:18:44
    廣電產(chǎn)業(yè)結(jié)構(gòu)重組與治理困境——以2014年上海文廣整合改革為例
    聲屏世界(2014年5期)2014-02-28 15:17:45
    初中英語(yǔ)單項(xiàng)選擇練與析
    編結(jié)水繩
    東方娃娃(2004年5期)2004-07-22 06:41:10
    99热这里只有精品一区| 男女边摸边吃奶| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| a级毛色黄片| 成年女人在线观看亚洲视频 | 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 色综合站精品国产| 美女cb高潮喷水在线观看| 国产精品国产三级国产专区5o| 欧美潮喷喷水| 最近中文字幕2019免费版| 亚洲国产精品sss在线观看| 国产成人福利小说| 在现免费观看毛片| 免费观看精品视频网站| 国产午夜福利久久久久久| 日本wwww免费看| 69人妻影院| 午夜激情欧美在线| a级一级毛片免费在线观看| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久| 午夜亚洲福利在线播放| 婷婷色av中文字幕| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 美女高潮的动态| 97超碰精品成人国产| ponron亚洲| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 国产高清三级在线| 欧美精品一区二区大全| 高清av免费在线| 亚洲综合精品二区| 欧美97在线视频| 在线天堂最新版资源| 亚洲怡红院男人天堂| 两个人视频免费观看高清| 成人鲁丝片一二三区免费| 亚洲欧美成人精品一区二区| av免费观看日本| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| 色综合色国产| 日日撸夜夜添| 好男人视频免费观看在线| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 街头女战士在线观看网站| 激情 狠狠 欧美| 最近的中文字幕免费完整| 欧美潮喷喷水| 亚洲成人精品中文字幕电影| 亚洲精品久久午夜乱码| 熟妇人妻不卡中文字幕| 国产精品久久久久久久电影| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 国产成人午夜福利电影在线观看| 亚洲熟女精品中文字幕| 天美传媒精品一区二区| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看| 成人国产麻豆网| 色播亚洲综合网| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 日韩欧美精品免费久久| 精品一区二区三卡| 亚洲精品,欧美精品| 我要看日韩黄色一级片| 亚洲人成网站在线播| 成年版毛片免费区| 亚洲精品乱久久久久久| 精品人妻熟女av久视频| 国产伦一二天堂av在线观看| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久久免| 国内精品一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 成人无遮挡网站| 老女人水多毛片| 免费观看av网站的网址| 国产亚洲最大av| 国产精品国产三级国产专区5o| 国产伦在线观看视频一区| 国产一区二区三区av在线| 69人妻影院| 亚洲不卡免费看| 国产老妇女一区| 日韩三级伦理在线观看| 国产精品国产三级国产专区5o| 国产精品99久久久久久久久| 少妇被粗大猛烈的视频| 成人无遮挡网站| 99热这里只有是精品50| 国产精品国产三级专区第一集| 超碰av人人做人人爽久久| 国产v大片淫在线免费观看| 黄色配什么色好看| 亚洲国产欧美在线一区| 国产视频内射| 免费大片黄手机在线观看| 亚洲国产av新网站| 熟女人妻精品中文字幕| 少妇熟女aⅴ在线视频| 成人国产麻豆网| 亚洲精品国产av成人精品| 欧美一级a爱片免费观看看| 22中文网久久字幕| 久久精品久久精品一区二区三区| 国产亚洲av片在线观看秒播厂 | 日韩av在线大香蕉| 亚洲在线观看片| 久久久久久九九精品二区国产| 国产精品爽爽va在线观看网站| 美女高潮的动态| 免费无遮挡裸体视频| 99久久精品热视频| 少妇人妻精品综合一区二区| 伦理电影大哥的女人| 美女黄网站色视频| 人妻系列 视频| 免费看光身美女| 日韩制服骚丝袜av| 能在线免费观看的黄片| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 色视频www国产| 精品酒店卫生间| 色吧在线观看| 欧美3d第一页| 免费观看在线日韩| 国产黄片视频在线免费观看| 十八禁国产超污无遮挡网站| 久久99精品国语久久久| 午夜老司机福利剧场| 国产色婷婷99| 亚洲欧美精品专区久久| 大香蕉97超碰在线| 久久亚洲国产成人精品v| 美女主播在线视频| 男人爽女人下面视频在线观看| 18+在线观看网站| 91av网一区二区| 久久午夜福利片| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 天天躁日日操中文字幕| 亚洲人成网站在线观看播放| 99久久精品热视频| 天堂俺去俺来也www色官网 | 日本av手机在线免费观看| 欧美成人午夜免费资源| 亚洲精品乱码久久久久久按摩| 午夜亚洲福利在线播放| 成人欧美大片| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 大香蕉久久网| 色综合站精品国产| 午夜久久久久精精品| 男的添女的下面高潮视频| 免费大片18禁| 欧美97在线视频| 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 亚洲国产日韩欧美精品在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人被狂操c到高潮| 夫妻性生交免费视频一级片| 青青草视频在线视频观看| 尤物成人国产欧美一区二区三区| av播播在线观看一区| 好男人视频免费观看在线| 可以在线观看毛片的网站| 2022亚洲国产成人精品| 日本一二三区视频观看| 少妇高潮的动态图| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 国产成人a∨麻豆精品| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 中文字幕制服av| 寂寞人妻少妇视频99o| 一个人免费在线观看电影| 观看免费一级毛片| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 黄色一级大片看看| 国产亚洲最大av| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品影视一区二区三区av| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 男插女下体视频免费在线播放| kizo精华| 国产av不卡久久| 嘟嘟电影网在线观看| 免费观看在线日韩| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 久久久久久久午夜电影| 国产成人精品一,二区| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品视频女| 国产av国产精品国产| 成人一区二区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99热6这里只有精品| 国产男女超爽视频在线观看| 一个人免费在线观看电影| 夜夜爽夜夜爽视频| 日日撸夜夜添| 内地一区二区视频在线| 亚洲欧美精品专区久久| 午夜激情欧美在线| 永久免费av网站大全| 两个人视频免费观看高清| 美女被艹到高潮喷水动态| 国产不卡一卡二| 亚洲成人久久爱视频| .国产精品久久| or卡值多少钱| 大又大粗又爽又黄少妇毛片口| 又大又黄又爽视频免费| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 亚洲四区av| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 成人亚洲精品av一区二区| 寂寞人妻少妇视频99o| 丝袜美腿在线中文| 亚洲,欧美,日韩| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 亚洲成人av在线免费| 国产 一区精品| 免费看光身美女| 婷婷六月久久综合丁香| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 赤兔流量卡办理| 看非洲黑人一级黄片| 午夜精品在线福利| 尾随美女入室| 搡女人真爽免费视频火全软件| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 久久久久久久久久成人| 五月伊人婷婷丁香| 搡老妇女老女人老熟妇| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 日韩欧美精品免费久久| 国产色婷婷99| 国产高潮美女av| 天堂√8在线中文| 日本黄色片子视频| 成人亚洲欧美一区二区av| 有码 亚洲区| 国产精品伦人一区二区| 一个人看的www免费观看视频| 99久久精品热视频| 一本一本综合久久| 日韩视频在线欧美| 免费看a级黄色片| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 国产成人freesex在线| freevideosex欧美| 天天躁日日操中文字幕| 99久久人妻综合| 久久久久久久久久人人人人人人| 久久久久久久午夜电影| 男人爽女人下面视频在线观看| 天堂av国产一区二区熟女人妻| 美女主播在线视频| 亚洲va在线va天堂va国产| 99热这里只有是精品50| 大陆偷拍与自拍| 九色成人免费人妻av| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看| 久久久久久伊人网av| 亚洲成人久久爱视频| www.av在线官网国产| 久久国产乱子免费精品| 精品久久久久久久末码| 国产探花在线观看一区二区| av播播在线观看一区| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 国产有黄有色有爽视频| 日韩av免费高清视频| 亚洲不卡免费看| 亚洲av中文av极速乱| 一个人免费在线观看电影| 尤物成人国产欧美一区二区三区| av.在线天堂| xxx大片免费视频| 久久人人爽人人片av| 99re6热这里在线精品视频| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 亚洲av不卡在线观看| 欧美区成人在线视频| 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 亚洲最大成人中文| 美女主播在线视频| 亚洲婷婷狠狠爱综合网| 成人综合一区亚洲| 中文字幕av成人在线电影| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| 超碰97精品在线观看| 国产精品1区2区在线观看.| 日韩三级伦理在线观看| 性色avwww在线观看| 亚洲在线自拍视频| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 亚洲精品成人av观看孕妇| 青春草视频在线免费观看| 人体艺术视频欧美日本| 又大又黄又爽视频免费| 午夜亚洲福利在线播放| 韩国av在线不卡| 国产激情偷乱视频一区二区| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 在线观看免费高清a一片| 国产精品伦人一区二区| 十八禁网站网址无遮挡 | 亚洲欧美成人综合另类久久久| 久久国内精品自在自线图片| 成年女人在线观看亚洲视频 | 亚洲国产av新网站| 好男人在线观看高清免费视频| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影| 欧美成人一区二区免费高清观看| 日本三级黄在线观看| 高清在线视频一区二区三区| 97超碰精品成人国产| 精品久久久久久久久av| 婷婷色av中文字幕| 免费无遮挡裸体视频| 乱人视频在线观看| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 国产成人精品久久久久久| 最后的刺客免费高清国语| 国产精品美女特级片免费视频播放器| 国产成人精品一,二区| 久久99蜜桃精品久久| 美女cb高潮喷水在线观看| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 亚洲精品国产av蜜桃| 国产 一区精品| 久久精品国产亚洲网站| 日本-黄色视频高清免费观看| 嫩草影院入口| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看| 成人亚洲精品av一区二区| 22中文网久久字幕| 一级毛片我不卡| 欧美不卡视频在线免费观看| 夫妻午夜视频| 免费黄频网站在线观看国产| 久久99热这里只有精品18| 午夜精品国产一区二区电影 | 欧美高清性xxxxhd video| 身体一侧抽搐| 啦啦啦中文免费视频观看日本| 国产伦理片在线播放av一区| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 99热这里只有是精品在线观看| 日韩av不卡免费在线播放| 在线 av 中文字幕| av福利片在线观看| 一夜夜www| 国产亚洲精品av在线| 亚洲精品色激情综合| 建设人人有责人人尽责人人享有的 | 免费大片黄手机在线观看| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 在线a可以看的网站| av一本久久久久| 免费黄频网站在线观看国产| 深夜a级毛片| 国产精品嫩草影院av在线观看| 免费看光身美女| 久久久精品94久久精品| 精品久久久久久久久久久久久| 黄片无遮挡物在线观看| 老司机影院成人| 成年版毛片免费区| 久久久精品欧美日韩精品| 午夜久久久久精精品| 国产真实伦视频高清在线观看| 久久久色成人| 国产黄片美女视频| 毛片女人毛片| 国产爱豆传媒在线观看| 亚洲精品中文字幕在线视频 | 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| av线在线观看网站| 777米奇影视久久| 看黄色毛片网站| 99九九线精品视频在线观看视频| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 午夜福利网站1000一区二区三区| 久99久视频精品免费| 久久久午夜欧美精品| 亚洲精品456在线播放app| 免费播放大片免费观看视频在线观看| 老女人水多毛片| 国产亚洲午夜精品一区二区久久 | 国产真实伦视频高清在线观看| 内地一区二区视频在线| 国产成人精品婷婷| 日韩成人伦理影院| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 秋霞在线观看毛片| 久久久久精品久久久久真实原创| 成人美女网站在线观看视频| 国产视频首页在线观看| 九草在线视频观看| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 晚上一个人看的免费电影| 一级毛片 在线播放| 国产伦精品一区二区三区四那| 国产综合精华液| 免费av不卡在线播放| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 亚洲精品国产av蜜桃| 亚洲一级一片aⅴ在线观看| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 精华霜和精华液先用哪个| 国产乱人偷精品视频| 有码 亚洲区| 十八禁网站网址无遮挡 | av在线观看视频网站免费| 九九爱精品视频在线观看| 欧美精品国产亚洲| av在线亚洲专区| 国产精品久久视频播放| 中文字幕av成人在线电影| 国产精品蜜桃在线观看| xxx大片免费视频| 色5月婷婷丁香| 天天躁日日操中文字幕| 精品人妻偷拍中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲国产欧美在线一区| 亚洲在久久综合| 亚洲精品国产av成人精品| 神马国产精品三级电影在线观看| 国产91av在线免费观看| 日本猛色少妇xxxxx猛交久久| 日韩国内少妇激情av| 男插女下体视频免费在线播放| 亚洲精品久久久久久婷婷小说| 亚洲不卡免费看| 国产成人福利小说| 国产成人精品福利久久| 成人性生交大片免费视频hd| 少妇被粗大猛烈的视频| 成人一区二区视频在线观看| 精品一区在线观看国产| 久久久久免费精品人妻一区二区| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 日日撸夜夜添| 亚洲国产日韩欧美精品在线观看| 亚洲国产最新在线播放| 成年女人看的毛片在线观看| 中文乱码字字幕精品一区二区三区 | 久久97久久精品| 岛国毛片在线播放| 国产成人a∨麻豆精品| 日本免费在线观看一区| 建设人人有责人人尽责人人享有的 | 亚洲三级黄色毛片| 天美传媒精品一区二区| 国内精品美女久久久久久| 又爽又黄无遮挡网站| 日韩欧美三级三区| 久久久久久久久久成人| 久久久色成人| 黄片wwwwww| 久久精品熟女亚洲av麻豆精品 | 久久久色成人| 亚洲精品成人久久久久久| 天堂网av新在线| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区久久久樱花 | 日本午夜av视频| 亚洲人成网站高清观看| 一夜夜www| 人妻夜夜爽99麻豆av| 国产精品蜜桃在线观看| 国产黄a三级三级三级人| 精品酒店卫生间| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区视频9| 少妇的逼水好多| 六月丁香七月| 汤姆久久久久久久影院中文字幕 | 少妇被粗大猛烈的视频| 99久久精品一区二区三区| 免费观看无遮挡的男女| 日韩av不卡免费在线播放| 直男gayav资源| or卡值多少钱| 一级毛片黄色毛片免费观看视频| 女人被狂操c到高潮| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 成人国产麻豆网| 久久久欧美国产精品| 精品久久久精品久久久| 久久99精品国语久久久| 一级爰片在线观看| 久久6这里有精品| 男的添女的下面高潮视频| 亚洲不卡免费看| 久久久精品欧美日韩精品| 你懂的网址亚洲精品在线观看| 国产单亲对白刺激| 亚洲内射少妇av| 成人亚洲精品一区在线观看 | 国产成人福利小说| 黄色日韩在线| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 九草在线视频观看| 97精品久久久久久久久久精品| 日日撸夜夜添| 伊人久久精品亚洲午夜| 成人性生交大片免费视频hd| 日韩制服骚丝袜av| 国产成人一区二区在线| 男人爽女人下面视频在线观看| 搡女人真爽免费视频火全软件| kizo精华| 99久国产av精品国产电影| 看非洲黑人一级黄片| 中文字幕av在线有码专区| 能在线免费看毛片的网站| 亚洲国产精品sss在线观看| 欧美潮喷喷水| 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 成人午夜精彩视频在线观看| 插阴视频在线观看视频| 精品久久久久久久久亚洲| 少妇的逼水好多| 99久久精品国产国产毛片| 日韩伦理黄色片| 在线播放无遮挡| 好男人在线观看高清免费视频| 热99在线观看视频| 91精品一卡2卡3卡4卡| 在线 av 中文字幕| 久久久成人免费电影| 国产伦理片在线播放av一区| 国产老妇伦熟女老妇高清| 婷婷六月久久综合丁香| 亚洲,欧美,日韩|