• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals

    2023-09-05 08:48:04QiwenZheng鄭棋文WenguangLu盧文廣JiaqingXu胥加青YunyangYe葉云洋XinminZhao趙新民andLeyongJiang蔣樂(lè)勇
    Chinese Physics B 2023年7期
    關(guān)鍵詞:文廣新民

    Qiwen Zheng(鄭棋文), Wenguang Lu(盧文廣), Jiaqing Xu(胥加青),Yunyang Ye(葉云洋),?, Xinmin Zhao(趙新民),?, and Leyong Jiang(蔣樂(lè)勇)

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2School of Intelligent Manufacturing and Electronic Engineering,Wenzhou University of Technology,Wenzhou 325035,China

    3School of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China

    Keywords: group delay,Tamm plasmons,Dirac semimetals

    1.Introduction

    Group delay generally indicates the speed of the phase change relative to angular frequency when an electromagnetic wave pulse passes through a medium or structure.It is a typical optical phenomenon in the transmission of optical pulses.[1,2]Since the delay time of reflected and transmitted pulses can be manipulated from subluminal to superluminal by controlling the dispersive properties of the medium,[3]it is clear that research on group delay plays an important role in many fields, such as optical communications,[4,5]signal modulation,[6]delay lines,[7]optical storage[8]and fiber laser systems.[9]Therefore,researchers have investigated group delay enhancement and regulation in various structures.For example,the delay phenomenon in an analog circuit model,[10,11]photonic crystal (PC) structure[12]and Fabry–Perot cavity structures[13]has attracted extensive attention.In addition,Wang and Zhu studied the phenomenon of reflected optical pulse group delay of a weakly absorbing dielectric slab, and obtained a negative group delay of?4 ps.[14]Yaoet al.studied the tunable group delay in a Fabry–Perot cavity, and regulated the negative group delay by adjusting the polarization azimuthal angle of the incident pulse.[15]Recently, Xuet al.realized microsecond level reflected and transmitted group delay based on excitation of a topological edge state in a PC heterostructure.[16]Although researchers have studied many delay phenomena based on various structures and proposed many methods to enhance group delay,it is still a challenge to study delay approaches and schemes with large group delay.The exploration of micro-nanostructures with large group delay combined with new materials has attracted much attention.Graphene, a two-dimensional (2D) material, can be taken as a representative example; it has obvious advantages not only in electrically controllable optical phenomena and devices,2D optics and other fields,[17–19]but also in realizing enhanced delay due to its excellent photoelectric characteristics.[20,21]Researchers have studied many ways to enhance and manipulate the reflected group delay of optical pulses in graphene-based micro-nanostructures.For example, Wanget al.studied the regulation characteristics of reflected group delay in the mechanisms of both resonances and the excitations of surface plasmon resonances in graphene-based layered systems.[22]Xuet al.studied the tunable bistable reflected group delay based on a modified Otto configuration with the insertion of monolayer graphene and a nonlinear substrate.[23]It is not difficult to see that the enhancement and regulation approach to group delay based on 2D materials will be a feasible direction to realize practical delay devices, and this still represents the direction of study of optical delay,with large group delay,easier adjustment and a simple structure.

    In terms of mechanism, the optical Tamm state (OTS),as a lossless interface mode localized at the boundary of two different periodic dielectric structures, also has advantages in the field of enhanced group delay.[24]Compared with surface plasmons, the OTS does not need a specific incident angle to achieve wave vector matching, and can even be excited at vertical incidence.[25]At present, the structures which excite the OTS are mainly one-dimensional(1D)crystal heterostructures[26]and metal-distributed Bragg reflector(DBR)structures.[27]In addition,when the OTS is excited,it will be accompanied by a strong local field enhancement effect,and the OTS corresponds to the reflected resonance peak in the photonic band gap range.[28]These characteristics of the OTS mean that it has been widely studied in relation to absorption characteristics,[29]the nonlinear Kerr effect[30]and optical sensors.[31]The excitation of an OTS is often accompanied by phase mutation,thus creating conditions for the realization of large delay.Therefore, this provides an effective way to design optical devices with large group delay.In recent years,bulk Dirac semimetals(BDSs)have attracted attention.Such materials can be roughly regarded as‘3D graphene’,because BDSs are similar to graphene in many ways and their Fermi energy can be adjusted by chemical doping and changing the bias voltage,[32]so as to change the permittivity.[33,34]At present, BDSs have been applied in the fields of light absorbers and optical sensors.For example,Liuet al.proposed a terahertz tunable narrowband absorber based on a BDS which realizes dynamic regulation of the absorption frequency by adjusting the Fermi energy.[35]Yeet al.proposed a highsensitivity tunable terahertz sensor based on a BDS to solve the problem of low figure of merit (FOM); they verified that the FOM of the sensor reached 6001.[36]At the same time,BDSs show a metal response at frequencies lower than the Fermi energy and a dielectric response at frequencies higher than the Fermi energy.[37]Therefore, adding a BDS to a specific optical structure to excite OTS is a way to obtain adjustable large group delay.The conductivity characteristics of a BDS are similar to those of graphene, and the advantages in design of delay devices can therefore be retained.However,BDSs have a certain thickness, so requirements for preparation, transfer and processing are lower than those for graphene.In order to control the reflected group delay, a multilayer composite structure composed of a BDS and DBR is proposed in this paper.The OTS is excited by the BDS and 1D PC structure,combined with the optimization of the structural parameters to obtain a large positive and negative group delay.We believe that tunable and large group delay based on a BDS composite structure can find potential applications in photoelectric detection,sensing,communication and other fields.

    2.Theoretical model and method

    We consider a composite structure composed of a BDS and 1D PC to excite the OTS.The spacer layer is placed between the BDS and the PC,as shown in Fig 1.The 1D PC is composed ofTalternating cycles of dielectric layer A and dielectric layer B.We set the refractive index of dielectric layer A with thicknessdAasnA=1.47 and that of dielectric layer B with thicknessdBasnB=1.9.Their refractive indices in the terahertz band can be obtained from polymethylpentene and SiO2,respectively.This simple multilayer structure based on actual material parameters is not difficult to realize with current preparation processes.This also lays a foundation for the experimental implementation based on this scheme.There are also many schemes for the experimental measurement of group delay.[38,39]In the following calculation, we set the periodT=20, the central wavelength isλc=60 μm and the thickness of media A and B aredA=λc/(4nA) anddB=λc/(4nB).In order to simplify the calculation, only the case of TE polarization is considered.When low-temperature conditionsT ?EFare met, the conductivity of the BDS can be approximately expressed as[37]

    wheregrepresents the degeneracy factor.Its different values correspond to different specific BDS materials.[40]After calculation and comparison, we found that a BDS corresponding tog= 40 (AlCuFe quasicrystal[41]) meets most of our demands for large group delay.Also in these equationsfrepresents the frequency, Fermi velocityvFis 106m·s?1,EFis Fermi energy, the Fermi momentum iskF=EF/ˉhvF, ˉhis the reduced Planck constant,?(f)=2πˉhf/EF+iˉhτ?1/EF,whereτ=μEF/v2Fis the electron relaxation time,μis the carrier mobility andεc=Ec/EF, whereEcis the cut-off energy.Once this energy is exceeded,the Dirac spectrum will no longer be linear.Based on the above formula,the relationship between the dielectric constant of the BDS and its conductivity can be expressed as

    whereεb=1 is the effective background dielectric constant andε0is the permittivity of a vacuum.It can be seen from the above expression that the Fermi energy plays a key role in characterizing the conductivity of the BDS, and the Fermi energyEFcan be controlled by applying an external voltage,which provides an effective way to regulate the reflected group delay of the composite structure.

    Fig.1.Schematic diagram of a 1D PC structure containing a BDS.

    In order to calculate the reflected group delay of the structure in Fig.1, we use the transfer matrix method to calculate the reflection coefficient of the BDS–DBR structure.The interaction between a medium and light waves can be completely determined by the characteristic matrix of the medium layer.Based on the boundary conditions, the characteristic matrixMjof a single-layer medium can be obtained from

    whereηj=Kj/εj.For a structure with a multilayer medium,the characteristic matrix of the multilayer mediumMtotalcan be obtained by multiplying the characteristic matrix of each layer

    Based on the characteristic matrix of the whole composite structure, the matrixMfor the whole structure can be obtained as follows:

    By defining the optical admittanceY=C/Bof the structure,the reflection coefficient of the structure can be obtained by

    Based on the transfer matrix method, on the condition of a narrow spectrum Gaussian pulse,it is easy to calculate the reflected group delay as follows:

    In the following calculations, we set as the initial conditions a Fermi energyEF=0.3 eV, relaxation timeτ=0.9 ps and thickness of the BDS layerdBDS=20 nm;the dielectric constant and thickness of the spacer layer are consistent with those of dielectric layer B.

    3.Results and discussions

    First we discuss the reflectance of a 1D PC composite structure with or without a BDS, 1D PC and separate BDS layer,as shown in Fig.2.It is obvious from Fig.2 that when there is no BDS the reflectance of the 1D PC is almost 1 in a certain frequency range due to the band gap, which indicates that the PC has a blocking effect on the photons in this frequency band, forming the photonic band gap.The addition of a BDS makes the curve of reflectance show an obviously reflected dip (nearf=4.84 THz) in the photonic band gap.Whenf=4.84 THz is obtained from Fig.2,the reflection coefficientrBDSof an electromagnetic wave incident from the spacer layer to the BDS and the reflection coefficientrDBRof an electromagnetic wave incident from the spacer layer to the PC can be found to satisfyrBDSrDBRexp(2iδ)≈1,Arg(rBDSrDBRexp(2iδ))≈0.These expressions mean that the OTS will be excited.[25]It should be noted that the structure of Fig.1 can also be seen as an optical Fabry–Perot cavity composed of a BDS and DBR.Therefore, the reflected peak in Fig.2 is also very similar to excitation of the Fabry–Perot mode.However, the numerical calculation shows that the thickness of the spacer layer does not meet the minimum thickness required for the Fabry–Perot mode.This further verifies that the reflected peak in Fig.2 is caused by OTS excitation: the excitation of OTS leads to dramatic changes in the reflected phase, creating conditions for achieving large group delay.

    Fig.2.(a)Dependence of the reflection spectra on frequency for different structures.(b)Dependence of the reflected phase on frequency.

    Next,we discuss the influence of the Fermi energy of the BDS on the reflected group delay.Figure 3 shows the dependence between the reflected phase and reflected group delay on frequency of the composite structure for different Fermi energies.According to formulae(1)–(3),when the Fermi energy changes,the conductivity of the BDS also changes,which further affects the permittivity of the BDS and finally leads to different group delays.Therefore, by applying an external voltage to change the Fermi energy of the BDS we can dynamically adjust the value of reflected group delay.When the Fermi energy increases,the position of resonant frequency shifts to the right,and the curve of the reflected phase becomes steep, as shown in Fig.3(a).The change in the phase is directly reflected in the value of the group delay.As shown in Fig.3(b),when the Fermi energy is 0.25 eV a reflected group delay of about?11.75 ps can be obtained.Continuing to increase the Fermi energy can help us obtain a greater negative group delay.For example, when the Fermi level is 0.4 eV,the reflected group delay is about?65.7 ps.At the same time,the resonance frequency of the OTS also moves towards a higher frequency with increase in the Fermi energy.These phenomena show that the reflected group delay of the composite structure is very sensitive to changes in the Fermi energy.The Fermi energy plays an important role in determining the value of group delay.In practical manipulations we can adjust the Fermi energy by adding electrodes between the BDS and the substrate.[42]This electronic control characteristic of the reflected group delay provides a way to design tunable group delay devices.For the convenience of discussion, we set the Fermi energy as 0.4 eV in the next calculation.

    Fig.3.Dependence of the(a)reflected phase and the(b)reflected group delay on frequency of composite structures for different Fermi energies.

    Apart from the dynamic manipulation of group delay by Fermi energy,it is known from formulae(1)–(3)that the electron relaxation time of a BDS also has a significant impact on its conductivity.According to calculations by the transfer matrix method,the reflected group delay will also be very sensitive to the electron relaxation time.This characteristic provides a new way to regulate the reflected group delay.With the Fermi energy taking the fixed value set previously we plotted the dependence of the reflected group delay and the reflected phase on frequency for different electron relaxation times, as shown in Fig.4.Compared with the influence of Fermi energy on the reflected phase and the reflected group delay,the influence of electron relaxation time on the reflected group delay is mainly shown by the value of the peak of group delay,and the resonance frequency of the reflected phase and the reflected group delay will not be changed.Further,we find that changing the electron relaxation time of the BDS can change the monotonicity of the reflected phase,thus changing the positive and negative phases of the reflected group delay.Excitation of the OTS will make the reflected phase an obvious monotonic decreasing or monotonic increasing process.Referring to the calculation of reflected group delay,this monotonous process of the reflected phase corresponds to a specific group delay peak.This regulation characteristic provides a way to convert positive and negative reflected group delay.However,it should be noted that, for a certain structure, once the Fermi energy takes a fixed value and the structure is determined it will become difficult to change the relaxation time.However,for the BDS–DBR composite structure, according to the expression for electron relaxation time of the BDS,the relaxation time is regulated by the Fermi energy,so the relaxation time can also be regulated by adjusting the external voltage.

    Fig.4.Dependence of(a)the reflected phase and(b)the reflected group delay on frequency for different relaxation times.

    Fig.5.(a) Reflected group delay of the system as a function of the thickness of the BDS and frequency.(b)Dependences of the maximum group delay value on the thickness of BDS.

    Next, we discuss the effect of structural parameters of the BDS–DBR composite structure on reflected group delay.These conclusions will provide key references for the design of regulable group delay devices.Figure 5 shows the group delay according to the thickness of the BDS for different frequencies and the dependence of the maximum group delay value on the thickness of the BDS.It is not difficult to find from Fig.3 or Fig.4 that excitation of the OTS will make the reflected phase an obvious monotonic decreasing or monotonic increasing process.Referring to the formula for calculating reflected group delay, this monotonous process of the reflected phase corresponds to the specific group delay peak.The material parameters or structural parameters of the scheme have similar effects on group delay.As shown in Fig.5, change in BDS thickness essentially regulates its permittivity.With increase in BDS thickness,the slope of the monotonically decreasing reflected phase at the resonance frequency gradually decreases and tends to negative infinity.In terms of group delay,this trend is reflected as a negative group delay with an increasing absolute value.As the BDS thickness continues to increase,the reflected phase will jump from negative to positive due to the jump from negative infinity to positive infinity,resulting in a sudden jump from a negative group delay peak to a positive group delay peak, which is exactly what is seen in Fig.5(b).After the scheme has relatively optimized the initial parameters,the maximum group delay caused by surface waves shows a similar hyperbolic trend with change in thickness of the BDS layer.From this trend,we can easily estimate the thickness of the BDS layer that corresponds to a large reflection group delay.

    4.Conclusions

    In conclusion, we have theoretically studied the regulation of reflected group delay when the OTS is excited in a BDS–DBR structure.The numerical calculation results show that large group delay in this configuration can be realized due to the excitation of the OTS at a BDS–dielectric interface.The regulation of group delay mainly depends on the conductivity characteristics of the BDS.We also found that the reflected group delay is very sensitive to BDS material and structural parameters.These results provide a feasible way to control the delay characteristics of terahertz pulses.We believe that this scheme will be helpful for the design and preparation of controllable group delay devices.

    Acknowledgements

    Project supported by the Scientific research project of Zhejiang Provincial Department of Education (Grant No.Y202250547),the Scientific Research Project of Wenzhou University of Technology(Grant No.ky202205),and the Hunan Provincial Natural Science Foundation of China (Grant No.2022JJ30394).

    猜你喜歡
    文廣新民
    大道同行
    心聲歌刊(2022年3期)2022-06-06 06:31:36
    培優(yōu)輔差小組教學(xué)活動(dòng)的實(shí)踐研究
    送給媽媽的賀卡
    Practice Makes Perfect吸煙有害
    摸鯊魚(yú)牙齒
    “討書(shū)老人”汪新民
    百視通東方明珠合并上海文廣重大資產(chǎn)重組
    聲屏世界(2014年10期)2014-02-28 15:18:44
    廣電產(chǎn)業(yè)結(jié)構(gòu)重組與治理困境——以2014年上海文廣整合改革為例
    聲屏世界(2014年5期)2014-02-28 15:17:45
    初中英語(yǔ)單項(xiàng)選擇練與析
    編結(jié)水繩
    東方娃娃(2004年5期)2004-07-22 06:41:10
    成人漫画全彩无遮挡| 国产女主播在线喷水免费视频网站 | 精品人妻偷拍中文字幕| 色哟哟哟哟哟哟| av在线蜜桃| 日本免费一区二区三区高清不卡| 最新中文字幕久久久久| 免费看美女性在线毛片视频| 中国美女看黄片| 有码 亚洲区| 亚洲七黄色美女视频| 日本爱情动作片www.在线观看| 99riav亚洲国产免费| 精品99又大又爽又粗少妇毛片| 国产伦一二天堂av在线观看| 美女大奶头视频| 黄色视频,在线免费观看| 三级经典国产精品| 国产伦精品一区二区三区视频9| 我要搜黄色片| 女的被弄到高潮叫床怎么办| 欧美激情国产日韩精品一区| 日本色播在线视频| 亚洲国产精品成人综合色| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 日本五十路高清| 久久精品综合一区二区三区| 99热全是精品| av在线亚洲专区| 国产亚洲5aaaaa淫片| 综合色av麻豆| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清在线视频| 永久网站在线| 欧美一区二区国产精品久久精品| 日韩一区二区三区影片| 尾随美女入室| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 欧美不卡视频在线免费观看| www.色视频.com| 99久久无色码亚洲精品果冻| 国产综合懂色| 色哟哟哟哟哟哟| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| 久久热精品热| 成人漫画全彩无遮挡| 亚洲成a人片在线一区二区| 亚洲av中文字字幕乱码综合| 国产亚洲5aaaaa淫片| 乱人视频在线观看| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 久久99精品国语久久久| 国产精品女同一区二区软件| 人妻系列 视频| 国产成人午夜福利电影在线观看| 国产 一区精品| 我要搜黄色片| 直男gayav资源| 国产精品1区2区在线观看.| 国产不卡一卡二| av在线播放精品| 国产精品蜜桃在线观看 | 久久精品久久久久久噜噜老黄 | 特大巨黑吊av在线直播| 国产精品1区2区在线观看.| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 人妻久久中文字幕网| 日韩,欧美,国产一区二区三区 | 欧美激情在线99| 国产精品蜜桃在线观看 | 乱人视频在线观看| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 老女人水多毛片| 成人特级黄色片久久久久久久| 国产私拍福利视频在线观看| 国产人妻一区二区三区在| 午夜视频国产福利| 日韩欧美精品v在线| 观看美女的网站| 国产精品伦人一区二区| 在线a可以看的网站| 国产成人91sexporn| 国产精品久久久久久av不卡| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 欧美精品国产亚洲| 久久精品国产99精品国产亚洲性色| 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 国产美女午夜福利| 国产精品国产高清国产av| 久久99热6这里只有精品| 黄色欧美视频在线观看| 日日啪夜夜撸| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人人妻人人看人人澡| 国产极品天堂在线| 校园人妻丝袜中文字幕| 午夜久久久久精精品| 日本黄色视频三级网站网址| 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 欧美区成人在线视频| 亚洲精品色激情综合| 成人性生交大片免费视频hd| 不卡视频在线观看欧美| 久久99热这里只有精品18| 毛片女人毛片| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 男女做爰动态图高潮gif福利片| 午夜福利在线观看吧| 天堂影院成人在线观看| 亚洲精品自拍成人| 久久综合国产亚洲精品| 日韩欧美国产在线观看| 亚洲av中文av极速乱| 精品免费久久久久久久清纯| 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载 | 亚洲久久久久久中文字幕| 在线观看免费视频日本深夜| 综合色av麻豆| 级片在线观看| 午夜福利在线在线| 成人无遮挡网站| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看| 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 免费av观看视频| 日韩欧美精品v在线| av卡一久久| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 久久99热6这里只有精品| 老熟妇乱子伦视频在线观看| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 色视频www国产| 国产精品.久久久| 国产成人91sexporn| 午夜老司机福利剧场| 99精品在免费线老司机午夜| 成人三级黄色视频| 好男人在线观看高清免费视频| 日韩欧美在线乱码| 色吧在线观看| 国产美女午夜福利| 插逼视频在线观看| 听说在线观看完整版免费高清| 精品日产1卡2卡| 插逼视频在线观看| 嫩草影院精品99| 中文字幕制服av| 亚洲中文字幕日韩| 成人漫画全彩无遮挡| 直男gayav资源| 一进一出抽搐gif免费好疼| 乱人视频在线观看| 日韩视频在线欧美| 中文欧美无线码| 午夜老司机福利剧场| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 国产老妇伦熟女老妇高清| 亚洲性久久影院| 免费av毛片视频| 狂野欧美白嫩少妇大欣赏| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 少妇人妻精品综合一区二区 | 97在线视频观看| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 亚洲在线观看片| 2021天堂中文幕一二区在线观| 亚洲精品久久国产高清桃花| 国产精品99久久久久久久久| 男女边吃奶边做爰视频| 99久久人妻综合| 久久热精品热| 色播亚洲综合网| 中文字幕久久专区| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 亚洲不卡免费看| 久久精品人妻少妇| 一区二区三区免费毛片| 看黄色毛片网站| 丰满的人妻完整版| 欧美成人免费av一区二区三区| 亚洲一区二区三区色噜噜| 国产黄片视频在线免费观看| a级一级毛片免费在线观看| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区 | 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| 精品久久久久久久久亚洲| 99久国产av精品国产电影| 亚洲性久久影院| av又黄又爽大尺度在线免费看 | 亚洲不卡免费看| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 岛国毛片在线播放| a级毛色黄片| 欧美人与善性xxx| 亚洲精品色激情综合| 欧美3d第一页| 成人毛片60女人毛片免费| 最近视频中文字幕2019在线8| 亚洲第一电影网av| 日本色播在线视频| 国产中年淑女户外野战色| 亚洲中文字幕日韩| 观看美女的网站| 亚洲在线自拍视频| 国产高清激情床上av| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 亚洲三级黄色毛片| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 可以在线观看毛片的网站| 午夜a级毛片| 三级毛片av免费| av天堂中文字幕网| 国产高清有码在线观看视频| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 99久久人妻综合| 久久99蜜桃精品久久| 亚洲四区av| 国产精品.久久久| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 黄片wwwwww| 精品无人区乱码1区二区| 在线a可以看的网站| 超碰av人人做人人爽久久| 久久久久久久亚洲中文字幕| 国产蜜桃级精品一区二区三区| 婷婷色av中文字幕| 蜜臀久久99精品久久宅男| 老司机影院成人| 看十八女毛片水多多多| а√天堂www在线а√下载| 看片在线看免费视频| 国产精品,欧美在线| 嘟嘟电影网在线观看| 亚洲成人久久性| 91久久精品国产一区二区成人| 日韩在线高清观看一区二区三区| 久久久久久国产a免费观看| 最近最新中文字幕大全电影3| 黄片无遮挡物在线观看| 久99久视频精品免费| 你懂的网址亚洲精品在线观看 | 亚洲成人久久爱视频| 国产熟女欧美一区二区| 欧美xxxx黑人xx丫x性爽| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 国产欧美日韩精品一区二区| 亚洲国产欧洲综合997久久,| 国产综合懂色| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 久久人人精品亚洲av| 国产精品美女特级片免费视频播放器| 亚洲成人久久性| 日韩高清综合在线| 国产高清不卡午夜福利| 免费人成视频x8x8入口观看| 午夜免费男女啪啪视频观看| 一级毛片电影观看 | 波多野结衣巨乳人妻| 亚洲精品色激情综合| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 国产一级毛片在线| 国产精品福利在线免费观看| 桃色一区二区三区在线观看| 91久久精品电影网| 午夜爱爱视频在线播放| 国产高潮美女av| 国产精品久久视频播放| 色综合色国产| 欧美性感艳星| 国产精品野战在线观看| 国产精品日韩av在线免费观看| 丝袜喷水一区| avwww免费| 女人被狂操c到高潮| 亚洲av中文av极速乱| 一本一本综合久久| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 一个人免费在线观看电影| 波多野结衣巨乳人妻| 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 久久精品国产清高在天天线| 观看免费一级毛片| 国产精品人妻久久久影院| 校园春色视频在线观看| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| a级毛色黄片| 男人舔奶头视频| 国产片特级美女逼逼视频| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 少妇的逼好多水| 国产色婷婷99| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 久久人人爽人人爽人人片va| 美女被艹到高潮喷水动态| 国产精品人妻久久久影院| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 国内久久婷婷六月综合欲色啪| 国内揄拍国产精品人妻在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩在线观看h| 久久精品国产亚洲网站| 99国产极品粉嫩在线观看| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 久久久久久九九精品二区国产| 国产亚洲av嫩草精品影院| av.在线天堂| 中国美女看黄片| 在线a可以看的网站| 国产精品久久视频播放| 你懂的网址亚洲精品在线观看 | 丝袜喷水一区| 丰满人妻一区二区三区视频av| 老师上课跳d突然被开到最大视频| 亚洲综合色惰| 欧美极品一区二区三区四区| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 久久久成人免费电影| 欧洲精品卡2卡3卡4卡5卡区| 精品国产三级普通话版| 老师上课跳d突然被开到最大视频| 高清日韩中文字幕在线| av在线老鸭窝| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 一边亲一边摸免费视频| 久久久欧美国产精品| 国产视频首页在线观看| 日韩成人伦理影院| av在线播放精品| 色综合色国产| 亚洲高清免费不卡视频| 亚洲人成网站在线播放欧美日韩| 一本一本综合久久| 欧美+亚洲+日韩+国产| 久久人人爽人人片av| 国产亚洲5aaaaa淫片| 干丝袜人妻中文字幕| 国产一区二区三区av在线 | 亚洲一级一片aⅴ在线观看| 国产高清三级在线| 有码 亚洲区| 少妇的逼水好多| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 观看美女的网站| 国内精品一区二区在线观看| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 成人午夜高清在线视频| 在线观看免费视频日本深夜| 久久久国产成人免费| 日韩人妻高清精品专区| 成人鲁丝片一二三区免费| www日本黄色视频网| 美女 人体艺术 gogo| 国产三级在线视频| 特大巨黑吊av在线直播| 久久精品国产清高在天天线| 99热精品在线国产| 激情 狠狠 欧美| 国产免费男女视频| 18禁在线无遮挡免费观看视频| 国产白丝娇喘喷水9色精品| 精品久久久久久久末码| 国语自产精品视频在线第100页| 亚洲婷婷狠狠爱综合网| 国产午夜福利久久久久久| 老司机影院成人| 欧美+亚洲+日韩+国产| 国产视频内射| .国产精品久久| 12—13女人毛片做爰片一| 国产精品人妻久久久影院| 91久久精品国产一区二区成人| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜 | 在线播放国产精品三级| 亚洲自拍偷在线| 在线免费观看不下载黄p国产| av.在线天堂| 嫩草影院入口| 亚洲在久久综合| 欧美性猛交╳xxx乱大交人| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色| 欧美+亚洲+日韩+国产| 国产精品嫩草影院av在线观看| 在线a可以看的网站| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 国产色婷婷99| av免费在线看不卡| 校园春色视频在线观看| 中文欧美无线码| 久久久久性生活片| 亚洲精品自拍成人| 简卡轻食公司| 永久网站在线| 少妇的逼好多水| 丝袜喷水一区| 欧美bdsm另类| 性欧美人与动物交配| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 国产成人freesex在线| a级毛片a级免费在线| 亚洲天堂国产精品一区在线| 婷婷色综合大香蕉| 99久国产av精品国产电影| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| videossex国产| 大香蕉久久网| 欧美性猛交╳xxx乱大交人| 一级毛片aaaaaa免费看小| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线播| 成人三级黄色视频| 麻豆av噜噜一区二区三区| 此物有八面人人有两片| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 美女内射精品一级片tv| 黄色一级大片看看| 日本av手机在线免费观看| 亚洲性久久影院| 乱人视频在线观看| 午夜视频国产福利| 成年女人永久免费观看视频| 黄色欧美视频在线观看| 变态另类丝袜制服| 国产成人精品一,二区 | 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 国产黄片美女视频| 国产人妻一区二区三区在| 最近中文字幕高清免费大全6| 少妇熟女aⅴ在线视频| 99久久精品国产国产毛片| 久久99精品国语久久久| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 一级黄色大片毛片| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 亚洲丝袜综合中文字幕| 女人十人毛片免费观看3o分钟| 日本黄大片高清| 国产69精品久久久久777片| 久久久久久久久大av| 看黄色毛片网站| 嫩草影院入口| 男人舔奶头视频| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 国产白丝娇喘喷水9色精品| 在线免费十八禁| 日韩中字成人| 一级毛片aaaaaa免费看小| 一区二区三区四区激情视频 | 欧美3d第一页| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩精品成人综合77777| 国产日韩欧美在线精品| 免费大片18禁| 国产一级毛片七仙女欲春2| 又爽又黄无遮挡网站| 久久久久久久久久黄片| 内射极品少妇av片p| 午夜免费激情av| 亚洲精品日韩在线中文字幕 | 变态另类丝袜制服| 色综合色国产| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 看黄色毛片网站| 国产精品久久视频播放| 日产精品乱码卡一卡2卡三| 天堂影院成人在线观看| 偷拍熟女少妇极品色| 亚洲电影在线观看av| 国产视频内射| 国产一区亚洲一区在线观看| 特级一级黄色大片| 欧美色视频一区免费| www日本黄色视频网| 亚洲丝袜综合中文字幕| 天天躁日日操中文字幕| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 色综合站精品国产| 小说图片视频综合网站| 美女高潮的动态| 国产一区亚洲一区在线观看| 成人高潮视频无遮挡免费网站| 国产真实乱freesex| 热99在线观看视频| 亚洲欧美成人精品一区二区| 亚洲五月天丁香| 欧美又色又爽又黄视频| 久久久a久久爽久久v久久| 欧美日韩乱码在线| 国产女主播在线喷水免费视频网站 | 国产精品女同一区二区软件| 午夜福利在线观看免费完整高清在 | 免费观看在线日韩| 午夜爱爱视频在线播放| 国产极品天堂在线| 亚洲国产欧洲综合997久久,| 晚上一个人看的免费电影| eeuss影院久久| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 级片在线观看| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 欧美性感艳星| 色5月婷婷丁香| 最近中文字幕高清免费大全6| 日韩,欧美,国产一区二区三区 | 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 热99在线观看视频| 国产大屁股一区二区在线视频| 丰满的人妻完整版| 午夜久久久久精精品| 国产成人91sexporn| 国产av一区在线观看免费| 爱豆传媒免费全集在线观看| 美女被艹到高潮喷水动态| 亚洲精品国产成人久久av| 麻豆成人av视频| 免费搜索国产男女视频| 在线观看免费视频日本深夜| 老司机影院成人| 最好的美女福利视频网| 内地一区二区视频在线| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 国产淫片久久久久久久久| 自拍偷自拍亚洲精品老妇| 免费黄网站久久成人精品| 久久久久久久久久黄片| 少妇的逼水好多|