• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of the microstructure and magnetic properties of(La,Ce)–Fe–B nanocrystalline ribbons

    2023-09-05 08:48:32LiYuLian連李昱XiaoWeiZhang張曉偉YingLiu劉穎JunLi李軍andRenQuanWang王仁全
    Chinese Physics B 2023年7期
    關鍵詞:劉穎李軍

    Li-Yu Lian(連李昱), Xiao-Wei Zhang(張曉偉), Ying Liu(劉穎),2,Jun Li(李軍),?, and Ren-Quan Wang(王仁全)

    1School of Materials Science and Engineering,Sichuan University,Chengdu 610065,China

    2Key Laboratory of Advanced Special Material&Technology,Ministry of Education,Sichuan University,Chengdu 610065,China

    Keywords: (La,Ce)–Fe–B,La/Ce ratio,rare earth content,secondary phases inhibition

    1.Introduction

    To curb the cost of permanent magnet production, the cost-effective Ce–Fe–B[1–3]and(La,Ce)–Fe–B[4–9]rare earth permanent magnets have attracted wide attention.Herbstet al.[10,11]and Soedaet al.[12]reported the hard magnetic properties of Ce2Fe14B and (La,Ce)2Fe14B compounds, respectively.With the addition of Hf,[13]Ta[14]and Ga[15,16]to Ce–Fe–B type magnets,finer matrix phase grains and good magnetic properties have been obtained.However, the secondary phases (such as CeFe2,β-La phases, etc.) in these magnets result in deterioration of the microstructure and poor magnetic properties.[15,17]Recent investigations have been made on elemental dopants to inhibit secondary phases.Zhanget al.[18]and Rehmanet al.[19]reported that Si and Ge atoms enter into the lattice of the CeFe2phase and suppress the generation of the CeFe2phase.The growth of the matrix phase grains and the formation of the CeFe2phase have been inhibited by the addition of Mo.[20]In comparison,fewer reports have focused on the effect on secondary phase inhibition of light rare earth elements substituted for Ce.

    Our previous study investigated the contribution of La to expanding the formation temperature gap between(La,Ce)2Fe14B and metastable Ce2Fe17phases.[21]Recent work on(La,Ce)2Fe14B alloys[22]verified the relationship between phase consistency and magnetic properties.Unlike elemental dopant methods,La atoms may enter into the Ce2Fe14B phase lattice and improve the magnetic properties.[23]Therefore,our understanding of the effect of La on variation of the microstructure and magnetic properties in (La,Ce)–Fe–B ribbons still needs to be clarified.

    In this work,(La,Ce)–Fe–B ribbons with different La/Ce ratios and rare earth element contents were prepared.The relationship between the microstructure of ribbons and the magnetic performance was investigated.A fine microstructure was obtained in ribbons with good magnetic properties.

    2.Experimental method

    Two kinds of cast ingots were prepared by induction melting: Ce–Fe–B type alloy and (La,Ce)–Fe–B type alloy.The Ce–Fe–B type alloy had the nominal compositions of CezFe94?zB6(z= 12, 13, 14, 15, 16) and the (La,Ce)–Fe–B type alloy had nominal compositions of(LayCe100?y)xFe94?xB6(x=12,14,16 andy=0,15,25,35,50).The constituent metals had a purity better than 99.8 wt.%and the whole process of casting took place under an argon atmosphere.The cast ingot was remelted in a quartz tube for the homogenization of alloy composition, followed by rapid quenching at a molybdenum wheel at a speed of 45 m·s?1.The rapidly quenched ribbons were placed in a tube furnace and heated at 525?C for 15 min under a vacuum to ensure their complete crystallization.Standard bonded magnets were prepared to verify the magnetic properties of the ribbons.The mixture,combining the magnetic powder with epoxy resin in the proportion of 100:2.5, was pressed into a cylinder with a density of about 6.0 g·cm?3.These bonded magnets were solidified at 175?C for 90 min.

    The phase constitution and structure of Ce–Fe–B type and(La,Ce)–Fe–B type alloys were characterized by an x-ray diffraction(XRD)analyzer with CuKαradiation(λ=1.54 ?A)and CoKαradiation (λ= 1.79 ?A), respectively, over a 2θrange of 20?–70?.The refinement results were calculated by the Rietveld method via general structure analysis system(GSAS)software.[24]Magnetic properties were measured with a vibrating sample magnetometer(VSM;Lakeshore 7410)by applying a maximum magnetic field of 2.5 T.The hysteresis curves were corrected with a demagnetization factor(N)equal to 0.21.[25]Bonded magnets were measured by an automatic measuring instrument for magnetization characteristic(AMT-4).The morphology of the ribbons was investigated by a scanning electron microscope(FEI Inspect F50)and a transmission electron microscope(TEM;FEI Talos F200X)equipped with energy dispersive x-ray spectroscopy (EDX; Super X).The equivalent diameter data were collected via Image Pro Plus(IPP)software with counts of at least 300.

    3.Results and discussion

    3.1.Phase constitution and magnetic properties of Ce–Fe–B type alloys

    To understand the phase variation in Ce–Fe–B alloys,melt ribbons with Ce content changed from 12 at.%to 16 at.%.were prepared.Figure 1(a) shows the XRD pattern of each crystallized ribbon.It is noteworthy that the secondary phase(CeFe2)emerges when the Ce content is 14 at.%.Due to the Curie temperature of the CeFe2phase being much lower than room temperature(about 225 K),[26]this secondary phase exhibits paramagnetism under the working condition of permanent magnets.Meanwhile,the relative intensity of the diffraction peaks of the CeFe2phase in the alloy was enhanced with the growing concentration of Ce,which means that the weight fraction of CeFe2in ribbons grew simultaneously.

    Fig.1.XRD patterns of Ce–Fe–B alloys(a)and the magnetic properties of Ce–Fe–B ribbons(b).

    The magnetic properties of Ce–Fe–B type alloys with rare earth element contents from 12 at.% to 16 at.% were tested with a VSM and are shown in Fig.1(b).The variation of coercivity for the ribbons shared the same trend as the Ce content in the alloys, but a slight lump was found in the magnetic remanence plot.The Ce16Fe78B6ribbon exhibited the best comprehensive properties, withHcj=5.4 kOe and (BH)max=5.22 MGOe, respectively.Grigoraset al.[27]and Liet al.[28]investigated such a phenomenon for the evolution of magnetic properties with variation in the rare earth content, which may be attributed to the phase constitution in alloys.Recent investigations[29,30]reported that the paramagnetic CeFe2phase would effectively isolate and decouple the matrix phase grains.In addition, due to the good wettability of the Ce-rich phase, it would flow into the gap between matrix grains and form grain boundaries (GBs).[31]The exchange coupling effect would be weakened if GBs individually isolated matrix phase grains.Moreover,the relatively low solidification point of the intergranular phase may smooth the edge of hard magnetic phase grains.The regularization of matrix grains in ribbons would lead to a decrease in the effective demagnetization factor(Neff)and improve coercivity.As a result of these factors, the coercivity of Ce–Fe–B type alloy is increased as the Ce content increases.Meanwhile, the proportion of the Ce2Fe14B (2:14:1) phase in Ce–Fe–B type alloys should also be addressed, as this would directly affect the magnetic properties of ribbons.Thus,the increasing concentration of Ce would generate more CeFe2phase and dilute the magnetic remanence of the ribbons.

    3.2.Effects of La/Ce ratio on the microstructure and magnetic properties

    A rare earth element content of 16 at.% was selected for its excellent performance in Ce–Fe–B type ribbons.The Rietveld refinement patterns for differentyvalues in(LayCe100?y)16Fe78B6ribbons are exhibited in Fig.2(a).The lattice parameters of the RE2Fe14B phase (RE=rare earth)and the phase composition of each ribbon are listed in Table 1.Withyincreasing from 0% to 25%, the mass fraction of the CeFe2phase drops from 21.027 wt.% to 1.911 wt.%.Whenyreaches 35%, the 1:2 phase is completely suppressed by La.Due to the instability of the (La,Ce)Fe2phase[32]and the expanded gap in the formation temperature between(La,Ce)2Fe14B and metastable Ce2Fe17phases,[21,33]the CeFe2phase is gradually suppressed with the increasing La/Ce ratio.Given the relatively high temperature(796.75?C)of the invariant reaction(L?α-Fe+β-La),[34]theβ-La phase formed when the La ratio varied from 15% to 50% and the mass fraction of theβ-La phase increased drastically from 0.294 wt.% to 4.025 wt.%.Theγ-Ce phase[35]is a product of a eutectic reaction at about 604?C following the formula L?CeFe2+γ-Ce and was found in(LayCe100?y)16Fe78B6ribbons with a high Ce content.Because La atoms may dissolve into theγ-Ce phase, theγ-Ce phase was named the RE-rich phase in this work.With an increasing La/Ce ratio andβ-La phase generation,the fraction of the RE-rich phase decreased from 7.468 wt.% to 0.009 wt.% in (LayCe100?y)16Fe78B6alloys.

    As the substitution of La increased from 0%to 50%,the lattice parameters of(LayCe100?y)16Fe78B6ribbons expanded with a near-linear trend, as shown in Table 1 and Fig.2(b).Because of the larger atomic radius of La compared with Ce,the substitution of La atoms for Ce atoms in the 2:14:1 phase would bring about an expansion of lattice space.Therefore,an increasing La/Ce ratio promotes more La atoms to occupy Ce lattice sites in the Ce2Fe14B tetragonal lattice.

    To clarify the elemental distribution in ribbons,TEM and EDX mapping studies for different La/Ce ratios were performed,as shown in Fig.3.The bright-field TEM images for Ce16Fe78B6,(La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6are demonstrated in Figs.3(a),3(b)and 3(c),respectively.Fe,Ce,B and La were selected for mapping scanning and the detected regions are exhibited in Figs.3(d)–3(l).The concentration of rare earth elements in (LayCe100?y)16Fe78B6alloys is excessive for formation of the matrix phase.Hence,the aggregation of rare earth elements is inevitable, as reflected in Figs.3(e),3(h), 3(i), 3(k) and 3(l).With the La/Ce ratio increased, the aggregating areas of La expanded.The positive formation energy[36]of La2Fe14B may induce more serious segregation of La than Ce.Notably,a large area of La segregation(with a length of about 112.16 nm)is found in Fig.3(l).This critical aggregation may accelerate the consumption of excessive rare earth atoms in the(La35Ce65)16Fe78B6ribbon.

    Fig.2.XRD patterns of(LayCe100?y)16Fe78B6 alloys(a)and the refined lattice parameters for(La?Ce100?y)16Fe78B6 alloys(b).

    Table 1.The refined lattice parameters and phase fractions of(LayCe100?y)16Fe78B6 alloys.

    Fig.3.Bright-field (BF) TEM images for the rapidly quenching ribbons: Ce16Fe78B6 (a), (La15Ce85)16Fe78B6 (b) and (La35Ce65)16Fe78B6(c).The TEM-EDX elemental mappings of each ribbon are shown in(d)–(l).

    The TEM images of ribbons for Ce16Fe78B6,(La15Ce85)16Fe78B6and (La35Ce65)16Fe78B6are exhibited in Figs.4(a1), 4(a2) and 4(a3).Figure 4(b1) shows the highresolution TEM(HRTEM)image of the orange square area in Fig.4(a1).It shows the region far from the secondary phase in the Ce16Fe78B6ribbon.A 2:14:1 phase grain was confirmed via a fast Fourier transformation (FFT) pattern, as shown in Fig.4(c1).By virtue of the high fraction of rare earth-rich phase in the Ce16Fe78B6alloy,rare earth atoms were gathered in this region, and GBs (with a thickness of about 7.62 nm)were formed between 2:14:1 phase grains.The EDX line scanning results for the GBs are exhibited in Fig.4(d1).This further proved that the composition of GBs is enriched with rare earth elements.Figure 4(b2)shows a similar area remote to the secondary phase in the(La15Ce85)16Fe78B6ribbon and is marked with an orange square in Fig.4(a2).The adjacent matrix grains were confirmed via FFT patterns in Figs.4(c2)and 4(e2).Clear GBs (with a thickness of about 3.53 nm)were formed between them and are exhibited in an enlarged image in Fig.4(d2).The orange square in Fig.4(a3) is the area far from the secondary phase in the (La35Ce65)16Fe78B6ribbon.In the HRTEM image(Fig.4(b3))of this area,matrix grains were confirmed by FFT patterns in Figs.4(c3)–4(e3).However, there is no obvious GB around these matrix phase grains.

    The CeFe2phase exists in regions marked with red squares in Figs.4(a1) and 4(a2), these being TEM images for the Ce16Fe78B6ribbon and the (La15Ce85)16Fe78B6ribbon, respectively.HRTEM images of these areas are shown in Figs.4(e1)and 4(f2),respectively.The CeFe2phase grains were verified from the FFT images in Figs.4(f1) and 4(g2).These 1:2 phase grains are distributed in the triple junctions among matrix grains that directly contact each other,as shown in Figs.S1(a1–f1)and(a2–d2).

    Theβ-La phase grains were found in(La15Ce85)16Fe78B6and are marked with a blue square in Fig.4(a2).Figure 4(h2)shows the HRTEM image of this blue square, and theβ-La phase grains were confirmed by the FFT pattern in Fig.4(i2).The large segregation area of La in (La35Ce65)16Fe78B6ribbons is marked with a blue square in Fig.4(a3).The HRTEM and FFT images of the segregation area are shown in Figs.4(f3)and 4(i3).It is noticeable that aβ-La phase grain formed in this segregation region.Figures 4(g3)and 4(h3)are FFT images for neighboring 2:14:1 phase grains.However,there is no apparent intergranular phase between adjacent matrix phase grains that are next to theβ-La phase,as shown in Figs.S1(e2)–(k2).

    Statistical graphs of the equivalent diameter (D) of matrix phase grains for Ce16Fe78B6, (La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6ribbons are exhibited in Figs.5(a)–5(c),respectively.When the La/Ce ratio changed from 0%to 35%,the mean equivalent diameter of the matrix grains increased from 33.7 nm to 37.4 nm.

    Fig.4.Bright-field TEM images for the rapidly quenching ribbons Ce16Fe78B6 (a1),(La15Ce85)16Fe78B6 (a2)and(La35Ce65)16Fe78B6 (a3).Areas remote to secondary phases are marked as orange squares in (a1), (a2) and (a3).The high-resolution TEM (HRTEM) and fast Fourier transformation (FFT) images for the orange squares are shown in (b1) and (c1), (b2) and (e2) and (b3) and (e3), respectively.The EDX line scanning result for the grain boundaries of(b1)is shown in(d1).The CeFe2 phase exists in areas marked as red squares in(a1)and(a2).The HRTEM and FFT images for the red squares are shown in(e1)and(f1)and(f2)and(g2),respectively.The β-La phase exists in areas marked as blue squares in(a2)and(a3).The HRTEM and FFT images for blue squares are shown in(h2)and(i2)and(f3)and(i3),respectively.

    Fig.5.Statistical graphs of the equivalent diameter of matrix phase grains in Ce16Fe78B6(a),(La15Ce85)16Fe78B6(b)and(La35Ce65)16Fe78B6(c)ribbons.

    Figure S2 shows the results of EDX mapping studies of areas containing rare earth-rich andβ-La phases, respectively.For the area where a rare earth-rich phase is present(Fig.S2(a)), the elements are homogeneously distributed, as shown in Figs.S2(b)–(d).Benefiting from the good mobility of the rare earth-rich phase, the length of the segregation area of Ce is as little as 12.6 nm.Therefore, in Ce16Fe78B6and (La15Ce85)16Fe78B6ribbons, the relatively high fraction of the rare earth-rich phase would promote sufficient rare earth atoms to form GBs.For(La35Ce65)16Fe78B6ribbons,in comparison,the rare earth-rich phase fraction(0.703 wt.%)is too low to enclose matrix grains.Moreover, the formation of theβ-La phase consumed excessive rare earth atoms and was aggregated in the junctions among matrix phase grains,as shown in Figs.S2(e)–(h).Both factors are responsible for the deterioration of ribbon microstructure,especially on the GBs.

    Fig.6.The hysteresis loops of(LayCe100?y)16Fe78B6 alloys(a)and the magnetic parameters for(LayCe100?y)16Fe78B6 alloys(b).

    The magnetic properties of ribbons are closely related to their phase composition and microstructure.Figures 6(a)and 6(b)show the hysteresis loops and magnetic properties of(LayCe100?y)16Fe78B6(y=0, 15, 25, 35, 50) ribbons.The maximum magnetic energy product of 6.5 MGOe was obtained in (La15Ce85)16Fe78B6ribbon.During the increase in La ratio,theBrof the ribbons grew from 5.2 kG to 6.0 kG,but theHcjvalue dropped from 5.5 kOe to 3.3 kOe.

    Due to the suppression of CeFe2by La in (La,Ce)–Fe–B ribbons, the relative content of the matrix phase and the magnetic remanence are improved.Furthermore, referring to the density functional theory results calculated by Alamet al.[37]the valence of the Ce element is sensitive to the environment of atoms in the crystal lattice.The expansion of the Ce2Fe14B lattice space would promote the valence to a +3 state, which means the magnetic moment of a single crystal would be enhanced.[38]As a result, the ribbon’s magnetic remanence was improved after La substituted for Ce in the alloy.

    The size of matrix phase grains increased with increase in the La/Ce ratio, leading to the deterioration of coercivity.Meanwhile, based on the results of theoretical calculations, the anisotropy field (HA) of the La2Fe14B compound(20 kOe)[10]is lower than that of the Ce2Fe14B compound(26 kOe).When La atoms entered the Ce2Fe14B lattice structure,the(La,Ce)2Fe14B matrix phase would be formed with a relatively lowerHAthan Ce2Fe14B.[21]In addition, as the La content increased,fractions of the rare earth-rich phase and the CeFe2phase decreased, strengthening the exchange coupling effect between matrix phase grains.[17]The large segregation area of theβ-La phase would generate poor GBs between matrix grains,[4]and they may act as nucleation sites for the reverse magnetization domains and worsen theHcjof ribbons.In summary, all these factors would induce the deterioration of coercivity in(La,Ce)16Fe78B6.

    3.3.Effects of rare earth content on microstructure and magnetic properties

    Due to the inhibitory effect on the CeFe2phase and the relatively low fraction of theβ-La phase,a proportion of 15%of La in(La,Ce)–Fe–B alloy was selected as the optimal La/Ce ratio.The Rietveld refinement results for(La15Ce85)12Fe82B6and (La15Ce85)14Fe80B6ribbons are given in Fig.7 and Table 2.The paramagnetic CeFe2and theβ-La phases are faded in (La15Ce85)14Fe80B6and (La15Ce85)12Fe82B6alloys.The CeFe2phase was wholly suppressed in (La15Ce85)14Fe80B6alloy shown by the low relative intensity of CeFe2in the XRD pattern of Ce14Fe80B6.With the reducing content of La, the formation of theβ-La phase was suppressed in the(La15Ce85)14Fe80B6ribbon with a low fraction of 0.123 wt.%.With the smaller rare earth content in the(La15Ce85)14Fe80B6ribbon than in the (La15Ce85)16Fe78B6ribbon, the fraction of the rare earth-rich phase declined from 7.079 wt.% to 0.962 wt.%.However, because of the repulsion between La and Fe[39,40]in forming a compound,theα-Fe phase forms in(La15Ce85)12Fe82B6ribbon with a phase fraction of 1.87 wt.%.

    Fig.7.XRD pattern of(La15Ce85)12Fe82B6 and(La15Ce85)14Fe80B6 alloys.

    For (La15Ce85)14Fe80B6alloy, the La content is higher than in (La15Ce85)12Fe82B6alloy.This may promote more La atoms to enter into the matrix phase lattice and generate a greater lattice space.In comparison,the lattice parameters are much closer forx=14 at.%and 16 at.%alloys,in agreement with a previous report.[23]

    The TEM results for (La15Ce85)12Fe82B6and(La15Ce85)14Fe80B6ribbon are shown in Fig.8.Figure 8(b4)is the enlarged bright-field TEM image for the area marked with a green square in Fig.8(a4).An EDX mapping study for Fe,Ce and La in this area was done and the results are shown in Figs.8(c4)–8(e4).In (La15Ce85)12Fe82B6ribbon, a large Fe segregation region (with a length of about 65.13 nm) was found,and theα-Fe phase was confirmed via the FFT pattern(Fig.8(f4))in this region.The 2:14:1 phase next to this region was verified by the FFT image in Fig.8(g4).

    Table 2.The refined lattice parameters and phase fractions of(La15Ce85)16Fe78B6,(La15Ce85)14Fe80B6 and(La15Ce85)12Fe82B6 alloys.

    Fig.8.Bright-field TEM images for the rapidly quenching ribbons (La15Ce85)12Fe82B6 (a4) and (La15Ce85)14Fe80B6 (a5).The α-Fe phase exists in the area marked as the green square in(a4).The bright-field TEM images and the TEM-EDX elemental mappings of the green square are shown in(b4)and(e4).Parts(f4)and(g4)show FFT images for areas marked with white squares in(b4).The β-La phase exists in the area marked with a blue square in(a5).The HRTEM and FFT images for the blue square are shown in(b5)and(c5).The area remote to the β-La phase is marked as an orange squares in(a5).The HRTEM and FFT images for the orange square are shown in(d5)and(g5).

    Figure 8(b5) is the HRTEM image of the region marked with a blue square in Fig.8(a5).Theβ-La phase in this region was confirmed by the FFT pattern(Fig.8(c5)).In this region,the GBs between neighboring matrix grains are obscure.The area far from theβ-La grains is marked with an orange square in Fig.8(a5).Clear GBs have been formed with a thickness of 2.75 nm,as displayed in Fig.8(d5)and enlarged in Fig.8(f5).Both grains were confirmed as the matrix phase via FFT images in Figs.8(e5) and 8(g5).The reduction of the rare earth content inhibits the formation of secondary phases(the CeFe2andβ-La phases)and curbs the consumption of excessive rare earth elements.Thus, the rare earth-rich phase remained in(La15Ce85)14Fe82B6ribbon with a fraction of 0.962 wt.%,and clear GBs can be generated between the matrix phase grains.

    The variation of magnetic properties and the hysteresis loops of (La15Ce85)xFe94?xB6(x= 12, 14, 16) ribbons are shown in Fig.9(a).As the rare earth element content decreases, the coercivity of the melt-spun ribbons dropped from 4.9 kOe to 2.5 kOe.On the contrary, theBrof stripes attained a peak of 6.29 kG whenx= 14 at.%.The magnetic remanence of the (La15Ce85)12Fe82B6ribbon is lower than that of the (La15Ce85)14Fe80B6ribbon by 0.2 kG.Compared with the (La15Ce85)16Fe78B6ribbon, theHcjvalue of the(La15Ce85)14Fe80B6ribbon decreased slightly by 0.4 kOe.This may be due to the contribution of the inhibition of secondary phases and the formation of GBs in the (La15Ce85)14Fe80B6ribbon.The optimal (BH)max(6.81 MGOe) was achieved in (La15Ce85)14Fe80B6ribbons withHcj= 4.51 kOe.A best (BH)maxof 4.5 MGOe for(La15Ce85)14Fe80B6bonded magnet was obtained, as shown in Fig.9(b).

    Fig.9.The hysteresis loops of(La15Ce85)xFe94?xB6 ribbons(a)and the demagnetization curves of bonded(La15Ce85)xFe94?xB6 magnets(b).

    In the(La15Ce85)12Fe82B6ribbon,the exchange coupling effect exists between hard–soft magnetic grains and hard magnetic grains.[41]The large size of theα-Fe phase grain prevented complete exchange hardening of the soft magnetic phase.[42]Furthermore,the large soft magnetic area in the ribbon weakened the exchange coupling effect between matrix grains.[43]Thus,the(La15Ce85)12Fe82B6ribbon had lower coercivity and magnetic remanence than the(La15Ce85)14Fe80B6ribbon.Thinner GBs and a lower fraction of secondary phases were obtained in they=14 ribbon, which could explain the slightly lower coercivity and stronger remanence than for they=16 one,which had a more robust exchange interaction.To sum up, a declining rare earth content decreases the weight of secondary phases and heightens the intergranular exchange coupling between the matrix phase grains.

    4.Conclusion

    In this work,the phase composition and microstructure of(La,Ce)–Fe–B rapidly quenching ribbons have been modified via a reasonable composition design.The solute behavior of La atoms entering into the matrix phase lattice has been discussed.An increasing ratio of La in (La,Ce)–Fe–B induces a near-liner expansion of lattice parameters and variation of the intrinsic properties in the matrix phase.Due to the decline ofHAand the enhancement of magnetic moment that occurred in the 2:14:1 phase lattice,the magnetic properties of ribbons would be affected.In the alloy with a relatively high rare earth content(16 at.%),the formation of secondary phases(the CeFe2andβ-La phases)is hard to avoid and would result in microstructural deterioration.Reducing the rare earth content suppressed the formation of these secondary phases and strengthened the exchange coupling effect between grains.A fine microstructure with a shallow secondary phase fraction was obtained in the (La15Ce85)14Fe80B6ribbon.Good magnetic properties with(BH)max=6.81 MGOe,Hcj=4.51 kOe andBr=6.29 kG were found for the(La15Ce85)14Fe80B6ribbon.A bonded magnet with (BH)max=4.5 MGOe was prepared.

    Acknowledgement

    Project supported by the fifth batch of major scientific and technological research projects in the Panxi Experimental Zone of Sichuan Province, the new functional materials and applications of rare earth vanadium titanium (Grant No.2020SCUNG201).

    猜你喜歡
    劉穎李軍
    木棉花開
    人民之聲(2022年3期)2022-04-12 12:00:14
    Superconductivity in octagraphene
    記憶早點
    北京紀事(2021年10期)2021-10-31 02:58:26
    A physics-constrained deep residual network for solving the sine-Gordon equation
    陳璐琦、劉穎作品
    A Brief Analysis of Stereotyping in the Movie Crash
    智富時代(2018年12期)2018-01-12 11:51:50
    劉鑫、葉滿波、劉穎空間設計作品
    藝術評論(2016年5期)2016-05-14 07:05:01
    Mechanical Behavior of Plastic PiPe Reinforced by Cross-Winding Steel Wire Subject to Foundation Settlement
    滬港通一周成交概況
    李軍書法藝術簡介
    散文百家(2014年11期)2014-08-21 07:16:04
    2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| 欧美三级亚洲精品| 2021天堂中文幕一二区在线观| 亚洲熟女精品中文字幕| 国产极品天堂在线| 亚洲精品成人av观看孕妇| 久久这里有精品视频免费| 中文字幕制服av| 三级国产精品片| 亚洲人成网站在线播| 国产色婷婷99| 国产一区二区三区综合在线观看 | av国产免费在线观看| 国产成人精品久久久久久| 日韩,欧美,国产一区二区三区| 免费黄色在线免费观看| 欧美日韩国产mv在线观看视频 | 欧美精品国产亚洲| 麻豆久久精品国产亚洲av| 免费看不卡的av| 日韩在线高清观看一区二区三区| 精品久久久久久久久久久久久| 成人鲁丝片一二三区免费| 国产淫语在线视频| 熟妇人妻久久中文字幕3abv| 黄色配什么色好看| 亚洲精品视频女| 久久久久久九九精品二区国产| 亚洲经典国产精华液单| a级毛片免费高清观看在线播放| 国产黄色免费在线视频| 男人舔女人下体高潮全视频| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 中文字幕亚洲精品专区| 精品99又大又爽又粗少妇毛片| 国产高清三级在线| 亚洲国产日韩欧美精品在线观看| 不卡视频在线观看欧美| 男的添女的下面高潮视频| 日韩av不卡免费在线播放| 亚洲综合色惰| 亚洲精品久久午夜乱码| 久99久视频精品免费| 欧美丝袜亚洲另类| 亚洲图色成人| 成人av在线播放网站| 亚洲av免费在线观看| 亚洲最大成人av| 国产精品爽爽va在线观看网站| 69人妻影院| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 99久国产av精品| 直男gayav资源| 日韩电影二区| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 22中文网久久字幕| 又大又黄又爽视频免费| 又大又黄又爽视频免费| 夫妻午夜视频| 青青草视频在线视频观看| 两个人视频免费观看高清| 在线免费十八禁| 婷婷色av中文字幕| 久久久久性生活片| 精品久久久噜噜| 欧美日本视频| 精品酒店卫生间| 午夜福利在线观看免费完整高清在| 2021天堂中文幕一二区在线观| 日韩av免费高清视频| 日韩av在线大香蕉| 久久99热这里只有精品18| 熟女电影av网| 你懂的网址亚洲精品在线观看| 最近中文字幕2019免费版| 美女脱内裤让男人舔精品视频| 免费无遮挡裸体视频| 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放| 美女被艹到高潮喷水动态| 青春草国产在线视频| 成年av动漫网址| 亚洲精品中文字幕在线视频 | 欧美日本视频| 男女那种视频在线观看| 韩国高清视频一区二区三区| 最近的中文字幕免费完整| 成人性生交大片免费视频hd| 日本av手机在线免费观看| 校园人妻丝袜中文字幕| av卡一久久| 国产亚洲最大av| 午夜视频国产福利| 小蜜桃在线观看免费完整版高清| 国产毛片a区久久久久| 特级一级黄色大片| 国产精品一区二区性色av| 男女下面进入的视频免费午夜| 国产高清国产精品国产三级 | 亚洲三级黄色毛片| 国产成人午夜福利电影在线观看| 搞女人的毛片| 天堂中文最新版在线下载 | 少妇的逼水好多| 免费大片黄手机在线观看| 永久网站在线| 亚洲熟女精品中文字幕| 777米奇影视久久| 搡老妇女老女人老熟妇| 能在线免费看毛片的网站| 久久99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 伊人久久国产一区二区| 免费观看精品视频网站| 麻豆成人av视频| 国产精品一区二区在线观看99 | 高清日韩中文字幕在线| 美女xxoo啪啪120秒动态图| 婷婷色综合www| 在线免费观看不下载黄p国产| 极品少妇高潮喷水抽搐| 18+在线观看网站| 在线a可以看的网站| 午夜日本视频在线| 免费电影在线观看免费观看| 国国产精品蜜臀av免费| 欧美成人a在线观看| 麻豆精品久久久久久蜜桃| 美女被艹到高潮喷水动态| 大香蕉久久网| 亚洲av中文av极速乱| 精品一区在线观看国产| 国模一区二区三区四区视频| 久久精品久久久久久久性| 夜夜爽夜夜爽视频| 亚洲色图av天堂| 久久99精品国语久久久| 日本wwww免费看| 乱人视频在线观看| 春色校园在线视频观看| 成年免费大片在线观看| 免费少妇av软件| 欧美激情国产日韩精品一区| 国内少妇人妻偷人精品xxx网站| 中文精品一卡2卡3卡4更新| 亚洲最大成人av| 男人爽女人下面视频在线观看| 国产综合懂色| 成年女人看的毛片在线观看| 高清日韩中文字幕在线| 69av精品久久久久久| 人妻系列 视频| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放| 91久久精品电影网| 草草在线视频免费看| 最近中文字幕高清免费大全6| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 伦精品一区二区三区| 亚洲av日韩在线播放| 亚洲av国产av综合av卡| 亚洲综合色惰| 欧美日韩视频高清一区二区三区二| 久久国内精品自在自线图片| 亚洲成人一二三区av| 一级毛片aaaaaa免费看小| 三级男女做爰猛烈吃奶摸视频| 亚洲激情五月婷婷啪啪| 97超视频在线观看视频| 综合色丁香网| 亚洲精品第二区| 国产一区有黄有色的免费视频 | 男女下面进入的视频免费午夜| 国产精品女同一区二区软件| 亚洲人与动物交配视频| 亚洲av成人精品一区久久| 国产成人精品福利久久| av网站免费在线观看视频 | 在线 av 中文字幕| 真实男女啪啪啪动态图| 夫妻性生交免费视频一级片| 亚洲精品日韩av片在线观看| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 日韩成人伦理影院| 全区人妻精品视频| 亚洲精品aⅴ在线观看| 久久久久久久久久黄片| 国产黄色小视频在线观看| 99久国产av精品国产电影| 一级爰片在线观看| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 午夜亚洲福利在线播放| 亚洲人与动物交配视频| 日韩视频在线欧美| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 亚洲最大成人手机在线| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 日本色播在线视频| 午夜亚洲福利在线播放| 午夜精品国产一区二区电影 | 精品亚洲乱码少妇综合久久| 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 精品午夜福利在线看| av女优亚洲男人天堂| 久久久欧美国产精品| 在线观看av片永久免费下载| 亚洲国产av新网站| 一级毛片久久久久久久久女| 麻豆乱淫一区二区| 亚洲国产日韩欧美精品在线观看| 午夜福利高清视频| 国产精品人妻久久久影院| 两个人视频免费观看高清| 成人性生交大片免费视频hd| 免费人成在线观看视频色| 国产高潮美女av| 日韩av免费高清视频| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 国产一区二区在线观看日韩| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 免费看光身美女| 日韩精品有码人妻一区| 日日干狠狠操夜夜爽| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 国内精品一区二区在线观看| 成人毛片a级毛片在线播放| 草草在线视频免费看| 日本免费a在线| 中文乱码字字幕精品一区二区三区 | 99久久精品国产国产毛片| 国产在线一区二区三区精| 色5月婷婷丁香| 男女边摸边吃奶| or卡值多少钱| 99久国产av精品国产电影| 观看免费一级毛片| 精品熟女少妇av免费看| 草草在线视频免费看| 丝袜美腿在线中文| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 色网站视频免费| 搡女人真爽免费视频火全软件| 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| 国产成人精品一,二区| 熟女电影av网| 久久久成人免费电影| av国产久精品久网站免费入址| 午夜福利成人在线免费观看| 夫妻性生交免费视频一级片| 搡女人真爽免费视频火全软件| 国产精品精品国产色婷婷| 久久人人爽人人片av| 91精品一卡2卡3卡4卡| 国产黄频视频在线观看| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 亚洲在线观看片| 全区人妻精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 听说在线观看完整版免费高清| 99热全是精品| www.av在线官网国产| 精品一区二区免费观看| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 亚洲最大成人中文| 精品人妻视频免费看| 亚洲av一区综合| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 国产成年人精品一区二区| 少妇猛男粗大的猛烈进出视频 | 插阴视频在线观看视频| 亚洲av成人精品一区久久| 亚洲精品aⅴ在线观看| 免费不卡的大黄色大毛片视频在线观看 | 麻豆乱淫一区二区| 国产成人精品福利久久| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 久久精品熟女亚洲av麻豆精品 | 午夜激情久久久久久久| 国产精品熟女久久久久浪| 国产色婷婷99| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 中文字幕制服av| 成年女人看的毛片在线观看| 一级毛片电影观看| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99 | 精品人妻视频免费看| 久久97久久精品| 国产一区有黄有色的免费视频 | 嫩草影院精品99| 高清毛片免费看| 午夜福利高清视频| 国产av国产精品国产| 18禁动态无遮挡网站| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 18禁动态无遮挡网站| 欧美三级亚洲精品| 一个人免费在线观看电影| 97超碰精品成人国产| 国内揄拍国产精品人妻在线| 欧美成人a在线观看| 欧美97在线视频| 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 久久久久久久亚洲中文字幕| 婷婷色麻豆天堂久久| 最近视频中文字幕2019在线8| 亚洲国产精品国产精品| 久久热精品热| 国精品久久久久久国模美| 国产成人a区在线观看| 男女啪啪激烈高潮av片| 一夜夜www| 国产成人a区在线观看| av在线观看视频网站免费| 97热精品久久久久久| 久久久精品免费免费高清| 热99在线观看视频| 国产精品久久久久久精品电影小说 | 久久精品国产自在天天线| 六月丁香七月| 少妇的逼水好多| 久久久久久久久大av| 熟女人妻精品中文字幕| 伦精品一区二区三区| 久久99热这里只有精品18| 午夜爱爱视频在线播放| 免费大片黄手机在线观看| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 精品一区在线观看国产| 亚洲精品一区蜜桃| av在线观看视频网站免费| 最后的刺客免费高清国语| 精品久久久噜噜| 只有这里有精品99| 天天躁日日操中文字幕| 亚洲在线自拍视频| 亚洲自拍偷在线| 免费观看性生交大片5| 国产久久久一区二区三区| av福利片在线观看| 夫妻午夜视频| 99热这里只有是精品在线观看| h日本视频在线播放| 少妇的逼好多水| 亚洲人与动物交配视频| 免费大片黄手机在线观看| 久久精品综合一区二区三区| 高清毛片免费看| 日韩精品青青久久久久久| 午夜免费激情av| 伦精品一区二区三区| 成人漫画全彩无遮挡| 亚洲性久久影院| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 69av精品久久久久久| 免费无遮挡裸体视频| av卡一久久| .国产精品久久| 午夜福利在线观看吧| 美女脱内裤让男人舔精品视频| 国产在视频线精品| 一区二区三区高清视频在线| 国产精品国产三级国产专区5o| 蜜臀久久99精品久久宅男| 久久精品久久久久久久性| 亚洲欧美日韩无卡精品| 99热这里只有精品一区| 国产成人91sexporn| 久久久a久久爽久久v久久| xxx大片免费视频| 国产欧美日韩精品一区二区| or卡值多少钱| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| 一个人看的www免费观看视频| 能在线免费看毛片的网站| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 男的添女的下面高潮视频| 亚洲成人久久爱视频| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 少妇丰满av| 国产在视频线在精品| 日韩欧美三级三区| 波多野结衣巨乳人妻| 18禁在线播放成人免费| 少妇高潮的动态图| 性色avwww在线观看| 免费观看在线日韩| 午夜爱爱视频在线播放| 国产黄频视频在线观看| 免费黄网站久久成人精品| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 欧美+日韩+精品| 久久97久久精品| 大陆偷拍与自拍| 久久久色成人| 人人妻人人澡欧美一区二区| 久久久久久久大尺度免费视频| 亚洲美女视频黄频| 亚洲在线自拍视频| 日韩强制内射视频| 少妇高潮的动态图| 午夜精品在线福利| 亚洲av中文av极速乱| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 男女那种视频在线观看| 国产视频首页在线观看| 黄色一级大片看看| 亚洲四区av| 亚洲av中文av极速乱| 91精品国产九色| 99热网站在线观看| a级一级毛片免费在线观看| 18禁在线播放成人免费| .国产精品久久| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av涩爱| 两个人视频免费观看高清| 特级一级黄色大片| 欧美一区二区亚洲| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 99久国产av精品| 亚洲真实伦在线观看| 人妻系列 视频| 免费看a级黄色片| 国产麻豆成人av免费视频| 中文天堂在线官网| 黑人高潮一二区| 伊人久久国产一区二区| 免费播放大片免费观看视频在线观看| 国产91av在线免费观看| 精品久久久久久电影网| 国产乱人偷精品视频| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件| 欧美极品一区二区三区四区| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 国产 一区精品| 亚洲成人一二三区av| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| 国产三级在线视频| 欧美3d第一页| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 日本午夜av视频| 中文字幕制服av| 少妇丰满av| 久久精品国产亚洲av天美| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 日韩精品有码人妻一区| 国产91av在线免费观看| 草草在线视频免费看| 欧美高清性xxxxhd video| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 久久久久久久久大av| 丝袜喷水一区| 国产精品av视频在线免费观看| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 少妇被粗大猛烈的视频| 成年av动漫网址| 日本wwww免费看| 色尼玛亚洲综合影院| 菩萨蛮人人尽说江南好唐韦庄| 国产久久久一区二区三区| 亚洲伊人久久精品综合| 国产在视频线在精品| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 中国国产av一级| 搞女人的毛片| 午夜福利视频精品| 黄色配什么色好看| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 一本久久精品| 成人毛片a级毛片在线播放| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 久久精品国产亚洲网站| 亚洲国产精品sss在线观看| 一级av片app| 国产黄色免费在线视频| 久久精品久久久久久久性| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 亚洲精品自拍成人| 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 青春草国产在线视频| av播播在线观看一区| 国产一级毛片在线| av国产免费在线观看| 内地一区二区视频在线| 99热网站在线观看| 国产成人a区在线观看| 亚洲内射少妇av| 在线播放无遮挡| 午夜亚洲福利在线播放| 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 亚洲第一区二区三区不卡| 国产精品久久久久久精品电影小说 | 国产精品人妻久久久久久| 男女视频在线观看网站免费| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 一级毛片久久久久久久久女| 国产免费福利视频在线观看| 如何舔出高潮| 男女边吃奶边做爰视频| 久久久久久久久久人人人人人人| 人妻系列 视频| 亚洲精品乱久久久久久| 久久久久久久久久成人| 麻豆成人午夜福利视频| 亚洲欧美成人综合另类久久久| 少妇的逼水好多| 国产毛片a区久久久久| 热re99久久国产66热| 爱豆传媒免费全集在线观看| 高清av免费在线| videos熟女内射| 婷婷色麻豆天堂久久| a级毛片黄视频| 国产成人精品久久二区二区91 | 最新中文字幕久久久久| 亚洲精品在线美女| 人成视频在线观看免费观看| 国产精品三级大全| 韩国av在线不卡| 亚洲av日韩在线播放| 亚洲av免费高清在线观看| 男女免费视频国产| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| videosex国产| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 人妻人人澡人人爽人人| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 久久这里有精品视频免费| 美女国产视频在线观看| 十八禁高潮呻吟视频| 成人国产av品久久久| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 成年美女黄网站色视频大全免费| 老司机亚洲免费影院| 男女下面插进去视频免费观看| 成年人午夜在线观看视频| 母亲3免费完整高清在线观看 | 国产成人精品一,二区| 一边亲一边摸免费视频| av视频免费观看在线观看| 精品第一国产精品| 国产精品国产av在线观看| 精品一区在线观看国产| 99国产精品免费福利视频| 国产片特级美女逼逼视频| 一区二区av电影网|