• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of the microstructure and magnetic properties of(La,Ce)–Fe–B nanocrystalline ribbons

    2023-09-05 08:48:32LiYuLian連李昱XiaoWeiZhang張曉偉YingLiu劉穎JunLi李軍andRenQuanWang王仁全
    Chinese Physics B 2023年7期
    關鍵詞:劉穎李軍

    Li-Yu Lian(連李昱), Xiao-Wei Zhang(張曉偉), Ying Liu(劉穎),2,Jun Li(李軍),?, and Ren-Quan Wang(王仁全)

    1School of Materials Science and Engineering,Sichuan University,Chengdu 610065,China

    2Key Laboratory of Advanced Special Material&Technology,Ministry of Education,Sichuan University,Chengdu 610065,China

    Keywords: (La,Ce)–Fe–B,La/Ce ratio,rare earth content,secondary phases inhibition

    1.Introduction

    To curb the cost of permanent magnet production, the cost-effective Ce–Fe–B[1–3]and(La,Ce)–Fe–B[4–9]rare earth permanent magnets have attracted wide attention.Herbstet al.[10,11]and Soedaet al.[12]reported the hard magnetic properties of Ce2Fe14B and (La,Ce)2Fe14B compounds, respectively.With the addition of Hf,[13]Ta[14]and Ga[15,16]to Ce–Fe–B type magnets,finer matrix phase grains and good magnetic properties have been obtained.However, the secondary phases (such as CeFe2,β-La phases, etc.) in these magnets result in deterioration of the microstructure and poor magnetic properties.[15,17]Recent investigations have been made on elemental dopants to inhibit secondary phases.Zhanget al.[18]and Rehmanet al.[19]reported that Si and Ge atoms enter into the lattice of the CeFe2phase and suppress the generation of the CeFe2phase.The growth of the matrix phase grains and the formation of the CeFe2phase have been inhibited by the addition of Mo.[20]In comparison,fewer reports have focused on the effect on secondary phase inhibition of light rare earth elements substituted for Ce.

    Our previous study investigated the contribution of La to expanding the formation temperature gap between(La,Ce)2Fe14B and metastable Ce2Fe17phases.[21]Recent work on(La,Ce)2Fe14B alloys[22]verified the relationship between phase consistency and magnetic properties.Unlike elemental dopant methods,La atoms may enter into the Ce2Fe14B phase lattice and improve the magnetic properties.[23]Therefore,our understanding of the effect of La on variation of the microstructure and magnetic properties in (La,Ce)–Fe–B ribbons still needs to be clarified.

    In this work,(La,Ce)–Fe–B ribbons with different La/Ce ratios and rare earth element contents were prepared.The relationship between the microstructure of ribbons and the magnetic performance was investigated.A fine microstructure was obtained in ribbons with good magnetic properties.

    2.Experimental method

    Two kinds of cast ingots were prepared by induction melting: Ce–Fe–B type alloy and (La,Ce)–Fe–B type alloy.The Ce–Fe–B type alloy had the nominal compositions of CezFe94?zB6(z= 12, 13, 14, 15, 16) and the (La,Ce)–Fe–B type alloy had nominal compositions of(LayCe100?y)xFe94?xB6(x=12,14,16 andy=0,15,25,35,50).The constituent metals had a purity better than 99.8 wt.%and the whole process of casting took place under an argon atmosphere.The cast ingot was remelted in a quartz tube for the homogenization of alloy composition, followed by rapid quenching at a molybdenum wheel at a speed of 45 m·s?1.The rapidly quenched ribbons were placed in a tube furnace and heated at 525?C for 15 min under a vacuum to ensure their complete crystallization.Standard bonded magnets were prepared to verify the magnetic properties of the ribbons.The mixture,combining the magnetic powder with epoxy resin in the proportion of 100:2.5, was pressed into a cylinder with a density of about 6.0 g·cm?3.These bonded magnets were solidified at 175?C for 90 min.

    The phase constitution and structure of Ce–Fe–B type and(La,Ce)–Fe–B type alloys were characterized by an x-ray diffraction(XRD)analyzer with CuKαradiation(λ=1.54 ?A)and CoKαradiation (λ= 1.79 ?A), respectively, over a 2θrange of 20?–70?.The refinement results were calculated by the Rietveld method via general structure analysis system(GSAS)software.[24]Magnetic properties were measured with a vibrating sample magnetometer(VSM;Lakeshore 7410)by applying a maximum magnetic field of 2.5 T.The hysteresis curves were corrected with a demagnetization factor(N)equal to 0.21.[25]Bonded magnets were measured by an automatic measuring instrument for magnetization characteristic(AMT-4).The morphology of the ribbons was investigated by a scanning electron microscope(FEI Inspect F50)and a transmission electron microscope(TEM;FEI Talos F200X)equipped with energy dispersive x-ray spectroscopy (EDX; Super X).The equivalent diameter data were collected via Image Pro Plus(IPP)software with counts of at least 300.

    3.Results and discussion

    3.1.Phase constitution and magnetic properties of Ce–Fe–B type alloys

    To understand the phase variation in Ce–Fe–B alloys,melt ribbons with Ce content changed from 12 at.%to 16 at.%.were prepared.Figure 1(a) shows the XRD pattern of each crystallized ribbon.It is noteworthy that the secondary phase(CeFe2)emerges when the Ce content is 14 at.%.Due to the Curie temperature of the CeFe2phase being much lower than room temperature(about 225 K),[26]this secondary phase exhibits paramagnetism under the working condition of permanent magnets.Meanwhile,the relative intensity of the diffraction peaks of the CeFe2phase in the alloy was enhanced with the growing concentration of Ce,which means that the weight fraction of CeFe2in ribbons grew simultaneously.

    Fig.1.XRD patterns of Ce–Fe–B alloys(a)and the magnetic properties of Ce–Fe–B ribbons(b).

    The magnetic properties of Ce–Fe–B type alloys with rare earth element contents from 12 at.% to 16 at.% were tested with a VSM and are shown in Fig.1(b).The variation of coercivity for the ribbons shared the same trend as the Ce content in the alloys, but a slight lump was found in the magnetic remanence plot.The Ce16Fe78B6ribbon exhibited the best comprehensive properties, withHcj=5.4 kOe and (BH)max=5.22 MGOe, respectively.Grigoraset al.[27]and Liet al.[28]investigated such a phenomenon for the evolution of magnetic properties with variation in the rare earth content, which may be attributed to the phase constitution in alloys.Recent investigations[29,30]reported that the paramagnetic CeFe2phase would effectively isolate and decouple the matrix phase grains.In addition, due to the good wettability of the Ce-rich phase, it would flow into the gap between matrix grains and form grain boundaries (GBs).[31]The exchange coupling effect would be weakened if GBs individually isolated matrix phase grains.Moreover,the relatively low solidification point of the intergranular phase may smooth the edge of hard magnetic phase grains.The regularization of matrix grains in ribbons would lead to a decrease in the effective demagnetization factor(Neff)and improve coercivity.As a result of these factors, the coercivity of Ce–Fe–B type alloy is increased as the Ce content increases.Meanwhile, the proportion of the Ce2Fe14B (2:14:1) phase in Ce–Fe–B type alloys should also be addressed, as this would directly affect the magnetic properties of ribbons.Thus,the increasing concentration of Ce would generate more CeFe2phase and dilute the magnetic remanence of the ribbons.

    3.2.Effects of La/Ce ratio on the microstructure and magnetic properties

    A rare earth element content of 16 at.% was selected for its excellent performance in Ce–Fe–B type ribbons.The Rietveld refinement patterns for differentyvalues in(LayCe100?y)16Fe78B6ribbons are exhibited in Fig.2(a).The lattice parameters of the RE2Fe14B phase (RE=rare earth)and the phase composition of each ribbon are listed in Table 1.Withyincreasing from 0% to 25%, the mass fraction of the CeFe2phase drops from 21.027 wt.% to 1.911 wt.%.Whenyreaches 35%, the 1:2 phase is completely suppressed by La.Due to the instability of the (La,Ce)Fe2phase[32]and the expanded gap in the formation temperature between(La,Ce)2Fe14B and metastable Ce2Fe17phases,[21,33]the CeFe2phase is gradually suppressed with the increasing La/Ce ratio.Given the relatively high temperature(796.75?C)of the invariant reaction(L?α-Fe+β-La),[34]theβ-La phase formed when the La ratio varied from 15% to 50% and the mass fraction of theβ-La phase increased drastically from 0.294 wt.% to 4.025 wt.%.Theγ-Ce phase[35]is a product of a eutectic reaction at about 604?C following the formula L?CeFe2+γ-Ce and was found in(LayCe100?y)16Fe78B6ribbons with a high Ce content.Because La atoms may dissolve into theγ-Ce phase, theγ-Ce phase was named the RE-rich phase in this work.With an increasing La/Ce ratio andβ-La phase generation,the fraction of the RE-rich phase decreased from 7.468 wt.% to 0.009 wt.% in (LayCe100?y)16Fe78B6alloys.

    As the substitution of La increased from 0%to 50%,the lattice parameters of(LayCe100?y)16Fe78B6ribbons expanded with a near-linear trend, as shown in Table 1 and Fig.2(b).Because of the larger atomic radius of La compared with Ce,the substitution of La atoms for Ce atoms in the 2:14:1 phase would bring about an expansion of lattice space.Therefore,an increasing La/Ce ratio promotes more La atoms to occupy Ce lattice sites in the Ce2Fe14B tetragonal lattice.

    To clarify the elemental distribution in ribbons,TEM and EDX mapping studies for different La/Ce ratios were performed,as shown in Fig.3.The bright-field TEM images for Ce16Fe78B6,(La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6are demonstrated in Figs.3(a),3(b)and 3(c),respectively.Fe,Ce,B and La were selected for mapping scanning and the detected regions are exhibited in Figs.3(d)–3(l).The concentration of rare earth elements in (LayCe100?y)16Fe78B6alloys is excessive for formation of the matrix phase.Hence,the aggregation of rare earth elements is inevitable, as reflected in Figs.3(e),3(h), 3(i), 3(k) and 3(l).With the La/Ce ratio increased, the aggregating areas of La expanded.The positive formation energy[36]of La2Fe14B may induce more serious segregation of La than Ce.Notably,a large area of La segregation(with a length of about 112.16 nm)is found in Fig.3(l).This critical aggregation may accelerate the consumption of excessive rare earth atoms in the(La35Ce65)16Fe78B6ribbon.

    Fig.2.XRD patterns of(LayCe100?y)16Fe78B6 alloys(a)and the refined lattice parameters for(La?Ce100?y)16Fe78B6 alloys(b).

    Table 1.The refined lattice parameters and phase fractions of(LayCe100?y)16Fe78B6 alloys.

    Fig.3.Bright-field (BF) TEM images for the rapidly quenching ribbons: Ce16Fe78B6 (a), (La15Ce85)16Fe78B6 (b) and (La35Ce65)16Fe78B6(c).The TEM-EDX elemental mappings of each ribbon are shown in(d)–(l).

    The TEM images of ribbons for Ce16Fe78B6,(La15Ce85)16Fe78B6and (La35Ce65)16Fe78B6are exhibited in Figs.4(a1), 4(a2) and 4(a3).Figure 4(b1) shows the highresolution TEM(HRTEM)image of the orange square area in Fig.4(a1).It shows the region far from the secondary phase in the Ce16Fe78B6ribbon.A 2:14:1 phase grain was confirmed via a fast Fourier transformation (FFT) pattern, as shown in Fig.4(c1).By virtue of the high fraction of rare earth-rich phase in the Ce16Fe78B6alloy,rare earth atoms were gathered in this region, and GBs (with a thickness of about 7.62 nm)were formed between 2:14:1 phase grains.The EDX line scanning results for the GBs are exhibited in Fig.4(d1).This further proved that the composition of GBs is enriched with rare earth elements.Figure 4(b2)shows a similar area remote to the secondary phase in the(La15Ce85)16Fe78B6ribbon and is marked with an orange square in Fig.4(a2).The adjacent matrix grains were confirmed via FFT patterns in Figs.4(c2)and 4(e2).Clear GBs (with a thickness of about 3.53 nm)were formed between them and are exhibited in an enlarged image in Fig.4(d2).The orange square in Fig.4(a3) is the area far from the secondary phase in the (La35Ce65)16Fe78B6ribbon.In the HRTEM image(Fig.4(b3))of this area,matrix grains were confirmed by FFT patterns in Figs.4(c3)–4(e3).However, there is no obvious GB around these matrix phase grains.

    The CeFe2phase exists in regions marked with red squares in Figs.4(a1) and 4(a2), these being TEM images for the Ce16Fe78B6ribbon and the (La15Ce85)16Fe78B6ribbon, respectively.HRTEM images of these areas are shown in Figs.4(e1)and 4(f2),respectively.The CeFe2phase grains were verified from the FFT images in Figs.4(f1) and 4(g2).These 1:2 phase grains are distributed in the triple junctions among matrix grains that directly contact each other,as shown in Figs.S1(a1–f1)and(a2–d2).

    Theβ-La phase grains were found in(La15Ce85)16Fe78B6and are marked with a blue square in Fig.4(a2).Figure 4(h2)shows the HRTEM image of this blue square, and theβ-La phase grains were confirmed by the FFT pattern in Fig.4(i2).The large segregation area of La in (La35Ce65)16Fe78B6ribbons is marked with a blue square in Fig.4(a3).The HRTEM and FFT images of the segregation area are shown in Figs.4(f3)and 4(i3).It is noticeable that aβ-La phase grain formed in this segregation region.Figures 4(g3)and 4(h3)are FFT images for neighboring 2:14:1 phase grains.However,there is no apparent intergranular phase between adjacent matrix phase grains that are next to theβ-La phase,as shown in Figs.S1(e2)–(k2).

    Statistical graphs of the equivalent diameter (D) of matrix phase grains for Ce16Fe78B6, (La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6ribbons are exhibited in Figs.5(a)–5(c),respectively.When the La/Ce ratio changed from 0%to 35%,the mean equivalent diameter of the matrix grains increased from 33.7 nm to 37.4 nm.

    Fig.4.Bright-field TEM images for the rapidly quenching ribbons Ce16Fe78B6 (a1),(La15Ce85)16Fe78B6 (a2)and(La35Ce65)16Fe78B6 (a3).Areas remote to secondary phases are marked as orange squares in (a1), (a2) and (a3).The high-resolution TEM (HRTEM) and fast Fourier transformation (FFT) images for the orange squares are shown in (b1) and (c1), (b2) and (e2) and (b3) and (e3), respectively.The EDX line scanning result for the grain boundaries of(b1)is shown in(d1).The CeFe2 phase exists in areas marked as red squares in(a1)and(a2).The HRTEM and FFT images for the red squares are shown in(e1)and(f1)and(f2)and(g2),respectively.The β-La phase exists in areas marked as blue squares in(a2)and(a3).The HRTEM and FFT images for blue squares are shown in(h2)and(i2)and(f3)and(i3),respectively.

    Fig.5.Statistical graphs of the equivalent diameter of matrix phase grains in Ce16Fe78B6(a),(La15Ce85)16Fe78B6(b)and(La35Ce65)16Fe78B6(c)ribbons.

    Figure S2 shows the results of EDX mapping studies of areas containing rare earth-rich andβ-La phases, respectively.For the area where a rare earth-rich phase is present(Fig.S2(a)), the elements are homogeneously distributed, as shown in Figs.S2(b)–(d).Benefiting from the good mobility of the rare earth-rich phase, the length of the segregation area of Ce is as little as 12.6 nm.Therefore, in Ce16Fe78B6and (La15Ce85)16Fe78B6ribbons, the relatively high fraction of the rare earth-rich phase would promote sufficient rare earth atoms to form GBs.For(La35Ce65)16Fe78B6ribbons,in comparison,the rare earth-rich phase fraction(0.703 wt.%)is too low to enclose matrix grains.Moreover, the formation of theβ-La phase consumed excessive rare earth atoms and was aggregated in the junctions among matrix phase grains,as shown in Figs.S2(e)–(h).Both factors are responsible for the deterioration of ribbon microstructure,especially on the GBs.

    Fig.6.The hysteresis loops of(LayCe100?y)16Fe78B6 alloys(a)and the magnetic parameters for(LayCe100?y)16Fe78B6 alloys(b).

    The magnetic properties of ribbons are closely related to their phase composition and microstructure.Figures 6(a)and 6(b)show the hysteresis loops and magnetic properties of(LayCe100?y)16Fe78B6(y=0, 15, 25, 35, 50) ribbons.The maximum magnetic energy product of 6.5 MGOe was obtained in (La15Ce85)16Fe78B6ribbon.During the increase in La ratio,theBrof the ribbons grew from 5.2 kG to 6.0 kG,but theHcjvalue dropped from 5.5 kOe to 3.3 kOe.

    Due to the suppression of CeFe2by La in (La,Ce)–Fe–B ribbons, the relative content of the matrix phase and the magnetic remanence are improved.Furthermore, referring to the density functional theory results calculated by Alamet al.[37]the valence of the Ce element is sensitive to the environment of atoms in the crystal lattice.The expansion of the Ce2Fe14B lattice space would promote the valence to a +3 state, which means the magnetic moment of a single crystal would be enhanced.[38]As a result, the ribbon’s magnetic remanence was improved after La substituted for Ce in the alloy.

    The size of matrix phase grains increased with increase in the La/Ce ratio, leading to the deterioration of coercivity.Meanwhile, based on the results of theoretical calculations, the anisotropy field (HA) of the La2Fe14B compound(20 kOe)[10]is lower than that of the Ce2Fe14B compound(26 kOe).When La atoms entered the Ce2Fe14B lattice structure,the(La,Ce)2Fe14B matrix phase would be formed with a relatively lowerHAthan Ce2Fe14B.[21]In addition, as the La content increased,fractions of the rare earth-rich phase and the CeFe2phase decreased, strengthening the exchange coupling effect between matrix phase grains.[17]The large segregation area of theβ-La phase would generate poor GBs between matrix grains,[4]and they may act as nucleation sites for the reverse magnetization domains and worsen theHcjof ribbons.In summary, all these factors would induce the deterioration of coercivity in(La,Ce)16Fe78B6.

    3.3.Effects of rare earth content on microstructure and magnetic properties

    Due to the inhibitory effect on the CeFe2phase and the relatively low fraction of theβ-La phase,a proportion of 15%of La in(La,Ce)–Fe–B alloy was selected as the optimal La/Ce ratio.The Rietveld refinement results for(La15Ce85)12Fe82B6and (La15Ce85)14Fe80B6ribbons are given in Fig.7 and Table 2.The paramagnetic CeFe2and theβ-La phases are faded in (La15Ce85)14Fe80B6and (La15Ce85)12Fe82B6alloys.The CeFe2phase was wholly suppressed in (La15Ce85)14Fe80B6alloy shown by the low relative intensity of CeFe2in the XRD pattern of Ce14Fe80B6.With the reducing content of La, the formation of theβ-La phase was suppressed in the(La15Ce85)14Fe80B6ribbon with a low fraction of 0.123 wt.%.With the smaller rare earth content in the(La15Ce85)14Fe80B6ribbon than in the (La15Ce85)16Fe78B6ribbon, the fraction of the rare earth-rich phase declined from 7.079 wt.% to 0.962 wt.%.However, because of the repulsion between La and Fe[39,40]in forming a compound,theα-Fe phase forms in(La15Ce85)12Fe82B6ribbon with a phase fraction of 1.87 wt.%.

    Fig.7.XRD pattern of(La15Ce85)12Fe82B6 and(La15Ce85)14Fe80B6 alloys.

    For (La15Ce85)14Fe80B6alloy, the La content is higher than in (La15Ce85)12Fe82B6alloy.This may promote more La atoms to enter into the matrix phase lattice and generate a greater lattice space.In comparison,the lattice parameters are much closer forx=14 at.%and 16 at.%alloys,in agreement with a previous report.[23]

    The TEM results for (La15Ce85)12Fe82B6and(La15Ce85)14Fe80B6ribbon are shown in Fig.8.Figure 8(b4)is the enlarged bright-field TEM image for the area marked with a green square in Fig.8(a4).An EDX mapping study for Fe,Ce and La in this area was done and the results are shown in Figs.8(c4)–8(e4).In (La15Ce85)12Fe82B6ribbon, a large Fe segregation region (with a length of about 65.13 nm) was found,and theα-Fe phase was confirmed via the FFT pattern(Fig.8(f4))in this region.The 2:14:1 phase next to this region was verified by the FFT image in Fig.8(g4).

    Table 2.The refined lattice parameters and phase fractions of(La15Ce85)16Fe78B6,(La15Ce85)14Fe80B6 and(La15Ce85)12Fe82B6 alloys.

    Fig.8.Bright-field TEM images for the rapidly quenching ribbons (La15Ce85)12Fe82B6 (a4) and (La15Ce85)14Fe80B6 (a5).The α-Fe phase exists in the area marked as the green square in(a4).The bright-field TEM images and the TEM-EDX elemental mappings of the green square are shown in(b4)and(e4).Parts(f4)and(g4)show FFT images for areas marked with white squares in(b4).The β-La phase exists in the area marked with a blue square in(a5).The HRTEM and FFT images for the blue square are shown in(b5)and(c5).The area remote to the β-La phase is marked as an orange squares in(a5).The HRTEM and FFT images for the orange square are shown in(d5)and(g5).

    Figure 8(b5) is the HRTEM image of the region marked with a blue square in Fig.8(a5).Theβ-La phase in this region was confirmed by the FFT pattern(Fig.8(c5)).In this region,the GBs between neighboring matrix grains are obscure.The area far from theβ-La grains is marked with an orange square in Fig.8(a5).Clear GBs have been formed with a thickness of 2.75 nm,as displayed in Fig.8(d5)and enlarged in Fig.8(f5).Both grains were confirmed as the matrix phase via FFT images in Figs.8(e5) and 8(g5).The reduction of the rare earth content inhibits the formation of secondary phases(the CeFe2andβ-La phases)and curbs the consumption of excessive rare earth elements.Thus, the rare earth-rich phase remained in(La15Ce85)14Fe82B6ribbon with a fraction of 0.962 wt.%,and clear GBs can be generated between the matrix phase grains.

    The variation of magnetic properties and the hysteresis loops of (La15Ce85)xFe94?xB6(x= 12, 14, 16) ribbons are shown in Fig.9(a).As the rare earth element content decreases, the coercivity of the melt-spun ribbons dropped from 4.9 kOe to 2.5 kOe.On the contrary, theBrof stripes attained a peak of 6.29 kG whenx= 14 at.%.The magnetic remanence of the (La15Ce85)12Fe82B6ribbon is lower than that of the (La15Ce85)14Fe80B6ribbon by 0.2 kG.Compared with the (La15Ce85)16Fe78B6ribbon, theHcjvalue of the(La15Ce85)14Fe80B6ribbon decreased slightly by 0.4 kOe.This may be due to the contribution of the inhibition of secondary phases and the formation of GBs in the (La15Ce85)14Fe80B6ribbon.The optimal (BH)max(6.81 MGOe) was achieved in (La15Ce85)14Fe80B6ribbons withHcj= 4.51 kOe.A best (BH)maxof 4.5 MGOe for(La15Ce85)14Fe80B6bonded magnet was obtained, as shown in Fig.9(b).

    Fig.9.The hysteresis loops of(La15Ce85)xFe94?xB6 ribbons(a)and the demagnetization curves of bonded(La15Ce85)xFe94?xB6 magnets(b).

    In the(La15Ce85)12Fe82B6ribbon,the exchange coupling effect exists between hard–soft magnetic grains and hard magnetic grains.[41]The large size of theα-Fe phase grain prevented complete exchange hardening of the soft magnetic phase.[42]Furthermore,the large soft magnetic area in the ribbon weakened the exchange coupling effect between matrix grains.[43]Thus,the(La15Ce85)12Fe82B6ribbon had lower coercivity and magnetic remanence than the(La15Ce85)14Fe80B6ribbon.Thinner GBs and a lower fraction of secondary phases were obtained in they=14 ribbon, which could explain the slightly lower coercivity and stronger remanence than for they=16 one,which had a more robust exchange interaction.To sum up, a declining rare earth content decreases the weight of secondary phases and heightens the intergranular exchange coupling between the matrix phase grains.

    4.Conclusion

    In this work,the phase composition and microstructure of(La,Ce)–Fe–B rapidly quenching ribbons have been modified via a reasonable composition design.The solute behavior of La atoms entering into the matrix phase lattice has been discussed.An increasing ratio of La in (La,Ce)–Fe–B induces a near-liner expansion of lattice parameters and variation of the intrinsic properties in the matrix phase.Due to the decline ofHAand the enhancement of magnetic moment that occurred in the 2:14:1 phase lattice,the magnetic properties of ribbons would be affected.In the alloy with a relatively high rare earth content(16 at.%),the formation of secondary phases(the CeFe2andβ-La phases)is hard to avoid and would result in microstructural deterioration.Reducing the rare earth content suppressed the formation of these secondary phases and strengthened the exchange coupling effect between grains.A fine microstructure with a shallow secondary phase fraction was obtained in the (La15Ce85)14Fe80B6ribbon.Good magnetic properties with(BH)max=6.81 MGOe,Hcj=4.51 kOe andBr=6.29 kG were found for the(La15Ce85)14Fe80B6ribbon.A bonded magnet with (BH)max=4.5 MGOe was prepared.

    Acknowledgement

    Project supported by the fifth batch of major scientific and technological research projects in the Panxi Experimental Zone of Sichuan Province, the new functional materials and applications of rare earth vanadium titanium (Grant No.2020SCUNG201).

    猜你喜歡
    劉穎李軍
    木棉花開
    人民之聲(2022年3期)2022-04-12 12:00:14
    Superconductivity in octagraphene
    記憶早點
    北京紀事(2021年10期)2021-10-31 02:58:26
    A physics-constrained deep residual network for solving the sine-Gordon equation
    陳璐琦、劉穎作品
    A Brief Analysis of Stereotyping in the Movie Crash
    智富時代(2018年12期)2018-01-12 11:51:50
    劉鑫、葉滿波、劉穎空間設計作品
    藝術評論(2016年5期)2016-05-14 07:05:01
    Mechanical Behavior of Plastic PiPe Reinforced by Cross-Winding Steel Wire Subject to Foundation Settlement
    滬港通一周成交概況
    李軍書法藝術簡介
    散文百家(2014年11期)2014-08-21 07:16:04
    19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 日本精品一区二区三区蜜桃| 日本撒尿小便嘘嘘汇集6| 国产精品影院久久| 成人18禁在线播放| 精品免费久久久久久久清纯| 国产又色又爽无遮挡免费看| 男女那种视频在线观看| 亚洲 国产 在线| 日本一区二区免费在线视频| 久久久久久大精品| 精品国产超薄肉色丝袜足j| www.熟女人妻精品国产| 亚洲av第一区精品v没综合| 欧美性猛交黑人性爽| 99热只有精品国产| 一夜夜www| 成年人黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 色尼玛亚洲综合影院| 国产激情欧美一区二区| 精品高清国产在线一区| 一二三四在线观看免费中文在| 午夜视频精品福利| 日韩成人在线观看一区二区三区| 深夜精品福利| 国产精品久久视频播放| 精品一区二区三区四区五区乱码| 精品日产1卡2卡| 黄片播放在线免费| 欧美激情久久久久久爽电影| 大型黄色视频在线免费观看| 一进一出好大好爽视频| 亚洲性夜色夜夜综合| 欧美黑人巨大hd| 在线观看免费午夜福利视频| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 久久国产精品影院| 国产三级在线视频| 长腿黑丝高跟| 久久性视频一级片| 日本三级黄在线观看| 色综合婷婷激情| 夜夜看夜夜爽夜夜摸| 国产成人系列免费观看| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美免费精品| 这个男人来自地球电影免费观看| 成人国语在线视频| 看免费av毛片| 国产一级毛片七仙女欲春2 | 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 欧美一级a爱片免费观看看 | 日韩欧美 国产精品| 亚洲国产精品999在线| 深夜精品福利| 日韩大码丰满熟妇| 人人妻人人澡人人看| 校园春色视频在线观看| 91在线观看av| 999久久久国产精品视频| 久久亚洲精品不卡| 在线免费观看的www视频| 国产精品久久久av美女十八| 大型黄色视频在线免费观看| aaaaa片日本免费| 精品电影一区二区在线| 巨乳人妻的诱惑在线观看| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕| 亚洲国产欧美一区二区综合| 国产极品粉嫩免费观看在线| 级片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲真实伦在线观看| 亚洲久久久国产精品| 丝袜美腿诱惑在线| 免费在线观看黄色视频的| 国产久久久一区二区三区| 人人澡人人妻人| 变态另类成人亚洲欧美熟女| 国内揄拍国产精品人妻在线 | 日本免费a在线| 国产高清有码在线观看视频 | 日本a在线网址| 女人被狂操c到高潮| 人妻丰满熟妇av一区二区三区| 看免费av毛片| 亚洲国产欧美日韩在线播放| 男人舔女人下体高潮全视频| 天堂动漫精品| 一夜夜www| 亚洲第一欧美日韩一区二区三区| 91在线观看av| 国产av在哪里看| 老汉色av国产亚洲站长工具| 亚洲人成77777在线视频| 一级作爱视频免费观看| 高潮久久久久久久久久久不卡| 熟妇人妻久久中文字幕3abv| 色哟哟哟哟哟哟| 国产精品久久久久久亚洲av鲁大| 国产精品免费一区二区三区在线| 人成视频在线观看免费观看| 成人亚洲精品av一区二区| 日韩欧美三级三区| 一本久久中文字幕| 亚洲avbb在线观看| 国产1区2区3区精品| 亚洲人成网站在线播放欧美日韩| 2021天堂中文幕一二区在线观 | 国产1区2区3区精品| 亚洲国产高清在线一区二区三 | 精品无人区乱码1区二区| 国产av一区在线观看免费| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 黄片大片在线免费观看| 久久香蕉激情| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 桃色一区二区三区在线观看| 久久人妻av系列| 久久青草综合色| 午夜激情av网站| 久久久久久人人人人人| 美女午夜性视频免费| 黄色女人牲交| 色在线成人网| 88av欧美| 亚洲一码二码三码区别大吗| 啦啦啦 在线观看视频| 日本 av在线| 久久天堂一区二区三区四区| 88av欧美| 视频区欧美日本亚洲| 亚洲国产欧美一区二区综合| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 欧美大码av| 日本成人三级电影网站| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 久久精品国产综合久久久| 日本免费一区二区三区高清不卡| 色综合站精品国产| 国产亚洲欧美98| 亚洲av片天天在线观看| 亚洲国产毛片av蜜桃av| or卡值多少钱| 国产日本99.免费观看| 中文字幕高清在线视频| 人人妻人人澡欧美一区二区| 大型av网站在线播放| 国产亚洲欧美精品永久| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 欧美黄色淫秽网站| 香蕉久久夜色| 18禁黄网站禁片免费观看直播| 香蕉丝袜av| aaaaa片日本免费| 色播在线永久视频| 婷婷精品国产亚洲av在线| 18禁黄网站禁片免费观看直播| 在线天堂中文资源库| 久久人妻福利社区极品人妻图片| 成人手机av| 亚洲天堂国产精品一区在线| 亚洲三区欧美一区| 在线天堂中文资源库| tocl精华| 怎么达到女性高潮| 精品电影一区二区在线| 成人免费观看视频高清| 欧美黄色淫秽网站| 亚洲一区中文字幕在线| 美女大奶头视频| 90打野战视频偷拍视频| 在线看三级毛片| 久久精品国产综合久久久| 日本五十路高清| av在线天堂中文字幕| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 国产精品影院久久| 欧美性猛交╳xxx乱大交人| 黄片大片在线免费观看| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 国产精品久久久久久人妻精品电影| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3 | 亚洲av五月六月丁香网| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 可以在线观看的亚洲视频| 日日爽夜夜爽网站| 午夜福利18| 听说在线观看完整版免费高清| 99久久国产精品久久久| 日韩国内少妇激情av| 男女午夜视频在线观看| 人成视频在线观看免费观看| 国产又黄又爽又无遮挡在线| 黄网站色视频无遮挡免费观看| 国产精品一区二区三区四区久久 | 99热6这里只有精品| 精品久久蜜臀av无| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 91国产中文字幕| 国产99久久九九免费精品| 丝袜在线中文字幕| 国产精品爽爽va在线观看网站 | 亚洲激情在线av| 母亲3免费完整高清在线观看| 99久久综合精品五月天人人| 久久国产精品影院| 99精品欧美一区二区三区四区| 国产av又大| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 国产精品日韩av在线免费观看| 人人妻人人澡人人看| 啦啦啦韩国在线观看视频| 成人av一区二区三区在线看| 色综合站精品国产| 亚洲av电影不卡..在线观看| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 动漫黄色视频在线观看| 少妇 在线观看| 久久 成人 亚洲| 亚洲avbb在线观看| 夜夜夜夜夜久久久久| a级毛片在线看网站| or卡值多少钱| 国产主播在线观看一区二区| 不卡一级毛片| 美国免费a级毛片| 又黄又粗又硬又大视频| 中文字幕久久专区| 欧美 亚洲 国产 日韩一| 手机成人av网站| 亚洲美女黄片视频| 一个人免费在线观看的高清视频| 日韩欧美免费精品| 香蕉国产在线看| 精品无人区乱码1区二区| 午夜精品在线福利| 国产亚洲精品久久久久5区| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人性av电影在线观看| 国产高清有码在线观看视频 | 日本黄色视频三级网站网址| 欧美午夜高清在线| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美精品济南到| 亚洲国产精品久久男人天堂| 观看免费一级毛片| 日本撒尿小便嘘嘘汇集6| 色av中文字幕| 色播在线永久视频| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 久久久久国内视频| 久久热在线av| 国产高清视频在线播放一区| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 波多野结衣av一区二区av| 亚洲精华国产精华精| 欧美一级a爱片免费观看看 | 久久精品人妻少妇| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 久久香蕉精品热| 久久久国产精品麻豆| 精品日产1卡2卡| 久热爱精品视频在线9| 国产欧美日韩精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 亚洲色图av天堂| 久久精品影院6| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 亚洲国产欧洲综合997久久, | 老熟妇仑乱视频hdxx| 日韩三级视频一区二区三区| 久久久久国产一级毛片高清牌| 欧美成人午夜精品| 久久香蕉国产精品| 伦理电影免费视频| 亚洲av成人不卡在线观看播放网| 精品国产美女av久久久久小说| 国产午夜精品久久久久久| 嫁个100分男人电影在线观看| 女生性感内裤真人,穿戴方法视频| 久久久水蜜桃国产精品网| 国产精品日韩av在线免费观看| 日韩三级视频一区二区三区| 国产精品,欧美在线| 91麻豆精品激情在线观看国产| 欧美黑人精品巨大| 亚洲精品美女久久久久99蜜臀| 国产精品九九99| 亚洲精华国产精华精| 欧美中文综合在线视频| 国产精品亚洲美女久久久| 日韩成人在线观看一区二区三区| 制服丝袜大香蕉在线| 久久九九热精品免费| 美女 人体艺术 gogo| 成熟少妇高潮喷水视频| 黑人欧美特级aaaaaa片| 日日爽夜夜爽网站| 黄色毛片三级朝国网站| 欧美不卡视频在线免费观看 | 色av中文字幕| 国产片内射在线| 在线观看舔阴道视频| 国产亚洲精品久久久久久毛片| 国产成人欧美| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 波多野结衣高清作品| 久久精品成人免费网站| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 欧美精品亚洲一区二区| 国产一区在线观看成人免费| 国产精品自产拍在线观看55亚洲| 国产日本99.免费观看| 一级黄色大片毛片| 美女高潮到喷水免费观看| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 日韩大码丰满熟妇| 亚洲最大成人中文| 91麻豆精品激情在线观看国产| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 深夜精品福利| 18禁黄网站禁片午夜丰满| 啦啦啦观看免费观看视频高清| 此物有八面人人有两片| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 美女大奶头视频| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 99riav亚洲国产免费| 超碰成人久久| 老汉色av国产亚洲站长工具| 国产日本99.免费观看| 热re99久久国产66热| 999久久久精品免费观看国产| 欧美国产精品va在线观看不卡| 亚洲色图av天堂| 国产99白浆流出| 18禁黄网站禁片免费观看直播| 精品国产一区二区三区四区第35| 国产精品香港三级国产av潘金莲| 免费av毛片视频| 国产黄a三级三级三级人| 国内毛片毛片毛片毛片毛片| 俺也久久电影网| 精品久久久久久成人av| 又紧又爽又黄一区二区| 久久国产精品男人的天堂亚洲| 99riav亚洲国产免费| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 黄网站色视频无遮挡免费观看| videosex国产| 在线看三级毛片| 亚洲国产精品合色在线| 神马国产精品三级电影在线观看 | 亚洲国产欧美日韩在线播放| 日韩欧美三级三区| 两个人视频免费观看高清| 校园春色视频在线观看| 精品人妻1区二区| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 亚洲国产精品999在线| 91av网站免费观看| 亚洲成人久久爱视频| 国产成人av激情在线播放| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 久久香蕉激情| 中文在线观看免费www的网站 | 变态另类成人亚洲欧美熟女| 一区福利在线观看| 午夜免费激情av| 国产激情欧美一区二区| 99re在线观看精品视频| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 亚洲精品粉嫩美女一区| 美女扒开内裤让男人捅视频| 国产高清视频在线播放一区| 麻豆av在线久日| 色综合婷婷激情| www日本黄色视频网| 高清毛片免费观看视频网站| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 日韩视频一区二区在线观看| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 一进一出好大好爽视频| 99riav亚洲国产免费| 国产伦在线观看视频一区| 亚洲av日韩精品久久久久久密| 午夜免费鲁丝| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| 日韩高清综合在线| 国产人伦9x9x在线观看| 国产99白浆流出| 99热只有精品国产| 国产av又大| 波多野结衣巨乳人妻| 最好的美女福利视频网| cao死你这个sao货| 国语自产精品视频在线第100页| 亚洲精品国产区一区二| 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区 | 亚洲全国av大片| 日本a在线网址| 两个人看的免费小视频| 日本免费一区二区三区高清不卡| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 男人舔女人的私密视频| 免费观看人在逋| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 1024手机看黄色片| 国产黄片美女视频| 亚洲av成人av| 亚洲成a人片在线一区二区| 精品一区二区三区av网在线观看| 夜夜看夜夜爽夜夜摸| 91麻豆精品激情在线观看国产| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 他把我摸到了高潮在线观看| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级做爰电影| 国产精品久久久av美女十八| 欧美丝袜亚洲另类 | 亚洲精品中文字幕一二三四区| 国产v大片淫在线免费观看| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 老司机靠b影院| 视频在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久| 丝袜在线中文字幕| 亚洲七黄色美女视频| 看免费av毛片| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2 | 国产99久久九九免费精品| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 中文字幕精品亚洲无线码一区 | 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 久久狼人影院| xxxwww97欧美| www.自偷自拍.com| 国产av又大| 999久久久精品免费观看国产| 久久精品国产亚洲av香蕉五月| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 91成人精品电影| 性欧美人与动物交配| 精品国产一区二区三区四区第35| 色av中文字幕| 男人舔女人下体高潮全视频| 日韩欧美在线二视频| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 亚洲精品av麻豆狂野| 91成年电影在线观看| 国产成+人综合+亚洲专区| 大型av网站在线播放| 亚洲色图av天堂| a级毛片在线看网站| 久久香蕉精品热| 久9热在线精品视频| 久久精品人妻少妇| 国内精品久久久久久久电影| 波多野结衣av一区二区av| 精品久久蜜臀av无| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 国产精品 欧美亚洲| 欧美黑人精品巨大| 色av中文字幕| 国产在线观看jvid| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 免费看日本二区| 欧美在线黄色| 国产区一区二久久| 97碰自拍视频| 99riav亚洲国产免费| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 成人欧美大片| 男女下面进入的视频免费午夜 | 亚洲欧美精品综合久久99| 久久国产精品男人的天堂亚洲| www国产在线视频色| 亚洲欧美日韩无卡精品| 欧美中文日本在线观看视频| 亚洲第一av免费看| 国内久久婷婷六月综合欲色啪| 亚洲av日韩精品久久久久久密| 精品福利观看| 热99re8久久精品国产| 久久精品aⅴ一区二区三区四区| 丁香六月欧美| 国产精品 国内视频| 伊人久久大香线蕉亚洲五| www.熟女人妻精品国产| 欧美性猛交黑人性爽| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 国产不卡一卡二| 丁香六月欧美| av超薄肉色丝袜交足视频| 大型黄色视频在线免费观看| 国产成人啪精品午夜网站| 视频区欧美日本亚洲| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 成人av一区二区三区在线看| 午夜老司机福利片| 精品人妻1区二区| 欧美中文日本在线观看视频| 国产一区在线观看成人免费| 午夜久久久久精精品| 亚洲成av片中文字幕在线观看| 黄色毛片三级朝国网站| 欧美激情高清一区二区三区| 精品福利观看| 好男人在线观看高清免费视频 | 久99久视频精品免费| 无遮挡黄片免费观看| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 91在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 妹子高潮喷水视频| 可以在线观看的亚洲视频| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 美女午夜性视频免费| 国产区一区二久久| 国产主播在线观看一区二区| 久久久久久久久免费视频了| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品一区二区www| 69av精品久久久久久| 一边摸一边做爽爽视频免费| 亚洲人成电影免费在线| 午夜影院日韩av| 欧美中文综合在线视频|