謝敏,蔣恩琰,唐晨野,郭曉
·論 著·
基于增強CT影像組學(xué)預(yù)測非肌層浸潤性膀胱癌的病理分級
謝敏1,蔣恩琰2,唐晨野3,郭曉3
1.浙江中醫(yī)藥大學(xué)研究生院,浙江杭州 310053;2.中山大學(xué)附屬第五醫(yī)院生物醫(yī)學(xué)影像重點實驗室,廣東珠海 519000;3.嘉興市第二醫(yī)院泌尿外科,浙江嘉興 314000
探討基于增強CT影像組學(xué)建立的非肌層浸潤性膀胱癌(non-muscle-invasive bladder cancer,NMIBC)病理分級預(yù)測模型的診斷價值。回顧性分析2015年1月至2018年12月嘉興市第二醫(yī)院病理確診的81例NMIBC患者的臨床資料,患者術(shù)前接受增強CT檢查,收集其皮髓期和實質(zhì)期影像資料,對膀胱腫瘤輪廓進行勾勒,提取一階變量、紋理變量、形狀特征、小波變換變量,總計1980個特征變量。采用最大相關(guān)最小冗余(max-relevance and min-redundancy,mRMR)算法與最小絕對收縮和選擇算子(least absolute shrinkage and selection operatorLASSO)算法進行特征選擇,最后利用多種機器學(xué)習(xí)算法結(jié)合有意義的特征變量建立預(yù)測模型,用于比較其預(yù)測NMIBC病理分級的敏感度、特異性和準確率。運用mRMR聯(lián)合LASSO篩選出19個特征變量,使用K近鄰分類(K-nearest neighbor,KNN)、神經(jīng)網(wǎng)絡(luò)(neural networks,NNET)、隨機森林(random forest,RF)、支持向量機(support vector machines,SVM)4種機器學(xué)習(xí)算法建立模型并驗證。4種模型建立成功且結(jié)果相對一致,其中RF模型表現(xiàn)相對穩(wěn)定,在驗證集中準確率為91.4%。在測試集中準確率為70.0%。通過術(shù)前增強CT影像組學(xué)結(jié)合機器學(xué)習(xí)算法可精準預(yù)測NMIBC病理分級,對推動膀胱癌個性化治療具有科學(xué)意義。
非肌層浸潤性膀胱癌;增強CT;影像組學(xué);機器學(xué)習(xí);病理分級
膀胱癌是泌尿生殖系統(tǒng)最常見的惡性腫瘤之一,發(fā)病率在惡性腫瘤中居第6位[1-2]。低危非肌層浸潤性膀胱癌(non-muscle-invasive bladder cancer,NMIBC)通常在行經(jīng)尿道膀胱腫瘤切除術(shù)(transurethral resection of bladder tumor,TUR-BT)后予膀胱灌注治療;而高危NMIBC在TUR-BT后需予卡介苗灌注治療1年以上,必要時行根治性膀胱切除術(shù)[2-3]。病理分級對膀胱癌手術(shù)方案的選擇及術(shù)后管理具有重要意義[4]。但術(shù)前膀胱鏡下病理活檢術(shù)存在取樣組織少、深度不夠等不足。影像組學(xué)病理模型能更加系統(tǒng)地評估腫瘤的病理分級,有利于膀胱癌的精準化管理[5-6]。研究認為不同病理級別膀胱癌是由異質(zhì)性表型所致,包括微血管浸潤、細胞因子表達和腫瘤免疫微環(huán)境等,這些異質(zhì)性表型可引起圖像的細微改變[7-8]。因此,本研究擬以增強CT影像組學(xué)運用機器學(xué)習(xí)算法對NMIBC的病理分級進行預(yù)測和評估,現(xiàn)將結(jié)果報道如下。
回顧性分析2015年1月至2018年12月嘉興市第二醫(yī)院病理確診的NMIBC患者81例。納入標準:①根據(jù)國際抗癌聯(lián)盟TNM分期標準,術(shù)后病理診斷為NMIBC且病理分期為Ta和T1;②術(shù)前1個月內(nèi)行CT尿路造影檢查。排除標準:①臨床資料不完整,影像資料質(zhì)量較低;②病理分期為原位癌;③檢查前予灌注治療、化療或免疫治療等干預(yù)腫瘤進展者;④肌層浸潤性膀胱癌、多發(fā)性NMIBC或其他病理分型。按3∶1的比例將81例患者分為訓(xùn)練集(=61)和驗證集(=20)。本研究經(jīng)嘉興市第二醫(yī)院醫(yī)學(xué)倫理委員會審批通過并獲得免除知情同意書許可(倫理審批號:2022ZFYJ248-01)。
CT掃描采用64層螺旋CT(美國GE公司)。造影劑為碘海醇,濃度350mgI/ml,造影劑量80~100ml,注射速度4ml/s。檢查前禁食6h,注射造影劑前后分別進行多次掃描。掃描條件:120kV,100mA,掃描厚度0.625mm×64。開始注射造影劑至啟動掃描的時間跨度定義為皮髓期延遲掃描時間,采用造影劑跟蹤技術(shù),檢測腹主動脈CT值,閾值為150HU。實質(zhì)期掃描延遲時間為55~80s。
為確保病變周圍的微環(huán)境提供有用信息,勾勒感興趣體積(volume of interest,VOI)時確保距離腫瘤2mm,瘤體的勾勒包括壞死鈣化區(qū)。由2名經(jīng)驗豐富的醫(yī)生使用3D slicer 3.0軟件繪制VOI。對有異議的VOI,通過共同商討重新勾勒,直至意見一致,見圖1。
在獲取VOI后,運用3D slicer 3.0軟件處理皮髓期或?qū)嵸|(zhì)期圖像,最終獲取4類變量:一階變量、形狀特征、紋理變量、小波變換變量,共計990個。因皮髓期和實質(zhì)期均進行勾勒,最終每個患者共獲得2×990個變量。
圖1 膀胱腫瘤在皮髓期和實質(zhì)期的影像學(xué)表現(xiàn)
A.腫瘤皮髓期;B.獲取腫瘤皮髓期的VOI;C.腫瘤實質(zhì)期;D.獲取腫瘤實質(zhì)期的VOI
所有的特征變量在計算之前均進行均一化處理。在訓(xùn)練集中,采用mRMRe軟件包對所有特征變量進行最大相關(guān)最小冗余(max-relevance and min- redundancy,mRMR)算法,將特征變量數(shù)壓縮,以降低冗余并防止將相關(guān)特征變量提取出來。然后運用glmnet軟件包對壓縮后的特征變量進行最小絕對收縮和選擇算子(least absolute shrinkage and selection operatorLASSO)算法,通過對回歸系數(shù)的調(diào)整,當(dāng)確定回歸系數(shù)最小值時,篩選出有意義的特征變量。
利用上述獲得的1980個特征變量,通過caret軟件包采用K近鄰分類(K-nearest neighbor,KNN)、神經(jīng)網(wǎng)絡(luò)(neural networks,NNET)、隨機森林(random forest,RF)、支持向量機(support vector machines,SVM)4種機器學(xué)習(xí)算法建立模型。采用準確率、敏感度、特異性、陽性預(yù)測值、陰性預(yù)測值評價測試集模型,最后再應(yīng)用于驗證集。
81例膀胱癌患者,其中高級別38例,固有層浸潤25例;低級別43例,固有層浸潤8例。所有患者均行TUR-BT,64例患者術(shù)后按療程行膀胱灌注,18例患者復(fù)發(fā),7例患者死亡。高級別患者的T1分期占比顯著高于低級別患者(<0.05),見表1。
共獲得1980個特征變量,經(jīng)mRMR算法獲得30個相關(guān)性最大且冗余最低的特征變量。再采用LASSO算法建立模型,通過10折交叉驗證和最小準測對LASSO模型中的懲罰系數(shù)進行調(diào)整,確定最優(yōu)為0.0270,log()為–3.6109,此時特征變量為19個。19個特征變量在不同病理結(jié)果中的分布情況見圖2。
用4種常見的機器學(xué)習(xí)算法建立膀胱癌病理分級預(yù)測模型。在訓(xùn)練集中,RF算法表現(xiàn)最優(yōu),該算法的準確率為91.4%,另外敏感度、特異性、陽性預(yù)測值和陰性預(yù)測值分別為89.5%、93.0%、91.9%和90.9%;在測試集中,RF算法的準確率為70.0%,同時敏感度、特異性、陽性預(yù)測值和陰性預(yù)測值分別為75.0%、66.7%、60.0%、80.0%,見表2。使用RF預(yù)測NMIBC病理分級的曲線下面積,測試集為0.913,驗證集為0.709。
表1 不同病理分級膀胱癌患者的臨床資料
圖2 19個特征變量在不同病理級別膀胱癌中的分布情況
注:A.原始圖像:形狀、延伸率.A;B.原始圖像:灰度共生矩陣、相關(guān)性信息度量.A;C.小波變換HLL:灰度共生矩陣、逆方差.V;D.原始圖像:灰度尺寸區(qū)域矩陣、歸一化區(qū)域大小不均勻性.V;E.原始圖像:灰度尺寸區(qū)域矩陣、小區(qū)域低灰度強調(diào).A;F.小波變換LHL:灰度尺寸區(qū)域矩陣、小面積強調(diào).A;G.小波變換HLH:一階變量、偏度.A;H.原始圖像:一階變量、最小值.V;I.小波變換LHH:一階變量、四分位距離.V;J.小波變換HLL:灰度共生矩陣、相關(guān)性.V;K.小波變換HLL:灰度共生矩陣、逆方差.V;L.小波變換HLL:灰度依賴矩陣、大依賴低灰度強調(diào).V;M小波變換HLH:一階變量、中位數(shù).V;N.小波變換HLH:灰度共生矩陣、差平均.V;O.小波變換HLH:灰度尺寸區(qū)域矩陣、小區(qū)域低灰度強調(diào).V;P.小波變換HLL:灰度依賴矩陣、大依賴低灰度強調(diào).V;Q.原始圖像:灰度尺寸區(qū)域矩陣、歸一化區(qū)域大小不均勻性.A;R.小波變換LLL:灰度依賴矩陣、依賴方差.V;S.小波變換HLL:灰度依賴矩陣、大依賴低灰度強調(diào).V;后綴A為皮髓期變量;后綴V為實質(zhì)期變量;小波變換LHL、LHH、HLL、HLH、LLL為小波變換在3個維度中每個維度分別使用高通、低通濾波器所產(chǎn)生的組合
表2 測試集和驗證集在不同模型下的診斷效能(%)
本研究嘗試利用影像組學(xué)和機器學(xué)習(xí)的方法來預(yù)測膀胱癌的病理分級,希望通過無創(chuàng)性描述來豐富和完善膀胱癌的診治。構(gòu)建的模型證實增強CT影像組學(xué)運用機器學(xué)習(xí)預(yù)測NMIBC病理分級具有一定的可行性。
隨著影像技術(shù)的成熟,關(guān)于對腫瘤病理分級的影像學(xué)研究也在不斷增加。Ye等[9]利用單層CT切片結(jié)合深度學(xué)習(xí)模型有效地預(yù)測頭頸癌的病理分期,曲線下面積達0.959。另外,瘤體的參數(shù)(如大小、形狀、表面積及鈣化程度)和異質(zhì)性相關(guān)的指標(如灰度不均勻性、小波繁忙度、復(fù)雜性及熵值等)是預(yù)測腫瘤微血管浸潤的重要因素,也是決定腫瘤異質(zhì)性的關(guān)鍵因素[10-15]。
近年來,國外指南對不同病理分級的膀胱癌提出不同的治療建議,越來越多的影像組學(xué)研究開始關(guān)注膀胱癌的病理分級[16]。Xu等[17]提出基于多參數(shù)磁共振影像組學(xué)預(yù)測膀胱癌病理分級的策略,提取61例膀胱癌患者的彌散加權(quán)成像和表面彌散系數(shù)序列的影像組學(xué)特征變量,驗證磁共振影像組學(xué)對預(yù)測膀胱惡性腫瘤的病理分級具有良好的表現(xiàn)。雖然排泄期CT尿路造影對膀胱癌的診斷更為敏感,但為避免膀胱內(nèi)高密度造影劑對腫瘤CT值的影響,筆者選擇皮髓期和實質(zhì)期圖像進行分析。研究發(fā)現(xiàn)皮髓期的特征變量6個,實質(zhì)期的特征變量13個。在實質(zhì)期,造影劑已進入腫瘤,可充分顯示腫瘤的血管結(jié)構(gòu)和紋理,在區(qū)分腫瘤的病理分級時效能更強。其中,回歸系數(shù)絕對值大于0.5的特征變量有3個,對模型的影響權(quán)重較大。它們分別是在實質(zhì)期中與病理分級呈正相關(guān)的灰度共生矩陣(小波變換HHL)和負相關(guān)的灰度尺寸區(qū)域矩陣(小波變換)及在皮髓期中與病理分級呈正相關(guān)的灰度共生矩陣(原始圖像)。其中,第一個和第三個特征變量為灰度共生矩陣變量,代表基于預(yù)設(shè)的像素在圖像不同方向出現(xiàn)的頻率;第二個特征變量是灰度尺寸區(qū)域矩陣中反映小區(qū)域低灰度水平的一個值,代表灰度形成的顆粒大小和分布。3個特征變量均反映高級別和低級別膀胱癌在圖像灰度、像素等紋理特征上的差異,與用肉眼觀察的結(jié)果一致。在實質(zhì)期中,腫瘤的密度表現(xiàn)更加不均,部分強化區(qū)域密度更高,相反其他低密度區(qū)域密度更低,可見高級別的膀胱腫瘤在實質(zhì)期圖像上表現(xiàn)為熵值更大。
本研究發(fā)現(xiàn),在測試集中NNET和RF的準確率極為接近,兩種模型表現(xiàn)相對穩(wěn)定,其中RF在綜合評估方面更優(yōu)。雖然目前神經(jīng)網(wǎng)絡(luò)應(yīng)用的領(lǐng)域較廣泛,但由于本研究的樣本量較小,因此NNET算法并沒有較大優(yōu)勢[18-20]。
綜上,增強CT影像組學(xué)結(jié)合機器學(xué)習(xí)可有效預(yù)測NMIBC的病理分級。紋理特征和小波變換變量對判斷NMIBC的病理分級有重要意義。機器學(xué)習(xí)對模型的預(yù)測結(jié)果基本一致,但仍需大樣本和多中心研究進行驗證。
[1] MARTINEZ RODRIGUEZ R H, BUISAN RUEDA O, IBARZ L. Bladder cancer: Present and future[J]. Med Clin (Barc), 2017, 149(10): 449–455.
[2] DEGEORGE K C, HOLT H R, HODGES S C. Bladder cancer: Diagnosis and treatment[J]. Am Fam Physician, 2017, 96(8): 507–514.
[3] MESSING E M, TANGEN C M, LERNER S P, et al. Effect of intravesical instillation of gemcitabine vs saline immediately following resection of suspected low-grade non-muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial[J]. JAMA, 2018, 319(18): 1880–1888.
[4] WANG G, MCKENNEY J K. Urinary bladder pathology: World Health Organization classification and American Joint Committee on cancer staging update[J]. Arch Pathol Lab Med, 2019, 143(5): 571–577.
[5] GE L, CHEN Y, YAN C, et al. Study progress of radiomics with machine learning for precision medicine in bladder cancer management[J]. Front Oncol, 2019, 9: 1296.
[6] HAROON S A, RAHIMI H, MERRITT A, et al. Computed tomography (CT) in the evaluation of bladder and ureteral trauma: Indications, technique, and diagnosis[J]. Abdom Radiol (NY), 2019, 44(12): 3962–3977.
[7] BENOIT T, KELLER E X, WOLFSGRUBER P, et al. High VEGF-D and low MMP-2 serum levels predict nodal- positive disease in invasive bladder cancer[J]. Med Sci Monit, 2015, 21: 2266–2274.
[8] ZHANG G, XU L, ZHAO L, et al. CT-based radiomics to predict the pathological grade of bladder cancer[J]. Eur Radiol, 2020, 30(12): 6749–6756.
[9] YE J, LUO J, XU S, et al. One-slice CT image based kernelized radiomics model for the prediction of low/mid-grade and high-grade HNSCC[J]. Comput Med Imaging Graph, 2020, 80: 101675.
[10] KOCAK B, DURMAZ E S, ATES E, et al. Radiogenomics of lower-grade gliomas: Machine learning-based MRI texture analysis for predicting 1p/19q codeletion status[J]. Eur Radiol, 2020, 30(2): 877–886.
[11] FAN M, YUAN W, ZHAO W, et al. Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632–1642.
[12] KIM A R, CHOI K S, KIM M S, et al. Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values[J]. Cancer Immunol Immunother, 2021, 70(7): 1995–2008.
[13] XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133–1144.
[14] MARCUCCI F, BELLONE M, CASERTA C A, et al. Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads[J]. Int J Cancer, 2014, 135(6): 1265–1276.
[15] AKAI H, YASAKA K, KUNIMATSU A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest[J]. Diagn Interv Imaging, 2018, 99(10): 643–651.
[16] POWLES T, BELLMUNT J, COMPERAT E, et al. Bladder cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(3): 244–258.
[17] XU X, ZHANG X, TIAN Q, et al. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI[J]. Int J Comput Assist Radiol Surg, 2017, 12(4): 645–656.
[18] MELEGH Z, OLTEAN S. Targeting angiogenesis in prostate cancer[J]. Int J Mol Sci, 2019, 20(11): 2676.
[19] SUAREZ-IBARROLA R, HEIN S, REIS G, et al. Current and future applications of machine and deep learning in urology: A review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer[J]. World J Urol, 2020, 38(10): 2329–2347.
[20] LIN P, WEN D Y, CHEN L, et al. A radiogenomics signature for predicting the clinical outcome of bladder urothelial carcinoma[J]. Eur Radiol, 2020, 30(1): 547–557.
Predicting the pathological grade of non-muscle-invasive bladder cancer based on enhanced CT radiomics
XIE Min, JIANG Enyan, TANG Chenye, GUO Xiao
1.Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; 2.Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; 3.Department of Urology, Jiaxing Second Hospital, Jiaxing 314000, Zhejiang, China
To explore the diagnostic value of pathological grade prediction model of non-muscle-invasive bladder cancer (NMIBC) based on enhanced CT radiomics.The clinical data of 81 patients with NMIBC who were pathologically diagnosed in Jiaxing Second Hospital from January 2015 to December 2018 were retrospectively analyzed. The patients underwent enhanced CT examination before surgery, and the image data of the cortex and medulla stage and parenchyma stage were collected. The contour of the bladder tumor was outlined, and first-order feature variables, texture variables, shape characteristics and wavelet transform variables were extracted, totaling 1980 feature variables. The max-relevance and min-redundancy (mRMR) algorithm and least absolute shrinkage and selection operator (LASSO) algorithm were used for feature selection. Finally, multiple machine learning algorithms were combined with meaningful feature variables to build a prediction model, which was used to compare the sensitivity, specificity and accuracy of predicting NMIBC pathological grade.mRMR and LASSO were used to screen out 19 characteristic variables, and K-nearest neighbor (KNN), neural networks (NNET), random forest (RF) and support vector machines (SVM) were used to established and verified the model. The four models were established successfully and the results were relatively consistent, among which the RF model was relatively stable, with an accuracy of 91.4% in the verification set. In the test set, the accuracy was 70.0%.Preoperative enhanced CT radiomics combined with machine learning algorithm can accurately predict the pathological grade of NMIBC, and it is of scientific significance to promote personalized treatment of bladder cancer.
Non-muscle-invasive bladder cancer; Enhanced CT; Radiomics; Machine learning; Pathological grading
R737.14
A
10.3969/j.issn.1673-9701.2023.19.013
嘉興市公益性研究計劃(財政資助)項目(2021AY30018)
郭曉,電子信箱:gxchpgyc@163.com
(2023–02–03)
(2023–06–13)