高欠清 任孝儉 翟中兵 鄭普兵 吳源芬 崔克輝,*
頭季穗肥和促芽肥對再生稻再生芽生長及產(chǎn)量形成的影響
高欠清1任孝儉1翟中兵2鄭普兵3吳源芬1崔克輝1,*
(1作物遺傳改良全國重點實驗室/農(nóng)業(yè)農(nóng)村部長江中游作物生理生態(tài)與耕作重點實驗室/華中農(nóng)業(yè)大學植物科學技術學院, 武漢 430070;2湖北省武穴市農(nóng)業(yè)技術推廣中心, 湖北 武穴 435499;3湖北省洪湖市農(nóng)業(yè)技術推廣中心, 湖北 洪湖 433200;*通信聯(lián)系人, email: cuikehui@mail.hzau.edu.cn)
【目的】研究頭季氮素穗肥和促芽肥運籌對再生稻再生芽生長、干物質積累及產(chǎn)量形成的影響及可能途徑?!痉椒ā坎捎昧蚜褏^(qū)設計,品種為主區(qū)(豐兩優(yōu)香1號和兩優(yōu)6326),2個頭季穗肥為副區(qū)(N1,30 kg/hm2;N2,60 kg/hm2),3個再生季促芽肥為副副區(qū)(T1、T2和T3分別為0、50和100 kg/hm2),考查在不同氮肥運籌下兩品種再生芽生長狀況、干物質積累與分配、產(chǎn)量及產(chǎn)量構成因子?!窘Y果】頭季高氮素穗肥對豐兩優(yōu)香1號頭季產(chǎn)量無顯著影響,顯著提高兩優(yōu)6326頭季產(chǎn)量,對兩品種再生力和再生季產(chǎn)量無顯著影響。增施促芽肥顯著降低兩品種頭季齊穗前莖鞘干物質轉運量和收獲指數(shù),提高不同節(jié)位再生芽芽長、活芽數(shù)和再生力,促進再生季齊穗后干物質積累,提高了再生季產(chǎn)量。此外,頭季氮素穗肥和促芽肥對再生季產(chǎn)量具有顯著交互作用。豐兩優(yōu)香1號在N1T3處理下周年產(chǎn)量最高(14.46 t/hm2),兩優(yōu)6326在N2T2處理下周年產(chǎn)量最高(14.44 t/hm2)。單莖再生芽長、活芽數(shù)和芽生長速率與頭季齊穗后干物質積累量呈顯著正相關,與頭季收獲指數(shù)和頭季齊穗前干物質轉運量呈顯著負相關,與再生力和再生季產(chǎn)量呈顯著正相關。【結論】頭季高氮素穗肥對豐兩優(yōu)香1號和兩優(yōu)6326再生季產(chǎn)量沒有顯著影響,促芽肥施用可促進兩品種再生芽生長,提高再生力和再生季產(chǎn)量,但過高施用量并沒有進一步提高產(chǎn)量。頭季穗肥和促芽肥互作顯著影響再生季產(chǎn)量。施用促芽肥可通過增加頭季莖鞘干物質積累來促進再生芽生長、再生季干物質積累與成穗,從而提高再生力和再生季產(chǎn)量。再生稻生產(chǎn)中應合理運籌穗肥和促芽肥以實現(xiàn)較高的再生季和周年產(chǎn)量。低頭季穗肥和高促芽肥、高穗肥高促芽肥可分別實現(xiàn)豐兩優(yōu)香1號、兩優(yōu)6326周年高產(chǎn)。
再生稻;再生芽;氮素穗肥和促芽肥;干物質積累與分配;產(chǎn)量
再生稻是利用水稻的再生特性,通過栽培管理措施促進收獲后稻樁上的休眠芽萌發(fā),并進一步生長發(fā)育成為一季短生育期的水稻,具有增產(chǎn)增收、省種省工、減肥減藥等特點[1-2]。目前,再生稻已成為我國南方稻區(qū)重要的水稻輕簡栽培種植模式,發(fā)展再生稻對增加糧食產(chǎn)量、提高農(nóng)民收入和促進農(nóng)業(yè)供給側結構性改革意義重大[3-4]。
水稻莖節(jié)有4~6個再生腋芽,當光溫適宜和水肥條件良好時,再生腋芽可發(fā)育成再生分蘗和再生穗[5-6]。有效穗是制約再生季產(chǎn)量的關鍵因子,其數(shù)量取決了腋芽萌發(fā)能力[7]。再生芽生長發(fā)育受品種遺傳特性、栽培措施和環(huán)境條件等因素的影響[8-9],通過適宜品種選擇和優(yōu)化栽培管理可以促進再生芽生長發(fā)育,提高再生力,從而提高再生季產(chǎn)量潛力[10-11]。
有研究認為適當增加頭季施氮量可以增加頭季和再生季產(chǎn)量[12],但也有研究認為頭季施氮量對再生季產(chǎn)量影響較小[13]。Zhang等[14]發(fā)現(xiàn),頭季適當增加穗肥施用量及比例增加了頭季產(chǎn)量,也促進了再生芽生長,提高了再生力和再生季產(chǎn)量。Huang等[15]發(fā)現(xiàn),在頭季總施氮量一定的條件下,適當加大分蘗末期至孕穗期氮肥施入比例顯著增加了頭季有效穗數(shù),同時促進再生芽萌發(fā)和再生季產(chǎn)量形成。因此,優(yōu)化再生稻頭季氮肥管理可協(xié)同提升再生稻頭季和再生季產(chǎn)量。
施用促芽肥和提苗肥是常見的再生季氮肥管理措施。Wang等[16]發(fā)現(xiàn),單施促芽肥或提苗肥均能顯著提高再生季產(chǎn)量,促芽肥的增產(chǎn)效應高于提苗肥;但有研究認為應注重提苗肥的施入[17]。再生季氮肥不同施用時間和施用量影響再生芽生長發(fā)育和再生季產(chǎn)量。在頭季齊穗后15~20 d施用促芽肥,頭季收獲當天施用提苗肥,可以促進再生分蘗,提高穗粒數(shù)和粒重[18]。徐富賢等[19]認為,頭季稻齊穗后光合產(chǎn)物主要輸送給穗部籽粒,分配給再生芽生長利用較少,因此促芽肥施用時期越早越有利于再生芽生長和提高再生力。徐富賢等[20]發(fā)現(xiàn)促芽肥施用量與活芽率、再生季有效穗和產(chǎn)量呈顯著正相關。因此,再生季氮肥優(yōu)化管理可促進再生芽生長和再生季產(chǎn)量形成。
前人較多研究表明再生稻頭季或再生季氮肥管理影響再生芽生長和產(chǎn)量形成,然而,不同頭季和再生季氮肥運籌對再生芽生長和產(chǎn)量形成的影響研究較少。此外,再生芽早期的生長發(fā)育主要依賴頭季稻樁所供應的營養(yǎng)物質[21-22]。頭季稻地上部干物質積累量大,莖鞘物質轉運率低均有利于莖鞘同化物積累,促進再生芽生長發(fā)育和提高再生季產(chǎn)量[8, 23-24]。合理施用氮肥有利于光合產(chǎn)物合成,促進莖鞘非結構性碳水化合物的積累與轉運[25]。施氮運籌是否可以通過影響干物質積累與轉運調控再生芽生長和再生季產(chǎn)量形成,值得進一步研究。因此,本研究選用再生芽生長有差異的湖北再生稻生產(chǎn)主推的兩個雜交秈稻品種豐兩優(yōu)香1號和兩優(yōu)6326,設置2個頭季氮素穗肥和3個促芽肥處理,研究不同氮肥處理下干物質積累與分配及其與再生芽生長狀況、再生季產(chǎn)量形成的關系,目的在于研究不同頭季穗肥和促芽肥施用量對再生稻再生季產(chǎn)量形成的影響并闡明其機理,以期為再生稻高產(chǎn)高效栽培提供指導。
大田試驗于2020和2021年再生稻生產(chǎn)季節(jié)(3-11月)在湖北省武穴市花橋鎮(zhèn)蘭杰村(30°00′ N, 115°44′ E)稻田進行。土壤主要理化性質如下:pH值5.75,有機質33.9 g/kg,全氮1.9 g/kg,有效磷8.0 mg/kg和速效鉀104.4 mg/kg。
試驗采用裂裂區(qū)設計,以品種為主區(qū),頭季穗肥處理為副區(qū),促芽肥處理為副副區(qū)。選用再生芽生長有差異的豐兩優(yōu)香1號和兩優(yōu)6326兩個秈型雜交稻品種。這兩個品種是湖北省再生稻主推品種,與豐兩優(yōu)香1號相比,兩優(yōu)6326具有較大的再生芽芽長和芽生長速率[26]。本研究條件下兩品種生育期一致,頭季為143 d,再生季為58 d。頭季穗肥(N)施用量設置為低(30 kg/hm2,N1)和高(60 kg/hm2,N2)二個氮水平,于頭季幼穗分化二期施用;促芽肥(T)分別為不施促芽肥(0 kg/hm2,T1)和施用促芽肥處理,后者包括兩個水平,即50 kg/hm2(T2)和100 kg/hm2(T3),于頭季齊穗后15 d施用。小區(qū)面積為30 m2,3次重復,共36個小區(qū)。
除穗肥和促芽肥處理外,頭季其他肥料管理各處理均保持一致:氮肥(尿素)用量為120 kg/hm2(純氮,基肥∶分蘗肥 = 1∶1),磷肥(過磷酸鈣)用量為40 kg/hm2(純磷,作基肥一次性施入),鉀肥(氯化鉀)用量為100 kg/hm2(純鉀,基肥∶穗肥 = 1∶1)。頭季收割后4 d按純氮50 kg/hm2施用提苗肥。
兩個品種于3月26日播種,5月4日移栽,頭季于8月15日人工收獲,留樁高度為45 cm;再生季于10月12日收獲。移栽尺寸為13.3 cm×30 cm,雙本移栽。水分管理:秧苗移栽后灌深水促返青,返青后保持淺水層,分蘗后期落干曬田,幼穗分化期保持田間濕潤,灌漿期間采用干濕交替灌溉直至頭季成熟前7 d落干收獲,頭季人工收割后再生季采用干濕交替灌溉方式。根據(jù)病蟲害預報及發(fā)生情況及時防治。
分別于頭季和再生季的齊穗期和成熟期取樣。將頭季80%的母莖已抽穗的時間定義為頭季齊穗期,再生季50%的母莖產(chǎn)生的再生分蘗至少有一個已抽穗的時間定義為再生季齊穗期,飽粒數(shù)≥5的穗定義為有效穗[27]。每個小區(qū)分別取12蔸,將地上部分植株分為葉片、莖鞘、再生莖鞘(除去稻茬)和穗等部分,于105℃烘箱中殺青30 min后置于80℃烘箱中烘干至恒重,測定干物質量。
在頭季齊穗后20 d和收割后4 d分別從每個小區(qū)取18個生長一致的大分蘗,記錄倒2、倒3和倒4節(jié)位再生芽數(shù)并測量單芽芽長,統(tǒng)計長度大于1 cm的再生芽的芽數(shù)量和芽長[28],并計算不同節(jié)位芽長、單個母莖再生芽總長、活芽數(shù)和齊穗后20 d至收割后4 d芽平均生長速率。
在頭季和再生季成熟期,每小區(qū)選擇5 m2并收割;脫粒曬干后用谷物水分測量儀測定籽粒的含水量,計算實際產(chǎn)量(含水量為13.5%)。
在頭季和再生季成熟期分別取12蔸植株樣品,收集所有有效穗并手工脫粒,通過水選法和風選法分成飽粒、半飽粒和空粒并計數(shù),然后計算單位面積穗數(shù)、每穗穎花數(shù)、籽粒產(chǎn)量、結實率、粒重和收獲指數(shù)。
收獲指數(shù)(HI, %) = 飽粒干質量(t/hm2)/成熟期地上部總干質量(t/hm2);
再生力= 再生季有效穗數(shù)(No./m2)/頭季有效穗數(shù)(No./m2);
齊穗后干物質積累量 (DMA, t/hm2) = 成熟期地上部干物質積累量(t/hm2)?齊穗期地上部干物質積累量(t/hm2);
齊穗前干物質向籽粒的轉運量(DMT, t/hm2) = 籽粒產(chǎn)量(t/hm2)?DMA(t/hm2);
再生芽生長速率 (cm/d) = (頭季收割后4 d母莖再生芽總長?齊穗后20 d母莖再生芽總長)/天數(shù)(20 d)。
采用Excel 2013軟件整理數(shù)據(jù),應用Statistix 9進行方差分析和平均值最小顯著差異法(LSD)分析。
兩個品種在6個氮肥處理組合下頭季產(chǎn)量為6.85~7.93 t/hm2(表1)。方差分析表明,兩品種頭季產(chǎn)量無顯著差異,品種與穗肥互作顯著影響頭季產(chǎn)量。在不同氮肥處理組合中,豐兩優(yōu)香1號在N1T1處理下的頭季產(chǎn)量最高。不同頭季穗肥對豐兩優(yōu)香1號頭季稻產(chǎn)量無顯著影響,但在低促芽肥(T1和T2)處理下,低穗肥導致豐兩優(yōu)香1號每穗穎花數(shù)分別顯著提高10.7%和12.1%,粒重分別降低3.2%和4.6%。頭季高穗肥(N2)提高了兩優(yōu)6326頭季稻產(chǎn)量(9.8%),且在N2T1處理下的頭季產(chǎn)量最高;頭季高穗肥顯著提高兩優(yōu)6326每穗穎花數(shù)(12.0%)。促芽肥處理對頭季產(chǎn)量及其構成因子(粒重除外)無顯著影響,但豐兩優(yōu)香1號在N2處理下,兩優(yōu)6326在N1處理下促芽肥施用量增加導致粒重降低。
表1 豐兩優(yōu)香1號和兩優(yōu)6326的頭季產(chǎn)量及其構成因子
同一列內不同小寫字母表示同一品種不同穗肥和促芽肥處理間差異顯著(LSD法)。不同大寫字母表示同一品種不同穗肥處理間在0.05水平上差異顯著(LSD法)。*和**分別表示在0.05和0.01水平上差異顯著,ns表示在0.05水平上差異不顯著。
Within a column, values followed by different lowercase letters indicate significant difference across nitrogen panicle fertilizer and bud-promoting nitrogen fertilizer application for a particular variety at the 0.05 probability level according to the LSD test. Within a column, values followed by different uppercase letters indicate significant difference between different nitrogen panicle fertilizers for a given variety at the 0.05 probability level according to the LSD test. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level.
兩品種在不同處理組合下的再生季產(chǎn)量為5.22~7.43 t/hm2(表2)。方差分析表明,兩品種再生季產(chǎn)量無顯著差異,促芽肥顯著影響再生季產(chǎn)量,且穗肥和促芽肥組合對再生季產(chǎn)量有顯著影響。在6個氮肥處理組合中,豐兩優(yōu)香1號在N1T3處理下再生季產(chǎn)量最高(7.43 t/hm2);頭季低穗肥提高了豐兩優(yōu)香1號再生季產(chǎn)量,且在T3處理下達到顯著水平;在2種穗肥處理下,與T1相比,促芽肥施用處理(T2和T3)導致豐兩優(yōu)香1號再生季產(chǎn)量分別平均提高22.6%和29.7%,有效穗數(shù)分別平均提高42.6%和47.6%,總穎花數(shù)分別平均提高48.7%和54.6%,但粒重分別平均降低3.9%和5.7%。在不同氮肥處理組合中,兩優(yōu)6326在N1T3處理下的再生季產(chǎn)量最高(7.11 t/hm2);頭季穗肥施用量對兩優(yōu)6326再生季產(chǎn)量無顯著影響,但高穗肥下每穗穎花數(shù)和總穎花數(shù)分別顯著提高13.8%和21.8%;在2種穗肥處理下,與T1相比,T2和T3處理導致兩優(yōu)6326再生季產(chǎn)量分別提高22.2%和23.9%,有效穗數(shù)分別提高44.3%和56.5%,總穎花數(shù)分別提高49.5%和67.7%,但結實率和粒重隨著促芽肥施用量增加而降低,在T3處理下達到顯著水平。
表2 豐兩優(yōu)香1號和兩優(yōu)6326的再生季產(chǎn)量及其構成因子
同一列內不同小寫字母表示同一品種不同穗肥和促芽肥處理間差異顯著(LSD法)。不同大寫字母表示同一品種不同穗肥處理間在0.05水平上差異顯著(LSD法)。*和**分別表示在0.05和0.01水平下差異顯著,ns表示在0.05水平下差異不顯著。
Within a column, values followed by different lowercase letters indicate significant difference across nitrogen panicle fertilizer and bud-promoting nitrogen fertilizer application for a particular variety at the 0.05 probability level according to the LSD test. Within a column, values followed by different uppercase letters indicate significant difference between different nitrogen panicle fertilizers for a given variety at the 0.05 probability level according to the LSD test. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level.
頭季穗肥施用量對頭季成熟期地上部干物質積累量無顯著影響,對再生季的影響表現(xiàn)出品種差異(表3)。與N1相比,N2處理對FLYX1再生季地上部干物質積累量沒有影響,而提高了LY6326再生季地上部干物質積累量(9.8%)。頭季高穗肥對頭季收獲指數(shù)和齊穗后干物質積累量無顯著影響,但穗肥與品種互作顯著影響頭季齊穗前干物質轉運量。與N1相比,N2處理對FLYX1齊穗前干物質轉運量無顯著影響,但LY6326齊穗前干物質轉運量提高了55.0%。頭季穗肥施用量對再生季收獲指數(shù)、再生季齊穗前干物質轉運量和齊穗后干物質積累量均無顯著影響(表3)。
同一列內不同小寫字母表示同一品種不同穗肥和促芽肥處理間差異顯著(LSD法)。不同大寫字母表示同一品種不同穗肥處理間在0.05水平上差異顯著(LSD法)。*和**分別表示在0.05和0.01水平下差異顯著,ns表示在0.05水平下差異不顯著。
Within a column, values followed by different lowercase letters indicate significant difference across nitrogen panicle fertilizer and bud-promoting nitrogen fertilizer application for a particular variety at the 0.05 probability level according to the LSD test. Within a column, values followed by different uppercase letters indicate significant difference between different nitrogen panicle fertilizer treatments for a given variety at the 0.05 probability level according to the LSD test. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level.
方差分析表明促芽肥處理顯著影響頭季和再生季地上部干質量積累量和齊穗后干物質積累量,顯著影響頭季收獲指數(shù)和齊穗前干物質轉運量(表3)。在N1處理下,豐兩優(yōu)香1號頭季地上部干物質積累量對促芽肥的響應不顯著;在N2處理下,與N1相比,隨著促芽肥施用量增加而提高,在T3處理下達到顯著水平。在2種穗肥條件下,增施促芽肥對兩優(yōu)6326頭季地上部干物質積累量均無顯著影響。兩個穗肥施處理下,與T1相比,T2和T3處理導致豐兩優(yōu)香1號再生季地上部干物質積累量分別增加34.9%和40.2%,兩優(yōu)6326分別平均增加40.5%和50.4% 。兩個穗肥處理下,兩品種頭季收獲指數(shù)和齊穗前干物質轉運量均隨著促芽肥施用量增加而降低,而再生季未表現(xiàn)出顯著差異。兩個穗肥施處理下,與T1相比,T2和T3處理提高了兩品種頭季和再生季齊穗后干物質積累量,其中豐兩優(yōu)香1號頭季分別平均提高13.2%和14.9%,再生季分別平均提高48.6%和53.2%,兩優(yōu)6326頭季分別提高16.1%和13.9%,再生季分別提高52.2%和63.2%。
頭季穗肥施用量對兩品種不同節(jié)位芽長、活芽數(shù)、芽生長速率和再生力均無顯著影響(表4)。同一穗肥條件下,促芽肥施用顯著影響再生芽芽長、活芽數(shù)、芽生長速率和再生力,總體上兩品種不同節(jié)位芽長隨著促芽肥施用量的增加而增加。兩種穗肥處理下,與T1相比,T3處理導致豐兩優(yōu)香1號倒2、倒3和倒4節(jié)芽長分別提高24.4%、88.2%和2005.9%,單莖芽長、活芽數(shù)、芽生長速率和再生力分別提高106.0%、46.7%、110.0%和50.0%;與T1相比,T3處理導致兩優(yōu)6326倒2、倒3和倒4節(jié)芽長分別提高7.5%、52.1%和451.6%,單莖芽長、活芽數(shù)、芽生長速率和再生力分別提高59.8%、26.3%、62.1%和50.0%。
表4 豐兩優(yōu)香1號和兩優(yōu)6326頭季收獲后4天不同節(jié)位再生芽長、單莖芽長、活芽數(shù)、芽生長速率和再生力
同一列內不同小寫字母表示同一品種不同穗肥和促芽肥處理間差異顯著(LSD法)。不同大寫字母表示同一品種不同穗肥處理間在0.05水平上差異顯著(LSD法)。*和**分別表示在0.05和0.01水平下差異顯著,ns表示在0.05水平下差異不顯著。
Within a column, values followed by different lowercase letters indicate significant difference across nitrogen panicle fertilizer and bud-promoting nitrogen fertilizer application for a particular variety at the 0.05 probability level according to the LSD test. Within a column, values followed by different uppercase letters indicate significant difference between different nitrogen panicle fertilizer treatments for a given variety at the 0.05 probability level according to the LSD test. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level.
單莖芽長、活芽數(shù)和芽生長速率與頭季齊穗后干物質積累量呈顯著正相關(表5),與頭季收獲指數(shù)和頭季齊穗前莖鞘干物質轉運量呈顯著負相關;再生力和再生季產(chǎn)量分別與頭季收獲指數(shù)、頭季齊穗前莖鞘干物質轉運量呈顯著負相關,與頭季齊穗后莖鞘干物質積累量顯著正相關,與單莖芽長、活芽數(shù)及芽生長速率呈顯著正相關;再生季產(chǎn)量與再生力呈顯著正相關。
表5 頭季干物質積累轉運與再生季芽長、再生力和再生季間的相關性
*、**和***分別表示在0.05、0.01和0.001水平上差異顯著(=12)。
*, ** and *** indicate significant difference at the 0.05, 0.01 and 0.001 probability level(=12).
再生稻的再生芽生長主要依賴于稻樁所貯藏的同化物,頭季齊穗后較高的干物質積累量和齊穗前較低的莖鞘干物質轉運量和收獲指數(shù)均有利于營養(yǎng)物質儲存在稻樁中,促進再生芽生長[8, 29]。本研究發(fā)現(xiàn)芽長、活芽數(shù)和芽生長速率與頭季齊穗后干物質積累量呈顯著正相關,與頭季收獲指數(shù)和齊穗前干物質轉運量顯著負相關(表5),這一結果與前人研究一致[8]。這些結果表明稻樁同化物殘留量對再生季生長發(fā)育起著重要作用。
氮素施用量影響再生芽生長,提高頭季穗肥施用量或施用比例可以增加芽長和活芽數(shù)[14];然而,也有研究認為再生芽生長不受頭季穗肥施用量的影響[26]。本研究也表明頭季高穗肥處理對不同節(jié)位芽長、活芽數(shù)和芽生長速率均無顯著影響(表4)。因此,頭季穗肥管理對再生芽生長發(fā)育的影響可能與品種、種植條件有關,需進一步明確。
頭季適當增加穗肥施用量可提高再生力,再生力與再生芽長呈顯著正相關[14]。本研究也觀察到再生力與芽長、芽生長速率均呈顯著正相關(表5)。Zhang等[14]發(fā)現(xiàn)頭季提高穗肥施用量增加了活芽數(shù),但再生力與單莖活芽數(shù)不相關;然而,本研究表明頭季增施穗肥對再生力無顯著影響,再生力與活芽數(shù)呈顯著正相關(表4和表5)。因此,頭季穗肥、活芽數(shù)、再生力三者的關系可能因品種、施肥量和栽培條件而異。另外,本研究發(fā)現(xiàn)再生力與頭季收獲指數(shù)、頭季齊穗前干物質轉運量呈負相關(表5),再生季產(chǎn)量與芽長、活芽數(shù)、芽生長速率和再生力均呈顯著正相關(表5),與前人研究一致[26, 28]。這些結果表明頭季莖鞘充足的同化物供應有利于再生芽生長,提高再生力和產(chǎn)量。
再生季產(chǎn)量形成的同化物主要來源于再生季齊穗前的干物質轉運量和齊穗后的干物質積累量[27],頭季適當增加孕穗期氮肥施用比例可促進再生季干物質積累,提高再生季產(chǎn)量[15]。本研究發(fā)現(xiàn)頭季增施穗肥對再生季齊穗前干物質轉運量和齊穗后干物質積累量均無顯著影響(表3),不同頭季穗肥處理間再生季有效穗數(shù)和再生力也沒有差異,因而對再生季產(chǎn)量沒有影響(表2和表4)。另外,本研究發(fā)現(xiàn)高穗肥增加了兩優(yōu)6326頭季齊穗前干物質轉運量(表3),而頭季齊穗前干物質轉運量與再生力、再生季產(chǎn)量呈顯著負相關(表5)。由此看來,頭季穗肥施用量對再生季產(chǎn)量的影響因品種、栽培管理而異,也表明充足的莖鞘同化物供應有利于提高再生力和產(chǎn)量。
本研究表明促芽肥施用顯著促進再生芽生長和提高再生力(表4),顯著降低頭季干物質轉運量和收獲指數(shù)(表3);其原因可能是施用促芽肥可以提高頭季稻葉片光合速率,葉片向穗部輸送的同化物增加,相對減少莖鞘貯藏同化物向穗部轉運量,從而為再生芽萌發(fā)提供物質基礎[22]。劉愛中等[30]發(fā)現(xiàn)稻樁中52%~70%的同化物轉運到再生植株,且主要分配在倒2和倒3節(jié)位的再生芽。本研究發(fā)現(xiàn),施用促芽肥顯著提高不同節(jié)位芽長,且對低節(jié)位芽效果更顯著(表4)。此外,本研究也發(fā)現(xiàn)施用促芽肥顯著增加了兩個品種的再生力(表4),也觀察到頭季收獲指數(shù)、齊穗前干物質轉運量與再生力、再生季產(chǎn)量呈現(xiàn)顯著負相關(表5)。黃素華等[31]認為低節(jié)位莖稈養(yǎng)分對提高再生力有關鍵作用。因此,施用促芽肥可減少頭季莖鞘干物質向穗部運輸,促進了再生芽生長,從而提高再生力。
本研究發(fā)現(xiàn)增施促芽肥對頭季產(chǎn)量沒有影響,但顯著提高再生季產(chǎn)量(表1~2),主要原因是增加了單位面積有效穗數(shù)(表2)和再生力(表4),這與前人研究一致[16]。因此,促芽肥的增產(chǎn)效應是通過促進再生芽生長和提高再生力來實現(xiàn)的。王月超[27]發(fā)現(xiàn)促芽肥施用增產(chǎn)主要歸因于齊穗前干物質轉運量和齊穗后干物質積累量兩者的同步提高。本研究發(fā)現(xiàn)促芽肥施用降低了再生季齊穗前干物質轉運量(不顯著),但顯著增加齊穗后干物質積累量(表3)。這些結果表明,施用促芽肥可以在頭季收獲后促進再生芽萌發(fā)成穗的同時提高再生季群體齊穗后干物質積累能力,從而獲得再生季高產(chǎn)。
本研究表明,再生芽生長(芽長和生長速率)表現(xiàn)出品種特異性,同時受促芽肥的影響。盡管頭季穗肥和促芽肥的交互作用對再生芽長、活芽數(shù)和再生力均無顯著影響(表4);然而,頭季穗肥和促芽肥對再生季產(chǎn)量有顯著交互作用(表2)。豐兩優(yōu)香1號頭季產(chǎn)量不受穗肥施用量的影響,同一穗肥處理下不受促芽肥的影響;高穗肥提高了兩優(yōu)6326頭季產(chǎn)量,也不受促芽肥施用量影響(表1);本研究中促芽肥的施用顯著提高了品種再生季產(chǎn)量,然而高的促芽肥并沒有進一步提高再生季產(chǎn)量(表2)。從再生季產(chǎn)量和周年產(chǎn)量來看,本研究中豐兩優(yōu)香1號最優(yōu)施氮處理為N1T3(周年產(chǎn)量達到14.46 t/hm2),即低頭季穗肥和高促芽肥;兩優(yōu)6326最優(yōu)施氮處理為N2T2(周年產(chǎn)量可達14.44 t/hm2),即高穗肥高促芽肥。這表明再生稻周年高產(chǎn)對穗肥和促芽肥的需求表現(xiàn)出品種特異性。
豐兩優(yōu)香1號和兩優(yōu)6326需肥性強,常通過增加施氮量來獲得兩季高產(chǎn)。Yang等[17]發(fā)現(xiàn)頭季和再生季施氮量分別為180 kg/hm2和150 kg/hm2時,豐兩優(yōu)香1號的周年產(chǎn)量達到15 t/hm2左右,與本研究基本持平。Wang等[16]研究表明,在頭季和再生季施氮量均為200 kg/hm2條件下,其中頭季穗肥和促芽肥施氮量分別達到60 kg/hm2和100 kg/hm2,兩優(yōu)6326的周年產(chǎn)量為13.68 t/hm2,低于本研究的產(chǎn)量水平。本研究觀察到不同品種產(chǎn)量對穗肥施用量的響應不同(表1),促芽肥施用量過高(T3)對再生季產(chǎn)量沒有顯著提升作用(表2);Zhang等[14]也發(fā)現(xiàn)頭季穗肥施用量過高不利于兩優(yōu)6326再生稻產(chǎn)量形成。另外,頭季穗肥施用量對產(chǎn)量的影響可能與土壤肥力有關[32]。因此,在實際生產(chǎn)中,應針對不同水稻品種的需肥特性和土壤肥力水平,合理運籌頭季穗肥和促芽肥施用量,從而獲得周年高產(chǎn)。
再生稻頭季高穗肥施用量對豐兩優(yōu)香1號頭季產(chǎn)量無顯著影響,顯著提高兩優(yōu)6326頭季產(chǎn)量,對兩品種再生力和再生季產(chǎn)量無顯著影響。促芽肥施用通過增加頭季莖鞘齊穗后干物質積累量來促進再生芽生長、再生季干物質積累能力與成穗,從而提高再生力和再生季產(chǎn)量。促芽肥施用可提高再生季產(chǎn)量,但過高的施用量并沒有進一步提高產(chǎn)量。豐兩優(yōu)香1號在低頭季穗肥和高促芽肥下可實現(xiàn)周年高產(chǎn),而兩優(yōu)6326在高穗肥高促芽肥下周年高產(chǎn);因此,應根據(jù)品種需肥特性,合理施用頭季穗肥和促芽肥以實現(xiàn)高的再生稻產(chǎn)量。
[1] 彭少兵. 對轉型時期水稻生產(chǎn)的戰(zhàn)略思考[J]. 中國科學: 生命科學, 2014, 44(8): 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period[J]., 2014, 44(8): 845-850. (in Chinese with English abstract)
[2] Shen X, Zhang L, Zhang J B. Ratoon rice production in central China: Environmental sustainability and food production[J]., 2020, 764(22): 142850.
[3] Lin W X. Developmental status and problems of rice ratooning[J]., 2019, 18(1): 246-247.
[4] Yu X, Tao X, Liao J, Liu S C, Xu L, Yuan S, Zhang Z L, Wang F, Deng N Y, Huang J L, Peng S B. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model[J]., 2022, 275: 108372.
[5] Oad F C, Sama M A, Oad N L, Chandio G Q, Cruz P S. Relationship of physiological, growth and yield contributing parameters of locklodged rice ratoon crop[J]., 2002, 2(4): 429-432.
[6] Wang Y, Li J. The plant architecture of rice () [J]., 2005, 59(1): 75-84.
[7] 汪浩, 張強, 張文地, 李思宇, 黃健, 朱安, 劉立軍. 腋芽萌發(fā)能力對再生稻產(chǎn)量影響的研究進展[J]. 中國水稻科學, 2020, 34(3): 205-216.
Wang H, Zhang Q, Zhang W D, Li S Y, Huang J, Zhu A, Liu L J. Advance in the effects of the ability of axillary bud germination on grain yield in ratoon rice[J]., 2020, 34(3): 205-216. (in Chinese with English abstract)
[8] Zhang Q, Liu X C, Yu G L, Wang H, Feng D Q, Zhao H Y, Liu L J. Agronomic and physiological characteristics of high-yielding ratoon rice varieties[J]., 2021, 115(6): 5063-5075.
[9] Petroudi E R, Noormohammadi G, Mirhadi M J, Madani H, Mobasser H R. Effects of nitrogen fertilization and rice harvest height on agronomic yield indices of ratoon rice-berseem clover intercropping system[J]., 2011, 5(5): 566-574.
[10] Nakana H, Morita S. Effects of twice harvesting on total dry matter yield of rice[J]., 2007, 101(3): 269-275.
[11] 王飛, 黃見良, 彭少兵. 機收再生稻豐產(chǎn)優(yōu)質高效栽培技術研究進展[J]. 中國稻米, 2021, 27(1): 1-6.
Wang F, Huang J L, Peng S B. Research and development of mechanized rice ratooning technology in China[J]., 2021, 27(1): 1-6. (in Chinese with English abstract)
[12] Bahar F, De Datta S. Prospects of increasing tropical rice production through ratooning[J]., 1977, 69(4): 536-540.
[13] Wang Y C, Li X F, Tarpley L, Peng S B, Dou F G. Effects of nitrogen management on the ratoon crop yield and head rice yield in South USA[J]., 2021, 20(6): 1457-1464.
[14] Zhang Q, Liu X C, Yu G L, Duan B, Wang H, Zhao H Y, Feng D Q, Gu M X, Liu L J. Reasonablenitrogen regime in the main crop increased grain yields in both main and ratoon rice[J]., 2022, 12(4): 1-20.
[15] Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Khan M U, Lin W X. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China[J]., 2022, 21(2): 351-364.
[16] Wang Y C, Zheng C, Xiao S, Sun Y T, Huang J L, Peng S B. Agronomic responses of ratoon rice to nitrogen management in central China[J]., 2019, 241: 107569.
[17] Yang D S, Peng S B, Zheng C, Xiang H S, Huang J L, Cui K H. Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China[J]., 2021, 272: 108286.
[18] 孫曉輝, 田彥華, 任天舉. 促芽肥對雜交稻培育再生稻效果研究[J]. 四川農(nóng)業(yè)科技, 1982, 3(1): 1-4.
Sun X H, Tian Y H, Ren T J. Study on the effect of bud-promoting fertilizer on breeding ratoon rice from hybrid rice[J]., 1982, 3(1): 1-4. (in Chinese)
[19] 徐富賢, 熊洪, 趙甘霖, 洪松. 雜交中稻收割前再生芽死亡機理及其調節(jié)[J]. 中國農(nóng)業(yè)科學, 2000, 33(4): 31-37.
Xu F X, Xiong H, Zhao G L, Hong S. A study on the death mechanism of the axillary buds before harvest of the hybrid mid season rice and its improvement[J]., 2000, 33(4): 31-37. (in Chinese with English abstract)
[20] 徐富賢, 方文, 熊洪, 江世華, 羅文質, 張景國. 施氮與雜交中稻再生力關系研究[J]. 雜交水稻, 1993, 4(2): 25-28.
Xu F X, Fang W, Xiong H, Jiang S H, Luo W Z, Zhang J G. A study on relationship between N application and ratooning ability of medium hybrid rice[J]., 1993, 4(2): 25-28. (in Chinese with English abstract)
[21] 林文雄, 陳鴻飛, 張志興, 徐倩華, 屠乃美, 方長旬, 任萬軍. 再生稻產(chǎn)量形成的生理生態(tài)特性與關鍵栽培技術的研究與展望[J]. 中國生態(tài)農(nóng)業(yè)學報, 2015, 23(4): 392-401.
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology[J]., 2015, 23(4): 392-401. (in Chinese with English abstract)
[22] 徐富賢, 熊洪, 張林, 朱永川, 蔣鵬, 郭曉藝, 劉茂. 再生稻產(chǎn)量形成特點與關鍵調控技術研究進展[J]. 中國農(nóng)業(yè)科學, 2015, 48(9): 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]., 2015, 48(9): 1702-1717. (in Chinese with English abstract)
[23] Turner F T, Fund M F. Rice ratoon crop yield linked to main crop stem carbohydrates[J]., 1993, 33(1): 150-153.
[24] 徐富賢, 熊洪, 洪松. 雜交中稻抽穗后再生芽生長與頭季稻莖鞘物質積累的關系[J]. 中國水稻科學, 1997, 11(3): 160-164.
Xu F X, Xiong H, Hong S. Relationship between axillary bud growth and matter accumulation of stem-sheath after heading of main crop in hybrid rice[J]., 1997, 11(3): 160-164. (in Chinese with English abstract)
[25] Zhang Y M, Ding Y F, Liu Z H, Wang S H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice[J]., 2010, 9(11): 1630-1640.
[26] 王新飛. 不同氮肥運籌對再生稻再生芽及氮素利用特征的影響[D]. 武漢: 華中農(nóng)業(yè)大學, 2018.
Wang X F. Effects of different nitrogen managements on bud growth and nitrogen utilization characteristics in ratoon rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
[27] 王月超. 氮肥管理對再生稻產(chǎn)量形成的影響及其機理研究[D]. 武漢: 華中農(nóng)業(yè)大學, 2019.
Wang Y C. Effects of nitrogen management on yield formation of ratoon rice and the related mechanism[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
[28] He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L. Source-sink regulation and its effects on the regeneration ability of ratoon rice[J]., 2019, 236: 155-164.
[29] Xu F X, Zhang L, Zhou X B, Guo X Y, Zhu Y C, Mao L, Xiong H, Jiang P. The ratoon rice system with high yield and high efficiency in China: Progress, trend of theory and technology[J]., 2021, 272(71-75): 108282.
[30] 劉愛中, 張勝文, 屠乃美. 稻樁貯藏同化產(chǎn)物的分配與再生稻腋芽再生率及產(chǎn)量構成的關系[J]. 華北農(nóng)學報, 2008, 23(3):190-193.
Liu A Z, Zhang S W, Tu N M. The Relationship between distribution of assimilation production stored in stubble and ratooning rate of axillary buds and yield characteristics of ratooning rice[J]., 2008, 23(3): 190-193. (in Chinese with English abstract)
[31] 黃素華, 林席躍, 雷正平, 丁在松, 趙明. 強再生力水稻品種碳氮營養(yǎng)與激素生理特征研究 [J]. 作物學報, 2021, 47(11): 2278-2289.
Huang S H, Lin X Y, Lei Z P, Ding Z S, Zhao M. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability[J]., 2021, 47(11): 2278-2289. (in Chinese with English abstract)
[32] Ye C, Ma H Y, Huang X, Xu C M, Chen S, Chu G, Zhang X F, Wang D Y. Effects of increasing panicle-stage N on yield and N use efficiency of indica rice and its relationship with soil fertility[J]., 2022, 10(6): 1784-1797.
Effects of Panicle and Bud-promoting Nitrogen Fertilizer Application on Growth of Regenerated Bud and Grain Yield of Ratoon Rice
GAO Qianqing1, REN Xiaojian1, ZHAI Zhongbing2, ZHENG Pubing3, WU Yuanfen1, CUI Kehui1,*
(National Key Laboratory of Crop Genetic Improvement/ Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuxue Agro-Technology Extension Service Center, Wuxue 435499, China; Honghu Agro-Technology Extension Service Center, Honghu 433200, China; Corresponding author, email:)
【Objective】This experiment was carried out with the aim to investigate the effects of different nitrogen (N) managements on the growth of regenerated buds, dry matter accumulation and allocation and yield formation of ratoon rice.【Method】The experiment was conducted in a split-split plot design with three replications. The varieties, Fengliangyouxiang 1(FLYX1) and Liangyou 6326 (LY6326), were designed as main plots, the two panicle nitrogen topdressing rates as sub-plots (N1, 30 kg/hm2as low level; N2, 60 kg/hm2as high level), and three nitrogen application rates of bud-promoting fertilizer as sub-sub plots (T1, T2, and T3were 0, 50 and 100 kg/hm2) under field conditions. The growth of regenerated bud, dry matter accumulation and allocation, aboveground biomass, grain yield and yield components of both varieties were measured.【Result】The results showed that the high N fertilizer rate had no significant effect on main crop yield of FLYX1, but significantly increased the main crop yield of LY6326, and had no significant effect on ratooning ability and ratoon yield of both varieties. The application of bud-promoting nitrogen fertilizer significantly decreased dry matter translocation of stems and sheaths pre-full heading and harvest index in the main season, and increased dry matter accumulation post-full heading in the ratoon season, resulting in the high grain yield of ratoon rice via increasing the regenerated bud lengths at different nodes, the number of surviving buds and the ratooning ability. Besides, there were interaction effects between panicle nitrogen fertilizer application and bud-promoting nitrogen fertilizer application on ratoon rice yield. The highest annual production of FLYX1 and LY 6326 were 14.46 under the N1T3treatment and 14.44 t/hm2under the N2T2treatment. The regenerated bud length, survival number of buds, and bud growth rate were positively and significantly correlated with the post-full heading dry weight accumulation in the main crop, and negatively and significantly with the translocation of pre-full heading dry weight and harvest index of the main crop; the ratooning ability and ratoon rice yield were positively and significantly correlated with the regenerated bud length, survival number of buds, and bud growth rate.【Conclusion】 High panicle nitrogen fertilizer application rate in the main crop had no significant effect on ratoon yield of both varieties, the application of bud-promoting nitrogen fertilizer enhanced regenerated bud growth, ratooning ability and ratoon yield, and the interaction between panicle and bud-promoting fertilizers significantly affected ratoon yield. Our results showed that bud-promoting fertilizer application increased ratooning ability and ratoon yield mainly via enhancing stem dry matter accumulation in main season and ratoon season, prompting bud growth and panicle formation of ratoon rice. However, more application rate did not further increased ratoon yield. The combination of low panicle nitrogen fertilizer rate and high bud-promoting nitrogen fertilizer and the combination between high panicle nitrogen fertilizer and high bud-promoting nitrogen fertilizer were advantageous to high annual grain yield in FLYX1 and LY6326, respectively. The results suggest that optical application rates of panicle and bud-promoting nitrogen fertilizers is beneficial for high grain yield of ratoon rice.
ratoon rice; regenerated bud; panicle nitrogen fertilizer and bud-promoting fertilizer; dry matter accumulation and allocation; grain yield
10.16819/j.1001-7216.2023.221002
2022-10-10;
2023-01-16。
湖北省科技廳重點研發(fā)計劃資助項目(2021BBA222)。