佘明華 徐瑞東 韋繼超 田明偉 曲麗君 陳韶娟
摘要: 觸覺傳感器是智能可穿戴設(shè)備和人機交互領(lǐng)域的重要研究方向,引起了人們廣泛的關(guān)注。傳統(tǒng)剛性材料的觸覺傳感器普遍存在堅硬且不適合穿戴交互等瓶頸問題,限制了其在可穿戴領(lǐng)域的應(yīng)用。紡織基柔性觸覺傳感器由于其高靈敏性、柔軟性和可穿戴性成為觸覺傳感材料的首選。本文綜述了幾類紡織基柔性觸覺傳感器的原理和應(yīng)用,包括電阻式、電容式、壓電式和摩擦電式。結(jié)果表明:紡織基柔性觸覺傳感器由于其特殊的紡織結(jié)構(gòu),有優(yōu)異的線性度、靈敏度、耐久性和穩(wěn)定性。高靈敏性、耐久性和可穿戴性是紡織基柔性觸覺傳感器的優(yōu)勢和重要發(fā)展方向。
關(guān)鍵詞: 紡織結(jié)構(gòu);紡織材料;柔性傳感器;觸覺傳感器;人機交互;可穿戴應(yīng)用
中圖分類號: TS101.3
文獻標(biāo)志碼: A
文章編號: 1001-7003(2023)03-0060-13
引用頁碼:
031109
DOI: 10.3969/j.issn.1001-7003.2023.03.009(篇序)
觸覺傳感是仿生人體觸覺感知結(jié)構(gòu)的一種傳感功能。人體皮膚能夠通過與外界條件和環(huán)境發(fā)生接觸或互動,由神經(jīng)元將信號傳輸?shù)酱竽X感知再做出反饋響應(yīng),不同的接觸信號,人體能夠識別并作出相應(yīng)的反饋行為[1]。為了模擬人體這種感應(yīng)能力,研究人員提出將觸覺信號轉(zhuǎn)換成電信號來感知和量化,由計算機儀器等處理并響應(yīng),形成觸覺傳感的人機交互功能[2-3]。在生活中,人們常利用觸覺傳感來使用智能手機和可視化觸摸顯示屏等,但是這些電子設(shè)備由于材料的限制,過于堅硬、笨重和不靈活,在智能可穿戴設(shè)備中不適合廣泛應(yīng)用[4-5]。隨著納米材料和技術(shù)的發(fā)展,柔性觸覺傳感器[6-7]因為其柔軟性、靈敏性和耐久性受到越來越多的關(guān)注,在醫(yī)療健康[8-10]、運動檢測[11-12]和智能可穿戴領(lǐng)域[13-14]有著廣泛的應(yīng)用前景。
柔性觸覺傳感器結(jié)合了本征柔性、輕質(zhì)、多功能、成本低等優(yōu)點,能夠表現(xiàn)出高靈敏性、可拉伸性、超共形性和大面積制造等特性[15]。傳統(tǒng)的無機電子材料由于其剛性特性可能無法滿足高機械柔順性的要求,具有高機械柔順性、可拉伸性、良好導(dǎo)電性能和大面積加工能力的材料是制造高性能柔性觸覺傳感器的關(guān)鍵[16]。柔性傳感器通常是由多個部件組成,包括活性材料、導(dǎo)體和柔性基板的選擇或合成[17]。碳納米管(CNT)、石墨烯、MXenes、導(dǎo)電聚合物、金屬和半導(dǎo)體納米線已被廣泛用作觸覺傳感器的活性材料[16]。聚二甲基硅氧烷(PDMS)、聚酰亞胺(PI)、水凝膠、聚醚醚酮、聚醚砜(PES)、聚碳酸酯、聚萘二甲酸乙二醇酯(PEN)和聚酯樹脂(PET)在內(nèi)的各種柔性基板是柔性傳感器的理想材料[18]。Lipomi等[19]利用可拉伸透明、導(dǎo)電的單壁碳納米管(CNT)噴涂沉積薄膜代替金屬作為電極材料,并成功展示了一種柔性、可拉伸且高度透明的觸覺傳感器陣列。在各種新型材料和結(jié)構(gòu)設(shè)計下,柔性壓力傳感器的傳感性能得到了極大提升。但是這些柔性基材通常被設(shè)計成條、膜和塊等形狀,雖然有著高柔軟性和高靈敏性,但在智能可穿戴領(lǐng)域中,這些柔性傳感器并不適合穿戴,存在透氣性差、結(jié)構(gòu)復(fù)雜和耐久性差的問題。
紡織基柔性觸摸傳感器是柔性傳感器的新發(fā)展方向,首先由于其特殊的紡織結(jié)構(gòu)可與服裝無縫連接,實現(xiàn)設(shè)計—穿著—應(yīng)用一體化[20];其次在紡織不同階段能夠開發(fā)不同維度結(jié)構(gòu)的傳感器[21-22],有一維的纖維狀[23-24]和紗線狀[25]傳感器、二維的織物狀[26]傳感器和三維的服裝紡織品[27]。在不同維度上的傳感應(yīng)用范圍不同,與基于纖維/紗線傳感器的低響應(yīng)、高靈敏相比,織物/紡織品的傳感器有更大的傳感面積和更理想的陣列設(shè)計。更重要的是,通過將傳感與紡織結(jié)合的可穿戴設(shè)備有著優(yōu)秀的傳感性能和舒適性,能夠廣泛運用在醫(yī)療保健[28]、運動檢測[26]和休閑娛樂[29]等領(lǐng)域。
本文綜述了近年來紡織基觸覺傳感器的最新進展。首先根據(jù)工作原理分類介紹了紡織基柔性觸覺傳感器的原理和研究進展,包括電阻式、電容式、壓電式和摩擦電式。然后,分析了這些紡織基柔性觸覺傳感器在不同領(lǐng)域的實際應(yīng)用。最后,討論總結(jié)了紡織基柔性觸覺傳感器所面臨的挑戰(zhàn)和未來的應(yīng)用前景。
1 紡織基柔性觸覺傳感器分類
1.1 紡織基柔性電阻式觸覺傳感器
紡織基柔性電阻式觸覺傳感器將觸覺刺激力的變化轉(zhuǎn)換為電阻的變化,由于其簡單的結(jié)構(gòu)設(shè)計和測量方法而被廣泛使用。最常見的方法包括改變導(dǎo)電材料之間的接觸電阻和改變導(dǎo)電彈性復(fù)合材料中的導(dǎo)電路徑[30-32]。電阻式觸覺傳感器一般由兩個相對電極和夾在中間的導(dǎo)電活性材料組成。當(dāng)施加觸摸壓力時,中間層的導(dǎo)電材料相互接觸或電極與中間層接觸面積增加,使電阻降低發(fā)出明顯的信號變化。
紡織基柔性電阻式觸覺傳感器結(jié)構(gòu)簡單,能夠很好地實現(xiàn)高性能和低成本。Pizarro等[33]介紹了一種由低成本的常規(guī)抗靜電片和導(dǎo)電機織織物制成的易于構(gòu)建的紡織品壓力傳感器,在1~70 kPa內(nèi)表現(xiàn)出穩(wěn)定的線性特性,在不持續(xù)施加8 kPa壓力之間的平均恢復(fù)時間為1 s,電阻變化為標(biāo)準(zhǔn)值的90%。Deng等[34]通過芯鞘纖維中的螺旋膨脹結(jié)構(gòu)克服了彎曲對觸覺壓力干擾的觸覺傳感紡織品(TST)。如圖1(a)所示,TST以納米管(CNT)/聚氨酯(PU)作為鞘極,銅/形狀記憶聚合物(SMP)作為芯電極,通過加熱芯電極以進行線性收縮并產(chǎn)生螺旋膨脹結(jié)構(gòu),除了彎曲獨立的特性外,一維光纖還能夠識別軸向上的觸摸位置,從而提高空間分辨率的可靠性。
由于靈敏度和線性檢測范圍之間會相互制約,在寬壓力范圍內(nèi)具有高靈敏度的紡織基柔性觸覺傳感器的開發(fā)仍然是一項重大挑戰(zhàn),Pyo等[35]第一次實現(xiàn)了同時超過1 kPa-1的靈敏度和寬壓力范圍內(nèi)(>500 kPa)的紡織基柔性觸覺/壓力傳感器。它是一種由碳納米管(CNT)和鎳涂層織物組成的高靈敏度、柔性電阻式觸覺傳感器。如圖1(b)所示,該柔性織物傳感器的層次和幾何結(jié)構(gòu),全織物傳感器在較寬的壓力(0.2~982.0 kPa)內(nèi)具有高靈敏度(26.13 kPa-1)的壓力傳感性能。
Zhou等[36]制備了具有銀漿絲網(wǎng)印刷的底部交叉指狀紡織電極和AgNW涂層棉織物的頂部橋結(jié)構(gòu)的大面積觸覺壓力傳感器,如圖1(c)所示,傳感器的組成和電路原理實現(xiàn)了在較寬壓力范圍內(nèi)的超靈敏度,從而實現(xiàn)快速響應(yīng)和低檢測限。Lai等[37]也通過印刷叉指紡織電極和AgNW涂層棉織物設(shè)計了基于全紡織基壓阻式觸覺傳感器,可以檢測手腕的彎曲信號并運用在可穿戴控制器上。由于棉織物的大表面粗糙度使其在初始狀態(tài)下處于絕緣狀態(tài),施加壓力后,由于AgNW涂層棉織物和底部叉指紡織電極的接觸面積增大,該設(shè)備立即置于高導(dǎo)通狀態(tài)。實驗結(jié)果表明,壓阻式觸覺傳感器性能優(yōu)良,當(dāng)壓阻層的薄層電阻從1.51 Ω/sq變?yōu)?.09 Ω/sq時,靈敏度為2.56×104~4.42×106 Pa-1。
Lian等[38]提出了一種簡便的方法,用集成的銀納米線涂覆的織物來制造基于全紡織品的壓阻式觸覺傳感器,充分利用了纖維/紗線/織物多級觸點的協(xié)同效應(yīng),在0~10 kPa的壓力內(nèi)靈敏度達到3.24×105 kPa-1,并且在10~100 kPa的壓力內(nèi)靈敏度達到2.16×104 kPa-1,實現(xiàn)了快速的響應(yīng)/松弛時間(32/24 ms)和高穩(wěn)定性。相比于高性能和耐久性好,可水洗性和可大面積制造也很重要,Honda等[39]使用紡織片和導(dǎo)電銀線作為傳感器,通過使用非導(dǎo)電標(biāo)準(zhǔn)線縫合,用銀線將棉網(wǎng)隔板夾在兩塊紡織片之間。如果在傳感器上沒有施加足夠的觸覺力,頂部和底部板上的Ag線電極由于它們之間的網(wǎng)狀墊片而不會接觸。一旦施加足夠的力,Ag線電極就會由于柔軟的紡織材料而電連接,電阻降低,成本減少,而且該部分能夠大面積制造和多次水洗。綜上所述,紡織基柔性電阻式觸覺傳感器存在能耗高、回復(fù)性差的問題,這是由于中間層導(dǎo)電材料的屈曲或納米材料和聚合物基板之間的界面滑動,導(dǎo)電路徑在變形后不能完全恢復(fù)。未來的發(fā)展方向是設(shè)計電阻變化不依賴于納米材料之間導(dǎo)電網(wǎng)絡(luò)變形的材料或者創(chuàng)建額外的自由空間孔隙,讓電阻的變化是由材料中孔隙的閉合引起,而不是由彈性體中聚合物鏈的相對運動來提高傳感器的響應(yīng)速度。
1.2 紡織基柔性電容式觸覺傳感器
紡織基柔性電容式觸覺傳感器將觸覺刺激轉(zhuǎn)換成電容變化,通常由兩個平行板電極和夾在中間的介電層組成。平行板電容器的電容表達式為:
C=ε0εrA/d(1)
式中:ε0是真空介電常數(shù),εr是板間介電層的相對介電常數(shù),A和d分別是兩個電極之間的面積和距離。
通過利用由A、d或εr在壓力下的變化引起的電容變化,從而可以感應(yīng)到觸摸信號。自電容和互電容是電容式觸控面板中廣泛使用的兩種技術(shù)。自電容是一個電極塊相對地之間的電容,是導(dǎo)體自身有儲存電荷的能力,當(dāng)另一個導(dǎo)體或手指來觸摸時會使電容增加;互電容是兩個感應(yīng)電極塊之間形成的耦合電容,可以通過非導(dǎo)體觸摸,而當(dāng)導(dǎo)體或手指觸摸時,從發(fā)射感應(yīng)塊到接收感應(yīng)塊的電場或電場線中的部分轉(zhuǎn)移到了手指上,這兩個感應(yīng)塊之間的場強的減弱或電場線的減少使電容減少。電容式觸覺傳感器有著高靈敏和低功耗的優(yōu)點,但是也容易受到外界環(huán)境電磁場的干擾,需要做好封裝設(shè)計。
將導(dǎo)電纖維作為電極,電極外圍包裹彈性材料作為介電層是常見的纖維狀傳感器的結(jié)構(gòu)設(shè)計,高導(dǎo)電性的纖維是傳感器的關(guān)鍵。Lee等[40]通過在聚對苯二甲酰胺(Kevlar)纖維表面涂覆聚苯乙烯-嵌段-丁二烯-苯乙烯(SBS)聚合物,然后將大量銀(Ag)離子轉(zhuǎn)化為銀納米顆粒直接存在于SBS聚合物中,得到的導(dǎo)電纖維具有0.15 Ω/cm的優(yōu)異電性能。如圖2(a)所示,在導(dǎo)電纖維表面涂覆聚二甲基硅氧烷(PDMS)作為介電層,并將兩根涂有PDMS的纖維相互垂直堆疊,成功地制造了紡織基柔性電容式觸覺傳感器。該傳感器還能通過編織方法以織物的形式像素化為矩陣型壓力傳感器,并嵌入手套和衣服中來無線控制機器。
以紡織技術(shù)來構(gòu)造傳感器能大大提高其性能,如You等[41]通過靜電紡納米纖維涂層在鍍鎳棉紗上形成包芯紗結(jié)構(gòu),將包芯紗螺旋纏繞在彈力線表面形成彈性復(fù)合紗。如圖2(b)所示,在包芯紗的結(jié)構(gòu)組合中,芯層鍍鎳棉紗是電極,涂覆的納米纖維層是介電層,將兩個復(fù)合紗相互垂直堆疊形成電容式傳感單元,具有高靈敏和可拉伸性。純紡織基無其他基材組合的電容式應(yīng)變傳感器是當(dāng)下研究熱點,Zhang等[42]提出了一種有效的電容式傳感器,其組件僅由具有紡織線狀形態(tài)的纖維組成,即不需要集成復(fù)雜化的固體聚合物基質(zhì),并且可以直接編織到衣服、繃帶和其他產(chǎn)品的織物中。它是通過將兩根包芯紗捻成細雙股紗而制成的,而包芯紗是用棉纖維包裹鍍銀尼龍纖維,然后用聚氨酯固定而成的,顯示出優(yōu)異的電容線性度,在10 000次耐久性測試循環(huán)中具有高介電穩(wěn)定性。馬玉龍等[43]通過設(shè)計芯鞘紗和間隔織物的復(fù)合織物結(jié)構(gòu),如圖2(c)所示,實現(xiàn)了具有雙重觸覺和張力刺激響應(yīng)的“多合一”電子織物,基于織物的傳感技術(shù)可精確監(jiān)控跆拳道的動作和形式。
傳感器陣列單元的數(shù)量會隨著所需面積的增加而增多,能夠大面積制造的高性能電容傳感器是非常重要的。Takamatsu等[44]開發(fā)了米級的大面積紡織基柔性電容式觸覺傳感器,使用導(dǎo)電聚合物來覆膜涂層,并使用米級的自動織機合成纖維。在織物壓力傳感器中,將兩種具有導(dǎo)電聚合物涂層纖維條紋電極的織物垂直堆疊,測量施加壓力時頂部和底部條紋電極之間的電容變化。傳感器可以通過測量人手指和纖維之間的表面電容來檢測人的觸摸。觸摸輸入下的電容變化值為1.0~2.0 pF,這足以用傳統(tǒng)的電容測量電路進行檢測。綜上所述,紡織基柔性電容式觸覺傳感器存在的問題是如何提高靈敏度,靈敏度主要取決于介電材料的變形,為了實現(xiàn)高靈敏可以通過增加孔隙或增加介電常數(shù)來設(shè)計介電材料。未來的研究方向可以用多孔的高介電常數(shù)材料或?qū)щ娂{米材料涂覆的彈性體作為高介電常數(shù)復(fù)合材料,從而實現(xiàn)寬壓范圍下的高靈敏性。
1.3 紡織基柔性壓電式觸覺傳感器
紡織基柔性壓電式觸覺傳感器是指各向異性晶體材料(如PVDF)中偶極矩在施加機械刺激時的電極化,通過壓力引起輸出電壓信號變化[16]。壓電傳感器通常由兩個平行電極和它們之間的壓電材料組成,外部壓力會導(dǎo)致壓電材料變形,從而產(chǎn)生電壓,如圖3(a)所示。這種方法被廣泛用于通過壓電材料將機械應(yīng)力和振動轉(zhuǎn)換為電信號。壓電材料相對表面上的壓電電荷(Q)為:
Q=d33×A×σ(2)
式中:A、σ、d33分別是壓力下的表面積、壓力和壓電常數(shù)[45]。
壓電系數(shù)(d33)表示受z向力作用后在z方向產(chǎn)生的電荷,是評價壓電材料的能量轉(zhuǎn)換效率的物理量。由于高靈敏度和快速響應(yīng)時間,壓電傳感器已被廣泛應(yīng)用于動態(tài)壓力的檢測。Sim等[46]介紹了一種新型復(fù)合材料系統(tǒng)和一種構(gòu)建柔性、可拉伸和可編織的壓電發(fā)電纖維的方法。柔性壓電纖維(FPF)可以拉伸到5%的拉伸應(yīng)變,并且可以產(chǎn)生超過50 μW/cm3的功率。FPF的高柔韌性、可拉伸性和穩(wěn)定的壓電響應(yīng)可用于縫紉和編織,在智能紡織品中有著重要的應(yīng)用。為了能夠?qū)崿F(xiàn)批量生產(chǎn)節(jié)約成本,能夠大面積制造、成型質(zhì)量高、成型準(zhǔn)時等優(yōu)點的熔體紡絲技術(shù)得到應(yīng)用。如圖3(b)所示,Lund等[47]介紹了可以在潮濕條件下運行的全紡織壓電發(fā)電機,以PVDF作為芯皮,聚乙烯基體中的10%炭黑作為芯生產(chǎn)雙組分纖維,使用織機來實現(xiàn)具有芯鞘結(jié)構(gòu)的熔紡連續(xù)壓電微纖維紡織帶,這些纖維的堅固和耐磨特性使人們能夠大批量生產(chǎn)。Zhang等[48]提出了一種對接觸位置敏感的大面積、低成本、可拉伸的基于紡織品的壓電式觸覺傳感器。該傳感器由新型雙面效果功能針織紡織品和大孔徑的多孔聚氨酯泡沫制成,包括上導(dǎo)電層、隔離層和下導(dǎo)電層三層,如圖3(c)所示。導(dǎo)電層由導(dǎo)電銀聚氨酯(PU)/竹紗和非導(dǎo)電竹紗通過互鎖編織工藝制成。通過提取針織紡織品上下導(dǎo)電面上接觸點的電位值,傳感器可以根據(jù)電位與位置的函數(shù)關(guān)系,計算出接觸點的位置坐標(biāo),利用徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)算法建立傳感器位置坐標(biāo)與電位值之間的映射函數(shù)關(guān)系,從而建立精確的數(shù)學(xué)模型,并將傳感器電位向量轉(zhuǎn)換為觸摸位置的位置向量。最后將傳感器樣品連接到硅膠人體模型的肩部進行了測試以感知觸覺,可以實時準(zhǔn)確地檢測并顯示手指的觸摸區(qū)域。綜上所述,紡織基柔性壓電式觸覺傳感器具有高靈敏度和出色的動態(tài)響應(yīng),使其成為檢測動態(tài)壓力的首選者。但是靜壓的檢測受到限制,因為壓電效應(yīng)僅在施加的刺激發(fā)生變化時發(fā)生。未來的研究方向是在觸覺傳感的可用壓電材料中,如聚偏二氟乙烯(PVDF)、氧化鋅(ZnO)、和鋯鈦酸鉛(PZT)等,開發(fā)新的材料增強輸出功率實現(xiàn)高性能和降低生產(chǎn)成本。
1.4 紡織基柔性摩擦電式觸覺傳感器
紡織基柔性摩擦電式觸覺傳感器是依靠摩擦起電效應(yīng),當(dāng)兩種不同的材料相互摩擦?xí)r,表面會感應(yīng)出電荷,產(chǎn)生的電荷量取決于兩種接觸材料之間的摩擦電極性差異。圖4(a)(b)分別描述了摩擦起電效應(yīng)現(xiàn)象和摩擦電式觸覺傳感器的電路原理。摩擦發(fā)電機(TENG)能夠響應(yīng)機械刺激產(chǎn)生電信號,TENG由兩種具有不同電負性的電極材料組成,并通過它們之間的接觸和分離過程產(chǎn)生電壓,因此可以用作自供電觸覺傳感器[49]。因為摩擦效應(yīng)普遍存在于大多數(shù)常用的織物材料中,如尼龍、聚酯和聚四氟乙烯。這表明了制造可穿戴TENG具有巨大的潛力。
He等[50]介紹了全紡織摩擦電傳感器(ATTS)的整體設(shè)計,如圖4(c)所示,該傳感器能夠以1.1 V/kPa的高靈敏度感知人體運動,壓敏范圍從100 Pa~400 kPa。通過將一根不銹鋼纖維和幾根聚酯纖維通過多捻工藝集成在一起,用作導(dǎo)電傳感紗線,傳感紗線外部的聚酯與手套織物的尼龍纖維一起充當(dāng)摩擦電偶,不銹鋼線充當(dāng)集電極。這種編織結(jié)構(gòu)導(dǎo)致ATTS有著大接觸面積以提高摩擦導(dǎo)電性能和出色的拉伸性。同時具有高拉伸性和優(yōu)異導(dǎo)電性是摩擦電設(shè)備的研究熱點,制造可拉伸和超薄的TENG,它可以適應(yīng)人體運動的變形并減少剛性材料引起的不適。Wang等[51]和Doganay等[52]通過研究柔性可拉伸的聚合物作為介電層和經(jīng)過改性處理的柔性導(dǎo)電織物作為電極,解決了傳感設(shè)備無法水洗的問題,實現(xiàn)了高拉伸性和柔軟性的可穿戴摩擦發(fā)電機。Wang等[51]基于多孔柔性層(PFL)和防水柔性導(dǎo)電織物(WFCF)開發(fā)了一種耐濕可拉伸的單電極t-TENG,具有高輸出(~135 V、~7.5 μA、26 μC/m2、631.5 mW/m2)和良好的耐濕性(80% RH)。結(jié)合微電子模塊,該便攜式可穿戴自供電觸覺控制器已設(shè)計用于各種智能警報、觸覺感應(yīng)和能量收集等人機交互應(yīng)用。Doganay等[52]使用層壓TPU薄膜作為AgNW改性織物上的介電層,證明了高達15次洗滌循環(huán)的洗滌穩(wěn)定性。如圖4(d)所示的制造原理和應(yīng)用設(shè)計,從制造的TENG中獲得了1.25 W/m2的最大功率輸出,開路電壓和短路電流分別為~162 V和~42 μA,實現(xiàn)用作觸覺人機交互設(shè)備的可水洗和可穿戴的摩擦發(fā)電機。
Jeon等[53]展示了一種僅使用商業(yè)化織物和織物膠水的觸摸板,用TENG作觸覺映射陣列傳感,成本低結(jié)構(gòu)簡單。通過織物膠將商業(yè)化的鎳涂層織物連接到棉基板上以設(shè)計二維陣列。然后再次使用織物膠水將羊毛蓋固定在電極陣列上,該觸摸設(shè)備可用于手寫數(shù)字和數(shù)字識別。透明、可清洗、高度敏感、質(zhì)量輕且經(jīng)久耐用是可穿戴式摩擦電的挑戰(zhàn)。Jiang等[54]提出了一種簡單且低成本的方法,用于制造具有透明性、可清洗性和高壓敏感性的可拉伸超薄仿皮TENG(SI-TENG),用作類皮膚自供電觸覺傳感器。SI-TENG的總厚度、質(zhì)量和拉伸性分別約為89 μm、0.23 g和800%。改性表面PDMS薄膜用作帶電層,通過電噴涂AgNW與靜電紡絲TPU納米纖維網(wǎng)絡(luò)交織用作可拉伸電極,在底部具有出色機械和熱性能的商用VHB膠帶用作結(jié)構(gòu)支撐和保護層。通過將SI-TENG與信號處理電路集成,開發(fā)了類皮膚游戲控制器的傳感系統(tǒng),一旦手指輕輕觸摸傳感器,不同的輸出電壓就會響應(yīng)機械處理提供實時觸覺感應(yīng)信號,可以在自動控制、人機界面、遠程操作和安全系統(tǒng)等多個領(lǐng)域應(yīng)用。綜上所述,紡織基柔性摩擦電式觸覺傳感器主要問題在于開發(fā)穩(wěn)定高性能的TENG,輸出信號取決于壓力的大小和頻率,在電極之間添加接地屏蔽層可顯著降低串?dāng)_效應(yīng)。未來的研究方向主要是研究出色的極性電極和保證傳感性能的穩(wěn)定性。
2 紡織基柔性觸覺傳感器應(yīng)用
2.1 醫(yī)療監(jiān)測
傳統(tǒng)醫(yī)學(xué)診斷、臨床干預(yù)和康復(fù)治療需要對患者進行長期監(jiān)測??纱┐骷夹g(shù)作為一種實用且臨床上有用的技術(shù)來幫助患者進行診斷、治療和護理,其力量正變得越來越明顯。使用可穿戴設(shè)備自動監(jiān)測心理行為是一種可行的方法,也是監(jiān)測個人健康狀況的關(guān)鍵指標(biāo)。遠程醫(yī)療計劃是一種全球趨勢,它是一種遠程監(jiān)控患者的有效方式,有助于解決住院費用[55]。一般來說,人體運動監(jiān)測通常需要與各種身體信號、生命體征和肌電反應(yīng)的連續(xù)和同步記錄相關(guān)聯(lián),特別是在運動和健康及醫(yī)療診斷和康復(fù)等應(yīng)用中[56]。醫(yī)療應(yīng)用通常需要測量實時數(shù)據(jù)來量化用戶能力并提供更深入的測量能力。可穿戴技術(shù)通過在手術(shù)室協(xié)助醫(yī)生并提供對電子健康記錄的實時訪問,開始徹底改變醫(yī)療保?。?7]。
可穿戴式健康監(jiān)測設(shè)備對于實時和連續(xù)心電圖(ECG)監(jiān)測更為合適,Sun等[58]實現(xiàn)了基于乳酸門限心率計算的運動型H恤衫的改進設(shè)計,如圖5(a)所示,該襯衫與導(dǎo)電織物ECG電極集成在一起,可以在體育鍛煉期間進行精確的ECG監(jiān)測。最后開發(fā)出了一種基于手機的心電圖分析和運動評估平臺,該平臺可以檢測六種類型的異常心電圖(心動過速、心動過緩、心跳加快、早搏、二聯(lián)律與三聯(lián)律)和個體乳酸閾值,以及通過手機語音消息提供實時健康警告和鍛煉優(yōu)化提示。Yang等[59]通過直接在紡織品上印刷干電極陣列開發(fā)了一個電極陣列傳感器并做成電子袖套,如圖5(b)所示,可以多次清洗和重復(fù)使用。該電子袖套帶有集成電極,可穿戴式醫(yī)療保健訓(xùn)練系統(tǒng),該系統(tǒng)可以促進患者進行中風(fēng)康復(fù)和其他神經(jīng)系統(tǒng)疾?。ㄈ缗两鹕?、多發(fā)性硬化癥和脊髓損傷)的康復(fù)。
一些更新穎的產(chǎn)品包括嬰兒監(jiān)視器、智能襯衫和生物識別智能穿戴等[60],如圖5(c)所示,可以記錄語音、心率、腳步
和每天消耗的熱量。織物傳感器可用于心電圖、肌電圖和腦電圖傳感[61];包含熱電偶的織物可用于感測溫度;集成在織物中的發(fā)光元件可用于生物光子傳感;形狀敏感的織物可以感知運動,并且可以結(jié)合肌電圖感知來獲得肌肉健康;基于壓力肌動圖(FMG)的智能壓縮服如圖5(d)所示,由集成在皮膚和衣服之間的壓力傳感器組成,位于五個大腿肌肉上,能夠在高速活動時提供更準(zhǔn)確的結(jié)果,并且可以清楚地測量隨時間變化肌肉的疲勞程度[62];集成到織物中的碳電極可用于檢測特定的環(huán)境或生物醫(yī)學(xué)特征,如氧氣、鹽度、水分或污染物。這些設(shè)備在醫(yī)學(xué)科學(xué)領(lǐng)域應(yīng)用越來越廣泛,變得越來越重要。
2.2 運動檢測
靈活的傳感器可以很容易地附著在彎曲的關(guān)節(jié)和皮膚上,并檢測各種身體活動,例如手指、肘部和膝蓋關(guān)節(jié)的彎曲拉伸,以及手臂和腿部肌肉的收縮—放松。Li等[63]制造了基于氧化石墨烯改性導(dǎo)電棉的柔性壓力傳感器,將具有3D多孔網(wǎng)絡(luò)結(jié)構(gòu)的rGO棉夾在銅帶之間并用銀漿固定進行壓力檢測,表現(xiàn)出出色的靈敏度和寬壓力范圍,最高靈敏度為0.21 kPa-1,并且壓力高達500 kPa,這表明了精細的靈敏度和更寬的壓力范圍的結(jié)合。圖6(a)為正常情況下的手腕脈搏測試結(jié)果和在跑步后休息5 min和10 min后的呼吸頻率。這項研究開發(fā)的壓力傳感器在實時監(jiān)測諸如脈搏、呼吸頻率和語音識別之類的人體生理信號方面表現(xiàn)出卓越的性能。Tian等[64]構(gòu)建了一個枕形的3D分層電阻式壓力傳感器,通過將銀涂層針織物和一塊氨綸針織物通過簡單的熱黏合路線結(jié)合,中間填充聚丙烯纖維。圖6(b)為壓力傳感器用于監(jiān)測人體生理活動,如呼吸頻率和睡姿,顯示出出色的傳感性能、高靈敏度(3.504 kPa-1)和耐用性(電阻降低2%),即使在4 500次循環(huán)后也具有穩(wěn)定性。Chen等[65]制造了3D雙面互鎖織物摩擦納米發(fā)電機(3DFIF-TENG),可設(shè)計為自供電、可拉伸和無基板的可穿戴TENG傳感器,如圖6(c)所示??纱┐魇絋ENG傳感器為能量收集、人體運動和機器人運動檢測提供了廣闊的應(yīng)用前景。
紡織基可穿戴電子設(shè)備還能使運動員能夠不受阻礙地進行運動,同時實時獲取生理(心率、呼吸)、表現(xiàn)(姿勢、運動)和環(huán)境(溫度、濕度)數(shù)據(jù),尤其是在極限運動中。此外,這些數(shù)據(jù)對于檢查運動員的健康狀況、預(yù)防疾病和傷害有著重要意義[66]。
2.3 人機交互
人機交互能夠滿足感知外部刺激和為用戶提供交互響應(yīng)的集成雙向功能。人體組織是柔軟且可拉伸的,這也要求相應(yīng)的電子設(shè)備具備良好的機械柔性。麻省理工學(xué)院的羅一悅等[67]在《自然電子》(Nature Electronics)雜志上撰文稱,一種由人工智能(Al)推動的智能紡織品能夠記錄、建模并理解人體的全身觸覺互動。該智能紡織品的構(gòu)建模塊是一系列壓阻纖維,在0.1~2 N內(nèi)提供高電阻變化。使用這些壓阻纖維可以無縫地融入到符合三維形狀的大規(guī)模傳感紡織品中。各種設(shè)計的柔性觸覺傳感器與人機交互應(yīng)用已被廣泛開發(fā),包括智能手套、鍵盤和觸摸面板等。Choi等[29]開發(fā)了一種具有分層微型毛狀結(jié)構(gòu)的基于纖維的傳感器,可以通過監(jiān)測絞合成纖維的單電阻和互電阻來區(qū)分手指的應(yīng)變、壓力和彎曲。在實際應(yīng)用中基于纖維的傳感器被編織到可識別多個手勢的智能手套上,圖7(a)(b)展示了將來自手套的信號轉(zhuǎn)換為虛擬射擊游戲的控制界面。Deng等[34]設(shè)計了一種觸覺傳感紡織品(TST)的智能手套,有著與彎曲無關(guān)的壓力感知和空間敏銳度,可以準(zhǔn)確檢測不同曲率半徑下的壓力并識別觸摸位置。Pyo等[35]通過柔性全織物傳感器開發(fā)可穿戴音樂鍵盤和全尺寸全織物鍵盤,如圖7(c)所示,可根據(jù)施加壓力大小區(qū)分大小寫。最后還設(shè)計一個人機觸覺交互的手套應(yīng)用,用戶A戴著手套,每個指尖都有織物傳感器感應(yīng)到的觸摸信息被處理并通過藍牙傳輸?shù)接|覺顯示器。同時,對應(yīng)于各個傳感器的線性制動器被激活,允許用戶B通過將手放在顯示器上來感知傳輸?shù)男畔ⅰ?/p>
配備觸覺傳感器和反饋系統(tǒng)的機器人可以實現(xiàn)比僅依賴視覺感知的機器人更精細和復(fù)雜的功能,例如抓取和操縱易碎物體或檢測材料的特性。He等[50]開發(fā)一種全紡織摩擦電傳感器(ATTS)的智能手套,它可以捕捉人類手勢以遠程控制支持虛擬現(xiàn)實(VR)的遙控機器人抓手,該抓手可以靈活地處理各種形狀、尺寸和機械特性的精致物體。隨著傳感器、信號處理和傳輸方面的新型材料和技術(shù)進步,一些研究小組報告了用于機器人和假肢應(yīng)用的人造觸覺皮膚,圖7(d)展示了觸覺傳感器在機器手領(lǐng)域的應(yīng)用。Pei等[68]利用DLP 3D打印為機器人手設(shè)計了一種集成手指觸覺傳感和關(guān)節(jié)彎曲傳感的柔性傳感陣列,五個壓力傳感器(外部三個、內(nèi)部兩個)均勻分布在柔性套管的手指內(nèi)側(cè),為機器人手提供抓握物體時的觸覺感知能力,可以檢測1 N以下的微小力,對0.2 N以內(nèi)的力特別敏感。Park等[69]開發(fā)了一種三維指尖形狀的人造皮膚裝置,通過電容傳感技術(shù)在觸摸時具有大的電信號接觸,它可以感知準(zhǔn)確地觸摸位置并自發(fā)修復(fù)機械損傷。
3 結(jié)論與展望
隨著人們研究的不斷深入,紡織基柔性觸覺傳感器的性能在不斷地提升,包括靈敏度、檢測范圍、線性度、響應(yīng)時間、穿戴舒適性和環(huán)保性等。靈敏度是紡織基柔性觸覺傳感器的主要參數(shù)之一,它是根據(jù)輸出信號(如電阻、電容和電壓)響應(yīng)外部刺激的相對變化來測量的,提高靈敏度的主要方法是設(shè)計微結(jié)構(gòu),如金字塔型、橢圓型和微柱型等。響應(yīng)時間決定了傳感器響應(yīng)外部刺激獲得穩(wěn)定輸出信號的時間,在人機交互的即時應(yīng)用中至關(guān)重要。傳感器中充當(dāng)中間層的聚合物的黏彈性是響應(yīng)緩慢的主要原因,因為聚合物鏈的變形和恢復(fù)需要時間,使用非聚合物材料或新型的結(jié)構(gòu)設(shè)計可以解決黏彈性問題并提高傳感器的響應(yīng)速度。穿戴舒適性是紡織基柔性觸覺傳感器的優(yōu)勢之一,與硅膠基、金屬基和其他聚合物基相比紡織基材具有天然的柔軟舒適性,紡織結(jié)構(gòu)保證了傳感器的透氣性和柔軟性。環(huán)??山到獾母咝阅芾w維是紡織基柔性觸覺傳感器的重要研究方向,棉毛絲麻作為天然高分子材料和改性處理后可實現(xiàn)高性能、可環(huán)保、可穿戴和耐水洗等功能。紡織基柔性觸覺傳感器由于特殊的紡織結(jié)構(gòu),在智能可穿戴領(lǐng)域有著出色的性能和優(yōu)勢。本文綜述了紡織基觸覺傳感器的最新進展,介紹了不同傳感機制包括電阻式、電容式、壓電式和摩擦電式傳感器的原理和應(yīng)用。結(jié)果表明:紡織基柔性觸覺傳感器由于其特殊的紡織結(jié)構(gòu),有優(yōu)異的線性度、靈敏度、耐久性和穩(wěn)定性。
紡織基柔性觸覺傳感器在未來是重要的研究熱點之一,同樣也有幾個方向需要突破。1) 紡織基觸覺傳感器雖然有大量研究,但是很多關(guān)鍵問題比如靈敏度、耐洗滌性、穿著舒適性、環(huán)境影響等都沒有解決,高靈敏、寬范圍、快速響應(yīng)、耐水洗和可穿戴集一體的柔性傳感器仍是當(dāng)下的問題難點,分析并解決這些關(guān)鍵問題對促進行業(yè)發(fā)展具有重要作用。2) 在保證柔軟可穿戴前提下要保證穿著的舒適性,要結(jié)合功能性紡織基材透氣防汗抗菌等功效的優(yōu)勢。3) 應(yīng)用型傳感器應(yīng)該考慮成本效益,能夠大面積制造且兼具高性能的低成本柔性傳感器是未來的發(fā)展重點。4) 傳感性能要與生活功能相結(jié)合,柔性觸覺傳感器在智能可穿戴領(lǐng)域的發(fā)展要與人機交互相結(jié)合,在醫(yī)療、運動和娛樂方向要貼合人們生活,與當(dāng)下前沿科技結(jié)合開發(fā)有實際功效的應(yīng)用,提高人們的生活水平。最后,這些問題的解決需要多學(xué)科交叉的共同研究,包括材料學(xué)、醫(yī)學(xué)、紡織學(xué)、計算機技術(shù)、軟件應(yīng)用開發(fā)和通信技術(shù)等,它們的研究有著巨大的潛力和重要意義。
參考文獻:
[1]CHORTOS A, LIU J, BAO Z N. Pursuing prosthetic electronic skin[J]. Nat Mater, 2016, 15(9): 37-50.
[2]PYO S, LEE J, BAE K, et al. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications[J]. Advanced Materials, 2021, 33(47): 2005902.
[3]NAVARAJ W, DAHIYA R. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli[J]. Advanced Intelligent Systems, 2019, 1(7): 1900051.
[4]VU C C, KIM S J, KIM J. Flexible wearable sensors: An update in view of touch-sensing[J]. Science Technology Advanced Materials, 2021, 22(1): 26-36.
[5]顏廷義, 張光耀, 喻琨, 等. 基于智能手機的即時檢測[J]. 化學(xué)進展, 2022, 34(4): 884-897.
YAN Tingyi, ZHANG Guangyao, YU Kun, et al. Smartphone-based point-of-care testing[J]. Progress in Chemistry, 2022, 34(4): 884-897.
[6]LEE Y, KIM J, JANG B, et al. Graphene-based stretchable/wearable self-powered touch sensor[J]. Nano Energy, 2019, 62: 259-267.
[7]OZIOKO O, KARIPOTH P, HERSH M, et al. Wearable assistive tactile communication interface based on integrated touch sensors and actuators[J]. IEEE Transactions on Neural Systems Rehabilitation Engineering, 2020, 28(6): 1344-1352.
[8]HONG Y J, JEONG H, CHO K W, et al. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics[J]. Advanced Functional Materials, 2019, 29(19): 1808247.
[9]FU Y M, ZHANG M Y, DAI Y T, et al. A self-powered brain multi-perception receptor for sensory-substitution application[J]. Nano Energy, 2018, 44: 43-52.
[10]CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 2019, 363(6430): 947-960.
[11]ANINDYA N, MUKHOPADHYAY S C, KOSEL J. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring[J]. Sensors and Actuators A: Physical, 2016, 251: 148-155.
[12]YAO S S, ZHU Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires[J]. Nanoscale, 2014, 6(4): 2345-2352.
[13]GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
[14]ZENG W, SHU L, LI Q, et al. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications[J]. Advanced Materials, 2014, 26(31): 5310-5336.
[15]ANINDYA N, MUKHOPADHYAY S C, KOSEL J. Wearable flexible sensors: A review[J]. IEEE Sensors Journal, 2017, 17(13): 3949-3960.
[16]WAN Y B, WANG Y, GUO C F. Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[17]HAN S T, PENG H Y, SUN Q J, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 2017, 29(33): 1700375.
[18]RIM Y S, BAE S H, CHEN H J, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28(22): 4415-4440.
[19]LIPOMI D J, VOSGUERITCHIAN M, TEE B C, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[20]田明偉, 李增慶, 盧韻靜, 等. 紡織基柔性力學(xué)傳感器研究進展[J]. 紡織學(xué)報, 2018, 39(5): 170-176.
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Research progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176.
[21]ISLAM G M N, ALI A, COLLIE S. Textile sensors for wearable applications: A comprehensive review[J]. Cellulose, 2020, 27: 6103-6131.
[22]XIONG J Q, CHEN J, LEE P S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface[J]. Advanced Materials, 2021, 33(19): 2002640.
[23]TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable stiffness fiber with self-healing capability[J]. Advanced Materials, 2016, 28(46): 10142-10148.
[24]WANG W, XIANG C X, LIU Q Z, et al. Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications[J]. Journal of Materials Chemistry A, 2018, 6(45): 22599-22608.
[25]JIA T J, WANG Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials, 2019, 29(18): 1808241.
[26]YANG Z, PANG Y, HAN X L, et al. Graphene textile strain sensor with negative resistance variation for human motion detection[J]. ACS Nano, 2018, 12(9): 9134-9141.
[27]陳慧, 王璽, 丁辛, 等. 基于全織物傳感網(wǎng)絡(luò)的溫敏服裝設(shè)計[J]. 紡織學(xué)報, 2020, 41(3): 118-123.
CHEN Hui, WANG Xi, DING Xin, et al. Design of temperature-sensitive garment consisting of full fabric sensing networks[J]. Journal of Textile Research, 2020, 41(3): 118-123.
[28]PATIO A G, MENON C. Inductive textile sensor design and validation for a wearable monitoring device[J]. Sensors, 2021, 21(1): 225.
[29]CHOI S, YOON K, LEE S, et al. Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applications[J]. Advanced Functional Materials, 2019, 29(50): 1905808.
[30]ZHAO W L, ZHENG Y Q, QIAN J N, et al. AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding[J]. Journal of Alloys and Compounds, 2022, 923: 166471.
[31]HONG X H, YU R F, HOU M, et al. Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity[J]. Journal of Materials Science, 2021, 56(30): 16946-16962.
[32]YU R F, ZHU C Y, WAN J M, et al. Review of graphene-based textile strain sensors, with emphasis on structure activity relationship[J]. Polymers, 2021, 13(1): 151.
[33]PIZARRO F, VILLAVICENCIO P, YUNGE D, et al. Easy-to-build textile pressure sensor[J]. Sensors, 2018, 18(4): 1190.
[34]DENG J, ZHUANG W, BAO L K, et al. A tactile sensing textile with bending-independent pressure perception and spatial acuity[J]. Carbon, 2019, 149: 63-70.
[35]PYO S, LEE J, KIM W, et al. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range[J]. Advanced Functional Materials, 2019, 29(35): 1902484.
[36]ZHOU Z Q, LI Y, CHENG J, et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human-machine interaction[J]. Journal of Materials Chemistry C, 2018, 6(48): 13120-13127.
[37]LAI C, WU X, HUANG C, et al. Fabrication and performance of full textile-based flexible piezoresistive pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(8): 4755-4763.
[38]LIAN Y L, YU H, WANG M Y, et al. Ultrasensitive wearable pressure sensors based on silver nanowire-coated fabrics[J]. Nanoscale Research Letters, 2020, 15(1): 70.
[39]HONDA S, ZHU Q, SATOH S, et al. Textile-based flexible tactile force sensor sheet[J]. Advanced Functional Materials, 2019, 29(9): 1807957.
[40]LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2433-2439.
[41]YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018, 6(47): 12981-12991.
[42]ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors for facile fabric integration without compromise of wearability[J]. Advanced Materials Technologies, 2019, 4(10): 1900485.
[43]MA Y L, OUYANG J Y, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy, 2021, 85: 105941.
[44]TAKAMATSU S, KOBAYASHI T, SHIBAYAMA N, et al. Meter-Scale Surface Capacitive Type of Touch Sensors Fabricated by Weaving Conductive-Polymer-Coated Fibers[C]//2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP). France: Aix-en-Provence, 2011: 11-13.
[45]LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021, 87: 106181.
[46]SIM H J, CHOI C, LEE C J, et al. Flexible, stretchable and weavable piezoelectric fiber[J]. Advanced Engineering Materials, 2015, 17(9): 1270-1275.
[47]LUND A, RUNDQVIST K, NILSSON E, et al. Energy harvesting textiles for a rainy day: Woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core[J]. NPJ Flexible Electronics, 2018, 2(1): 5310-5336.
[48]ZHANG Y Z, LIN Z K, HUANG X P, et al. A large-area, stretchable, textile-based tactile sensor[J]. Advanced Materials Technologies, 2020, 5(4): 1901060.
[49]TAO J, BAO R R, WANG X D, et al. Self-powered tactile sensor array systems based on the triboelectric effect[J]. Advanced Functional Materials, 2018, 29(41): 1806379.
[50]HE Q, WU Y F, FENG Z P, et al. An all-textile triboelectric sensor for wearable teleoperated human-machine interaction[J]. Journal of Materials Chemistry A, 2019, 7(47): 26804-26811.
[51]WANG J X, HE J M, MA L L, et al. A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing[J]. Chemical Engineering Journal, 2021, 423: 130200.
[52]DOGANAY D, CICEK M O, DURUKAN M B, et al. Fabric based wearable triboelectric nanogenerators for human machine interface[J]. Nano Energy, 2021, 89: 106412.
[53]JEON S B, KIM W G, PARK S J, et al. Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators[J]. Nano Energy, 2019, 65: 103994.
[54]JIANG Y, DONG K, LI X, et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors[J]. Advanced Functional Materials, 2020, 31(1): 2005584.
[55]PATEL S, PARK H, BONATO P, et al. A review of wearable sensors and systems with application in rehabilitation[J]. Journal of Neuro Engineering and Rehabilitation, 2012, 9(1): 21.
[56]MOKHTARI F, CHENG Z X, RAAD R, et al. Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology[J]. Journal of Materials Chemistry A, 2020, 8(19): 9496-9522.
[57]FRANCES-MORCILLO L, MORER-CAMO P, RODRIGUEZ-FERRADAS M I, et al. Wearable design requirements identification and evaluation[J]. Sensors, 2020, 20(9): 2599.
[58]SUN F M, YI C F, LI W N, et al. A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing[J]. Computers in Industry, 2017, 92: 1-11.
[59]YANG K, MEADMORE K, FREEMAN C, et al. Development of user-friendly wearable electronic textiles for healthcare applications[J]. Sensors, 2018, 18(8): 2410.
[60]LU L J, JIANG C P, HU G S, et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 2021, 33(16): 2100218.
[61]WEI Y, WU Y, TUDOR J. A real-time wearable emotion detection headband based on EEG measurement[J]. Sensors and Actuators A: Physical, 2017, 263: 614-621.
[62]BELBASIS A, FUSS F K. Muscle performance investigated with a novel smart compression garment based on pressure sensor force myography and its validation against EMG[J]. Frontiers in Physiology, 2018, 9: 408.
[63]LI P, ZHAO L B, JIANG Z D, et al. A wearable and sensitive graphene-cotton based pressure sensor for human physiological signals monitoring[J]. Scientific Reports, 2019, 9(1): 14457.
[64]TIAN M W, LU Y J, QU L J, et al. A pillow-shaped 3D hierarchical piezoresistive pressure sensor based on conductive silver components-coated fabric and random fibers assembly[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5737-5742.
[65]CHEN C Y, CHEN L J, WU Z Y, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93.
[66]SCATAGLINI S, MOORHEAD A P, FELETTI F. A systematic review of smart clothing in sports: Possible applications to extreme sports[J]. Muscle Ligaments and Tendons Journal, 2020, 10(2): 333-342.
[67]LUO Y Y, LI Y Z, SHARMA P, et al. Learning human-environment interactions using conformal tactile textiles[J]. Nature Electronics, 2021, 4(3): 193-201.
[68]PEI Z, ZHANG Q, YANG K, et al. A fully 3D-printed wearable piezoresistive strain and tactile sensing array for robot hand[J]. Advanced Materials Technologies, 2021, 6(7): 2100038.
[69]PARK S, SHIN B G, JANG S, et al. Three-dimensional self-healable touch sensing artificial skin device[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3953-3960.
Textile-based flexible tactile sensors and wearable applications
SHE Minghua1, XU Ruidong1, WEI Jichao2, TIAN Mingwei1, QU Lijun1, CHEN Shaojuan1
(1a.College of Textile & Clothing; 1b.Research Center for Intelligent and Wearable Technology; 1c.State Key Laboratory of Bio-Fibers and Eco-Textiles;1d.Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University,Qingdao 266071, China; 2.Shandong Textile & Architecture Design Institute Co., Ltd., Jinan 250013, China)
Abstract:
Tactile sensors are an important research direction in the field of smart wearable devices and human-computer interaction, which has attracted extensive attention. Tactile sensors of traditional rigid materials generally have bottlenecks such as being hard and not suitable for wearable interaction, which limits their application in the wearable field. Textile-based flexible tactile sensors have become the first choice for tactile sensing materials due to their high sensitivity, softness, and wearability.
The textile-based flexible tactile sensor is a new development direction of flexible sensors for the following reasons. First, its special textile structure can be seamlessly connected with clothing to achieve the integration of design, wear and application. Second, sensors with different dimensions can be developed at different stages of textiles, and there are one-dimensional fiber and yarn sensors, two-dimensional fabric sensors and three-dimensional clothing textiles. The sensing application range in different dimensions is different. Compared with the low response and high sensitivity based on the fiber/yarn sensor, the fabric/textile sensor has a larger sensing area and a more ideal array design. More importantly, wearable devices that combine sensing with textiles have excellent sensing performance and comfort, and can be widely used in medical care, sports detection, leisure and entertainment and other fields.
This paper reviews the principles and applications of several types of textile-based flexible tactile sensors, including resistive, capacitive, piezoelectric, and triboelectric ones. The results show that the textile-based flexible tactile sensor has excellent linearity, sensitivity, durability and stability due to its special textile structure. The textile-based flexible resistive tactile sensor has a simple structure and can achieve high performance and low cost. However, the energy consumption is high and the recovery rate is low. Future directions are to design materials in which resistance changes do not depend on the deformation of the conductive network between nanomaterials, or to create additional free-space pores so that the resistance changes are caused by the closure of pores in the material rather than by polymer chains in elastomers. The problem of textile-based flexible capacitive tactile sensors is how to improve the sensitivity. In order to achieve high sensitivity, dielectric materials can be designed by increasing the pores or increasing the dielectric constant. For future research directions, porous high dielectric constant materials or elastomers coated with conductive nanomaterials can be used as high dielectric constant composites. Textile-based flexible piezoelectric tactile sensors have high sensitivity and excellent dynamic response, making them the first choice for detecting dynamic pressure. In the future, we should develop new materials in the available piezoelectric materials for tactile sensing to enhance output power, realize high performance and reduce production costs. The main problem of textile-based flexible triboelectric tactile sensors is to develop stable and high-performance TENGs, and we should study excellent polar electrodes and ensure the stability of sensing performance.
In conclusion, high sensitivity, durability and wearability are the advantages and important development directions of textile-based flexible tactile sensors. The textile-based flexible tactile sensor is one of the important research focuses in the future, and there are also several directions that need to be broken through. First, it is still a difficult problem to obtain a flexible sensor that integrates high sensitivity, wide range, fast response, washability and wearability. Analyzing and solving these key problems plays an important role in promoting the development of the industry. Second, on the premise of ensuring softness and wearability, it is necessary to ensure the comfort of wearing, and combine the advantages of functional textile substrate such as breathability, sweat prevention, and anti-bacterial effects. Third, the cost efficiency should be considered for the applied sensor. The low-cost flexible sensor that can be manufactured in large area and has high performance is the focus of future development. Fourth, the sensing performance should be combined with the life function. The development of flexible tactile sensors in the intelligent wearable field should be combined with human-computer interaction. In the direction of medical treatment, sports and entertainment, it should be suitable for peoples life. It should be combined with the current cutting-edge technology to develop practical applications to improve peoples living standards. Finally, the solution of these problems requires the joint research of cross-disciplines, including materials science, medicine, textile science, computer technology, software application development and communication technology. Such research has great potential and important significance.
Key words:
textile structures; textile materials; flexible sensors; tactile sensors; human-computer interaction; wearable applications
收稿日期:
2022-06-14;
修回日期:
2023-01-18
基金項目:
國家重點研發(fā)計劃項目(2022YF3805801、2022YFB3805802);泰山學(xué)者工程專項經(jīng)費項目(tsqn202211116);山東省重大科技專項項目(2019JZZY010335、2019JZZY010340);山東省青創(chuàng)科技計劃創(chuàng)新團隊項目(2020KJA013);國家自然科學(xué)基金項目(22208178);山東省自然科學(xué)基金項目(ZR2020QE074);紡織行業(yè)智能紡織服裝柔性器件重點實驗室開放課題項目(SDHY2223)
作者簡介:
佘明華(1998),男,碩士研究生,研究方向為智能可穿戴紡織品。通信作者:陳韶娟,教授,qdchshj@qdu.edu.cn。