曹竟文 賈靜 徐平華 林瑞冰 孫曉婉
摘要: 為清晰闡釋畬族傳統(tǒng)服裝設色分布及其關聯(lián)規(guī)則,文章利用圖像分析技術解析意象色彩配色關系。以散居于浙、贛、閩三地畬族為例,對田野調查采集的150幅典型傳統(tǒng)服裝圖像進行色彩解析。通過利用自適應聚類機制提取意象色彩,分別構建三地服裝色彩譜系;設計基于向量集的Apriori算法,解析畬族服裝意象色之間的多元配色關系。實驗結果表明,浙、贛、閩三地畬族服裝用色集中于黑、紅、藍等八色,主色較為接近;最小支持度優(yōu)選0.2時,能夠有效區(qū)分三地服裝多元配色差異。其中浙江地區(qū)二元配對色組、江西地區(qū)三元配對色組表色相對豐富。改進后的算法配色規(guī)則輸出平均耗時0.032 s,能夠快速解析畬族服裝設色關聯(lián)規(guī)則,為類似傳統(tǒng)服裝色彩分析和再生設計提供方法參考。
關鍵詞: 設色關系;關聯(lián)規(guī)則;自適應聚類;色彩解析;色彩譜系;可視化
中圖分類號: TS941.2;TP391.7
文獻標志碼: A
文章編號: 1001-7003(2023)04-0100-07
引用頁碼:
041201
DOI: 10.3969/j.issn.1001-7003.2023.04.013(篇序)
紡織品服裝同質化、供需錯配、設計決策遲緩等問題的長期顯現(xiàn),成為產(chǎn)業(yè)高質量發(fā)展的瓶頸制約之一。隨著“東方美學”“新時尚”等消費勢態(tài)的激活,再生傳統(tǒng)、民族、本土化的服飾精神和文化內(nèi)涵,為消費增長開辟了新思路和新途徑。
畬族是分布在中國東南地區(qū)的散雜居少數(shù)民族,其服飾色彩獨具特色。相關學者從審美特征[1-3]、文化變遷[4],宗教信仰[5]及染色工藝發(fā)展[6]等方面對畬族傳統(tǒng)服飾進行評述。夏帆等[2]以畬族相關史料典藏為線索,提出畬族服裝典型樣式中青、藍、黑為主要色系;陳敬玉[4]認為畬族在歷史遷徙過程中與周邊民族的融合,使其在各地形成特有的服飾風貌外觀;吳微微等[5]認為畬族盛裝中所呈現(xiàn)的對紅色與黑色的尊崇,反映出畬族先民對太陽、火與黑暗的自然崇拜;段婷[6]則從面料印染角度出發(fā),認為清代及后期畬族服飾色彩受到藍染工藝的影響,逐漸形成“衣尚青藍色”的服飾特色。當前對畬族服裝設色多側重于感性認知,缺乏系統(tǒng)性量化分析和地域性比對。近年來,圖像分析技術逐步應用至色彩解析領域。徐平華等[7]、Hagtvedt等[8]量化分析各民族服飾所提取出的主色;劉肖健等[9-10]依托改進的色彩網(wǎng)絡模型簡潔表達色彩量化元素;徐明慧等[11]針對品牌服裝構建二元配色關系模型,但在意象色多元組合方面未作深入探討。
為此,本文重點以畬族傳統(tǒng)服裝為例,利用圖像分析技術,構建浙、贛、閩三地畬族服裝色彩譜系;使用改進的Apriori算法,挖掘意象色多元配色關聯(lián)關系,為傳統(tǒng)服裝色彩再生設計提供配色基準。
1 設色關聯(lián)規(guī)則挖掘
關聯(lián)分析又稱關聯(lián)挖掘,是對信息載體內(nèi)對象集合間頻繁模式的解析。對于服裝設色而言,針對批量服裝圖像色彩間配色關聯(lián)性,利用關聯(lián)規(guī)則算法挖掘其內(nèi)在賦色機制。
1.1 服裝用色數(shù)據(jù)集
為構建系列服裝圖像用色數(shù)據(jù)集,對田野考察[12]獲得的畬族服裝圖像,按照浙、贛、閩三地進行歸類。每個地區(qū)篩選了50幅代表性服裝樣本,三地共計150幅,所涉上裝為右衽大襟衣、下裝為筒裙或長褲等款式。對于含背景、噪聲的圖像,首先采用GrabCut[13]、高斯濾波[14]、伽馬光照自適應校正[15]等算法對其進行預處理,僅保留服裝主體內(nèi)容,背景則采用純白色標記。
服裝用色基礎數(shù)據(jù)取自序列服裝圖像,在批量處理服裝樣本圖像時,各樣本設色存在差異。在基礎數(shù)據(jù)集構建階段,若采用常規(guī)K-means聚類,強制統(tǒng)一各樣本色彩聚類簇數(shù),容易導致提色偏差。因此,本文采用二分K-均值自適應聚類[16],自適應提取每幅服裝色彩。在HSV色彩空間下,對序列樣本主色進行提取;在此基礎上,橫向比對地域差異時,采用K-means算法進行二次聚類,獲得各地區(qū)服裝意象色。以浙江地區(qū)畬族服裝樣本為例,最終獲得如圖1所示的首次聚類提取色和二次聚類意象色。
1.2 關聯(lián)規(guī)則構造
設色規(guī)則挖掘,是對色彩融合圖中超過一定閾值的配對色組,如二元、三元、四元等共現(xiàn)色組,進行關聯(lián)度解析。當前關聯(lián)規(guī)則挖掘算法中,Apriori算法[17]常用于挖掘數(shù)據(jù)關聯(lián)規(guī)則,以找出數(shù)據(jù)值頻繁出現(xiàn)的組合及其關聯(lián)關系。針對該算法中的連接和修剪耗時長等缺陷,相關學者提出如FP-Growth[18]、DHP[19]和頻繁閉項集法[20]等改進算法,但當數(shù)據(jù)維數(shù)較大時,運行效率較低。為快速挖掘頻繁項集,本文提出了一種基于布爾矩陣運算的Apriori改進算法。
算法主要包括兩個模塊,一是尋找頻繁項集的函數(shù)模塊,評價指標為支持度,計算如下式所示:
Support(A,B)=P(A∪B)=NA,BN(1)
式中:P(A∪B)表示A、B項同時出現(xiàn)的比率,NA,B為A、B項同時出現(xiàn)的次數(shù),N為樣本數(shù)。
置信度反映了當A出現(xiàn)時,B出現(xiàn)的概率大小,如果置信度為100%,則表明A出現(xiàn)時必然伴隨著B出現(xiàn)的情況。
另一模塊是探索關聯(lián)規(guī)則的函數(shù)模塊,指標為置信度,計算如下式所示:
Confidence(AB)=P(A|B)=NA,BNA(2)
式中:P(A|B)為條件概率,表示當A出現(xiàn)時,B出現(xiàn)的概率;NA為A出現(xiàn)的次數(shù)。
由于置信度A→B與B→A在色彩關聯(lián)規(guī)則挖掘中意義相同,為有效減少程序計算量,算法僅考慮支持度的影響。
1.3 關聯(lián)規(guī)則挖掘
將上述提取色聚類所對應的意象色標記結果構建為布爾型矩陣Dn×k,下標n為圖像樣本數(shù);k為二次聚類K-means設定的聚類中心數(shù),即指定的意象色彩數(shù)。矩陣元素Dij表達如下式所示:
Dij=1I→i=Cj0I→i≠Cj(3)
式中:1≤i≤n,1≤j≤k;Cj為第j個聚類中心。
當?shù)趇幅圖像中存在提取色二次聚類歸為第j意象色時,Dij為1;否則,置為0。如圖2所示,當k取值為8時,第1幅樣本圖像存在與意象色色號1、4、5、7、8相似的顏色,則對應至矩陣首行相應元素值為1,其余為0。類似地,計算矩陣Dn×k中其他元素值。
頻繁項集采用與操作運算,如下式所示:
Fjt=Dj∧Dt=d1j∧d1td2j∧d2tdnj∧dnt, j,t∈(1,k)(4)
式中:Dj、Dt分別為矩陣任意兩列數(shù)據(jù)項,由此計算j、t二元配對色的支持度Fjt。
計算如下式所示:
Support(Fjt)=1n∑ni=1(dij∧dit)(5)
類似地,增加公式與操作項,完成多元色組支持度的計算。
具體步驟為:通過式(3)構建色彩聚類結果對應的布爾矩陣Dn×k,根據(jù)式(5)相應地生成二元配對色組頻繁項集、三元配對色組頻繁項集,至多元配對色組頻繁項集。當不再產(chǎn)生滿足最小支持度的頻繁項集,終止計算。
2 畬族服裝設色實證分析
2.1 畬族傳統(tǒng)服裝色彩構成分析
文獻[2,21-22]對畬族服裝用色進行解讀,指出常見色主要為黑、藍、青、紅、黃、赭、綠、灰8色。為具象化表述浙、贛、閩三地畬族服裝色彩構成情況,本文采用圖形化方式展示意象色分布、占比及其十六進制色值。實驗中二次聚類數(shù)k同樣設為8,結果如圖3所示。
由H-S色環(huán)中顏色落點可以看出,三地意象色主要表現(xiàn)為黑、紅、藍等色,與文獻[2,21-22]基本一致,但分布存在著一定的差異。浙江、江西地區(qū)畬族服裝意象色多數(shù)落點在紅、
紫、藍象限,福建地區(qū)則主要落點在紅、黃、青象限。此外,意象色占比排序同樣存在一定的差異,若以占比50%內(nèi)意象色為主色,浙江地區(qū)主色為黑、藍和黃;江西為黑、灰和紅;福建則為黑、青和黃色。
該方法直觀地展示了不同地區(qū)畬族服裝色彩分布及其差異。進一步地論證了畬族雖經(jīng)遷徙,但用色仍保持了相對穩(wěn)定,并隨著與本土民俗的融合,設色形態(tài)上適度演化,形成當前的地域特征。
2.2 關聯(lián)規(guī)則支持度閾值選擇
關聯(lián)規(guī)則中支持度閾值的設定,直接影響到配對色組解析數(shù)量。支持度閾值范圍在0~1,閾值越大,解析的種類越少;反之,輸出的解析種類增多。為了橫向比較不同地區(qū)畬族服裝設色規(guī)則,選擇有效的支持度閾值,本文對不同閾值下關聯(lián)規(guī)則數(shù)進行比較分析。實驗中,以0.1為間隔,解析了0.1~1.0不同閾值下配對色組關系,結果如圖4所示。
總體來看,當閾值由0.1逐步增大至1.0時,二元、三元、四元、五元配對數(shù)逐漸遞減。當閾值增大至0.5時,浙江地區(qū)配對數(shù)均為0,江西和福建地區(qū)僅存二元配對色組;類似地,閾值為0.3、0.4時,配對類較少,不利于區(qū)分三地配色關系。而當閾值為0.1時,配對關系數(shù)過多,不利于設計人員觀測內(nèi)在核心關系。當閾值設置為0.2時,二元、三元規(guī)則數(shù)量適中,能夠有效區(qū)分不同地區(qū)的畬族服裝設色關系。因此,實驗中支持度閾值設置為0.2,用以進一步地分析不同地區(qū)畬族服裝設色關系。
2.3 不同地區(qū)畬族服裝設色關系解析
為厘清畬族服裝色彩搭配關系和運用機制,區(qū)分不同地區(qū)設色關系差異,本文對其關聯(lián)關系作進一步探析。
表1顯示了三地畬族服裝二元配色關系及其支持度。其中,浙江地區(qū)雙色規(guī)則有18組、江西地區(qū)16組、福建地區(qū)14組,各配對色組支持度數(shù)值按序排列。
為可視化呈現(xiàn)三地畬族服裝二元配色規(guī)則,輸出形式設置為:線段兩端連接配色對,線段粗細表示支持度大小,連線越粗即支持度越高,即二色共現(xiàn)頻次越高,結果如圖5所示。
由表1及圖5可知,三地畬族服裝色彩配對關系中,浙江地區(qū)居多,用色靈活多樣,配色形式豐富。福建地區(qū)較為簡潔,且其F8號色未出現(xiàn)于配色關系中,說明其與常用色搭配使用概率低于20%。
若以支持度不低于0.4配對色組為高頻配對,則浙江地區(qū)畬族服裝用色Z1-Z2、Z1-Z3、Z1-Z5和Z1-Z6為高頻配對,高占比Z1色號多與藍、黃和紅色相搭配呈現(xiàn);江西地區(qū)高頻配對色組僅為J1-J2,支持度為0.52,即江西地區(qū)畬族服裝常以黑、灰兩色高占比搭配出現(xiàn)頻次高于50%,用色深沉質樸;福建地區(qū)高頻配對色為F1-F3、F1-F5與F1-F4三組。
此外,浙江地區(qū)畬族服裝還存在Z4、Z5、Z6與Z8四種色號交織低頻配對,玫紅、土紅、深紅等深淺不一的搭配,服裝圖案中以紅色、水紅色為主、粉色為輔的色彩搭配,黑色則協(xié)調統(tǒng)一所有色彩;通過色彩搭配形成區(qū)域性的視覺中心點,蘊含著一定的服裝美學原則。福建地區(qū)中F3-F6、F4-F5與F4-F7配對色組支持度均為0.2,即福建地區(qū)畬族服裝存在少量紅、黃等點綴色作亮麗裝飾配色。
表2為三地畬族服裝三元配色關系及其支持度,其中浙江地區(qū)三色規(guī)則有3組、江西地區(qū)7組、福建地區(qū)5組。圖6為三地畬族服裝三元配色關系,三角形三條邊連接三種配對色,灰色越深表示支持度越高,即畬族服裝搭配中三色共現(xiàn)頻次越高。
由表2及圖6可知,江西地區(qū)畬族服裝三元色配對關系較為豐富,福建次之,浙江最少。其中,浙江地區(qū)中Z1-Z2-Z3配對色搭配頻次較高,為高占比黑—藍—黃對比色搭配。江西地區(qū)存在J1、J2號色與中低占比色搭配情況,即江西地區(qū)畬族服裝三元配色多存在黑、灰作主色,其余常用色點綴情況。福建地區(qū)中F1-F3-F5配對色為三地中三元配對頻次最高,支持度高達0.35,其畬族服裝整體呈現(xiàn)黑、青、不同深淺黃色三色相互配對的對比色搭配。
實驗中,算法測試用計算機配置為:處理器AMD 3.59 GHz,機帶RAM為8.0 GB,利用Python編寫的關聯(lián)規(guī)則挖掘算法,配色規(guī)則平均耗時0.032 s。
3 結 論
本文利用圖像分析技術,對田野調查采集的畬族服裝圖像進行色彩解析。采用二分自適應聚類提取圖像色彩數(shù)據(jù),再通過兩次聚類構建浙、贛、閩三地畬族服裝意象色。利用改進的Apriori算法解析服裝設色規(guī)則,以可視化方式闡釋不同地區(qū)設色形態(tài)和關聯(lián)關系。
實驗結果表明,三地畬族服裝量化色與當前文獻記載的畬族服裝用色基本吻合,色相整體呈現(xiàn)為黑、紅、藍等色。二元配色關系中,各地區(qū)畬族服裝色彩配對色組存在一定差異。浙江地區(qū)畬族服裝存在深淺不一的同類色交織搭配情形,呈現(xiàn)出豐富層次感;江西地區(qū)用色深沉樸素,其中黑灰搭配頻率大于50%;福建地區(qū)則存在少量紅、黃等點綴色搭配情況。三元配色關系中,江西地區(qū)畬族服裝配對較為豐富,浙江地區(qū)較為簡潔,福建地區(qū)整體呈現(xiàn)黑、青、深黃與淺黃相互配對關系。上述解析的三個地區(qū)畬族服裝設色關系,具象化表現(xiàn)出服裝用色規(guī)律和配色邏輯,有助于實現(xiàn)對畬族服裝色彩的數(shù)字化保護。此外,該方法客觀、可視化的方式表征服裝用色機制,為今后畬族服裝色彩活化設計應用提供了賦色依據(jù),也進一步為系統(tǒng)研究同類傳統(tǒng)服裝色彩提供方法參考。
參考文獻:
[1]張馨翌, 馮玲玲, 李強. 畬族女裝服斗造型及紋樣特征研究[J]. 絲綢, 2020, 57(1): 67-75.
ZHANG Xinyi, FENG Lingling, LI Qiang. Study on the patterns and shapes of front placket decoration of She minority womens wear[J]. Journal of Silk, 2020, 57(1): 67-75.
[2]夏帆, 蔡建梅, 雷紅香. 畬族服裝典型樣式及特征探究[J]. 絲綢, 2017, 54(4): 43-51.
XIA Fan, CAI Jianmei, LEI Hongxiang. Exploration on typical style and characteristics of She minority clothing[J]. Journal of Silk, 2017, 54(4): 43-51.
[3]陳敬玉, 張萌萌. 畬族彩帶的要素特征及其在當代的嬗變[J]. 絲綢, 2018, 55(6): 83-90.
CHEN Jingyu, ZHANG Mengmeng. Element characteristics of colored sash of She nationality and its transmutation in contemporary era[J]. Journal of Silk, 2018, 55(6): 83-90.
[4]陳敬玉. 民族遷徙影響下的浙閩畬族服飾傳承脈絡[J]. 紡織學報, 2017, 38(4): 115-120.
CHEN Jingyu. Shes costumes heritage context in Zhejiang and Fujian provinces based on ethnic migration history[J]. Journal of Textile Research, 2017, 38(4): 115-120.
[5]吳微微, 陳良雨. 浙江畬族近代女子盛裝審美藝術[J]. 紡織學報, 2008(1): 107-109.
WU Weiwei, CHEN Liangyu. Aesthetics and art of Shes modern women formal dress in Zhejiang[J]. Journal of Textile Research, 2008(1): 107-109.
[6]段婷. 畬族傳統(tǒng)服飾面料及印染工藝分析[J]. 化纖與紡織技術, 2020, 49(10): 35-37.
DUAN Ting. Analysis of the traditional clothing fabrics and printing and dyeing process of She nationality[J]. Chemical Fiber & Textile Technology, 2020, 49(10): 35-37.
[7]徐平華, 冒海琳, 張玉杰, 等. 民族服飾色彩構成分析方法研究[J]. 絲綢, 2019, 56(3): 24-29.
XU Pinghua, MAO Hailin, ZHANG Yujie, et al. Study on analysis method for color composition of ethnic costumes[J]. Journal of Silk, 2019, 56(3): 24-29.
[8]HAGTVEDT H, BRASEL S A. Color saturation increases perceived product size[J]. Journal of Consumer Research, 2017, 44(2): 396-413.
[9]XU B Q, LIU X J, LU C F, et al. Transferring the color imagery from an image: A color network model for assisting color combination[J]. Color Research and Application, 2019, 44(2): 205-220.
[10]LIU X J, SUN Y, WU J F. Gene regulatory network model for product industrial design[J]. Journal of Theoretical and Applied Information Technology, 2013, 48(3): 1606-1611.
[11]徐明慧, 徐平華, 韋秋菊, 等. 基于網(wǎng)絡關系模型的品牌女裝配色解析[J]. 紡織學報, 2021, 42(11): 137-142.
XU Minghui, XU Pinghua, WEI Qiuju, et al. Color parsing of female brand clothing based on nexus network modeling[J]. Journal of Textile Research, 2021, 42(11): 137-142.
[12]夏帆. 畬族源生服裝圖系研究[M]. 杭州: 浙江人民美術出版社, 2017: 13-57.
XIA Fan. Research on Pattern of She Nationality Garment[M]. Hangzhou: Zhejiang Peoples Fine Arts Publishing House, 2017: 13-57.
[13]LEE G S, LEE S H, KIM G O, et al. A modified Grabcut using a clustering technique to reduce image noise[J]. Symmetry, 2016, 8(7): 64.
[14]BHATTACHARYA T, CHATTERJEE A. Evaluating performance of some common filtering techniques for removal of Gaussian noise in images[C]//2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). Chennai: IEEE, 2017: 1981-1984.
[15]WANG D W, YAN W C, ZHU T, et al. An adaptive correction algorithm for non-uniform illumination panoramic images based on the improved bilateral gamma function[C]//2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Sydney: IEEE, 2017: 1-6.
[16]LIU J, DU J, WANG X, et al. A hybrid algorithm based on improved LLE and k-means for visual codebook generation in scene classification[C]//2011 4th IEEE International Conference on Broadband Network and Multimedia Technology. Shenzhen: IEEE, 2011: 265-269.
[17]ANGELINE D M D. Association rule generation for student performance analysis using apriori algorithm[J]. The SIJ Transactions on Computer Science Engineering & Its Applications, 2013, 1(1): 12-16.
[18]ZHOU S C. Data mining and analysis of the compatibility law of traditional Chinese medicines based on FP-growth algorithm[J]. Journal of Mathematics, 2021(10): 1-10.
[19]WANG W. Optimization of intelligent data mining technology in big data environment[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2019, 23(1): 129-133.
[20]LA P T, LE B, VO B. Incrementally building frequent closed itemset lattice[J]. Expert Systems with Applications, 2014, 41(6): 2703-2712.
[21]李方園, 陳敬玉. 藝術人類學視角下的畬族服飾圖案解讀[J]. 包裝工程, 2019, 40(2): 109-113.
LI Fangyuan, CHEN Jingyu. Interpretation of She costume patterns from the perspective of artistic anthropology[J]. Packaging Engineering, 2019, 40(2): 109-113.
[22]徐雯琦, 吳瑩潔, 趙偉楠, 等. 族群認同影響下的貴州畬族服飾發(fā)展變遷[J]. 服裝學報, 2020, 5(6): 520-526.
XU Wenqi, WU Yingjie, ZHAO Weinan. Development and changes of the She costume in Guizhou under the influence of ethnic identity[J]. Journal of Clothing Research, 2020, 5(6): 520-526.
Coloration association rules parsing of She nationality costumes
CAO Jingwena, JIA Jinga, XU Pinghuaa,b,c, LIN Ruibinga, SUN Xiaowana
(a.School of Fashion Design & Engineering; b.Zhejiang Provincial Research Center of Fashion Engineering Technology; c.MOC Key Laboratoryof Silk Culture Heritage and Product Design Digital Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:
Homogenization of textiles and garments, the mismatch between supply and demand, and slow design decisions have long been a bottleneck in the development of a high-quality industry. With the activation of consumer trends such as “oriental aesthetics” and “new fashion”, the regeneration of traditional, national and localized clothing spirit and cultural connotation has opened up new ideas and new ways for consumption growth. Color research based on image analysis technology is helpful to accurately, conveniently, and objectively characterize garment composition forms and color usage patterns and build a bridge between subjective perception and quantitative analysis, thus helping the development and application of intelligent color design for fashion products.
In order to clearly explain the color distribution and association rules of She traditional costumes, image analysis techniques were utilized to parse the imagery coloration relationship. Taking the She diaspora in Zhejiang, Jiangxi and Fujian provinces as an example, the coloration of 150 representative costumes images obtained from the field survey were analyzed. Firstly, the selected samples were subjected to image pre-processing operations. Secondly, in the construction stage of the base dataset, if conventional K-means clustering was used, the number of color clusters of each sample was forced to be uniform, which would easily lead to color lifting bias. Therefore, an improved dichotomy K-means adaptive clustering algorithm was used here to adaptively extract the color of each garment. Under HSV color space, the main colors of the sequence samples were extracted. On this basis, the K-means algorithm was used for secondary clustering when regional differences were compared horizontally, and the number of common color categories of She was determined according to relevant literature studies to unify the number of cluster centers and obtain the clothing imagery colors of each region. The improved vector set-based Apriori algorithm was used to resolve the multivariate color matching relationships among the imagery colors of She clothing, and to visually characterize the color patterns and correlations of different regional settings at the same time. Experimental results show that the quantified colors of She clothing in the three regions match the colors used in She clothing recorded in current literature, and the color palette as a whole presents black, red and blue. In the binary color matching relationship, there are some differences in the color matching color groups of She clothing in each region. In Zhejiang province, there are different shades of similar colors interwoven with each other, showing a rich sense of hierarchy; in Jiangxi province, the colors are deep and simple, with matching frequency of black and gray being greater than 50%, while in Fujian province, there are a small amount of red, yellow and other colors embellishing with each other. In the ternary color scheme relationship, the She clothing pairing is richer in Jiangxi province, simpler in Zhejiang province, and as a whole shows black, green, dark yellow and light yellow pairing relationships with each other in Fujian province. The average time cost of color matching rules parsing with the improved algorithm is 0.032 seconds, which can quickly parse the color correlation rules of She costumes coloration, and provides a referenced method of color analysis and regeneration design for other similar traditional costumes.
This study analyzes the color relationships of She clothing in Zhejiang, Jiangxi, and Fujian, and concretely represents the color usage patterns and color matching logic of clothing, which helps to realize the digital conservation of She clothing coloration. In addition, the objective and visualized way of characterizing the color mechanism of clothing provides a basis for color assignment for the future application of color activation and regeneration design of She clothing and further provides a methodological reference for the systematic study of similar traditional clothing colors.
Key words:
coloration relationship; association rules; adaptive clustering; color parsing; color spectrum; visualization
收稿日期:
2022-07-04;
修回日期:
2023-02-26
基金項目:
國家自然科學基金青年基金項目(61702460);國家社會科學基金重點項目(19AMZ009);浙江省高校重大人文社會科學攻關計劃項目(2023QN092);浙江理工大學科研業(yè)務費專項資金資助項目(22076215-Y,2021Q057);服裝設計國家級虛擬仿真實驗教學中心項目(zx20212004);浙江省服裝工程技術研究中心開放基金項目(2021FZKF05);浙江省教育廳科研基金項目(Y202250618);浙江理工大學教育教學改革研究重點項目(jgzd202202);浙江理工大學優(yōu)秀研究生學位論文培育基金項目(LW-YP2021053)
作者簡介:
曹竟文(1998),女,碩士研究生,研究方向為服飾色彩智慧設計。通信作者:徐平華,副教授,shutexph@163.com。