• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The integration of dinitropyrazole and 1,3,4-oxadiazole: A novel hybrid heterocyclic skeleton for balancing energy and stability

    2023-07-04 07:57:54XiaoxiaoZhengTingouYanLeiQianHongweiYangGuangbinCheng
    Defence Technology 2023年6期

    Xiao-xiao Zheng, Ting-ou Yan, Lei Qian, Hong-wei Yang, Guang-bin Cheng

    School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

    Keywords:Heterocycle Azo-bridged Hybrid skeletons Energetic materials

    ABSTRACT

    1. Introduction

    Energetic Materials (EMs) are defined as the metastable chemicals or their formulations that can perform chemical reactions independently followed by emitting high amounts of chemical energy [1,2]. In recent years, nitrogen-rich heterocycles have been extensively studied in the field of EMs [3—5]. At present, the skeletons of nitrogen-rich heterocycles are mainly divided into fivemembered heterocycles (azoles and oxadiazoles) and sixmembered heterocycles (azines) [6,7]. As an important class of five-membered heterocycles,oxadiazoles have attracted quite wide interest in recent decades due to their oxygen- and nitrogen-rich skeletons [8]. To our knowledge, the only difference in the position occupied by the nitrogen and oxygen in the skeleton of oxadiazole leads to four isomers,i.e.,1,2,3-oxadiazole(unstable),1,2,5-oxadiazole (furazan),1,2,4-oxadiazole and 1,3,4-oxadiazole [9,10].

    1,3,4-Oxadiazole derivatives are popular in the fields of agriculture, medicine and optical materials because of their unique biological and optical activities [11]. However, compared with furazan(ΔHf=185 kJ/mol),1,3,4-oxadiazole(ΔHf=51 kJ/mol)was received less attention in the field of EMs due to its low enthalpy[12,13]. To expand the application of 1,3,4-oxadiazole in EMs, the low enthalpy of formation of this skeleton is the top concern. An effective strategy was presented to increase the enthalpy of skeleton by matching multiple nitrogen-rich heterocycles into one molecule [14]. However, the assembly of multiple nitrogen-rich heterocycles may be limited by sophisticated synthesis procedures [15]. Therefore, the development of biheterocycles by hybridizing two heterocyclic skeletons into one molecule is relatively simple and feasible [16—18] (Fig. 1). Hybrid skeletons have prevailed in EMs for a long time because of their significant advantages:(a)strong π-conjugated effect;(b)many modifiable sites for explosophoric groups; (c) good thermal stabilities [19,20]. For example,5,5′-bis(3,5-dinitro-1H-pyrazol-4-yl)-1H,1′H-3,3′-bi(1,2,4-triazole) (BDBT-2) reveals remarkable thermal stability(Td=372?C)because of the powerful π-conjugation[21].Another example is 3-(3,4-dinitro-1-(trinitromethyl)-1H-pyrazol-5-yl)-4-nitrofurazan, the compound shows high density (1.94 g/cm,298 K) and excellent detonation performance (Dv= 9200 m/s,P= 38.0 GPa) due to the combination of six nitro groups [22]. In general, the installation of —NO2in the pyrazole is an effective measure to intensify the detonation performance of energetic materials [23].

    Fig.1. The synthesis strategy of this work.

    Considering the points discussed above, 1,3,4-oxadiazole and pyrazole with easily modified sites are sensibly selected as two compositions to construct biheterocyclic skeleton [24—26]. In this study,5-(3,4-dinitro-1H-pyrazol-5-yl)-1,3,4-oxadiazol-2-amine(2)was synthesized. The nitroamino moieties as explosophoric group were brought into the ring of 1,3,4-oxadiazole to glorify the performance of the compound. Three energetic salts were further developed. Among them, dihydroxylammoinium (6) has good comprehensive properties, which had good detonation velocity of 9023 m/s and impact sensitivity of 20 J.In conclusion,the assembly of nitrogen-rich heterocycles and the design of reasonable hybrid skeletons have potential application prospects in the synthesis of polyheterocyclic compounds with good comprehensive properties.

    2. Experimental part

    2.1. Security instructions

    All developed products are high-energy substances. Hence,protective measures need to be implemented.The entire procedure ought to be carried out in a fume hood.Dedicated helmets,goggles and lab gloves should always be worn. Attentively, the small dose experiment is necessary. The mechanical stimulation, flame and energization should be avoided during the operation and storage.

    2.2. Synthesis

    2.2.1. Synthesis of2

    The solution of potassium bicarbonate (2.00 g,19.98 mmol) in 15 mL water was added to the suspension of 4,5-dinitro-1H-pyrazole-3-carbohydrazide(3.39 g,15.69 mmol)in 45 mL ethanol and then cyanogen bromide (1.67 g, 15.77 mmol) was added in small portions.The reaction mixture was stirred at room temperature for 24 h. The precipitate was filtered off and then the filtrate was concentrated to about 10 mL under vacuum. Compound2was collected by the second filtration from the concentrated filtrate,washed with cold water,dried in air as a yellow solid2(1.52 g,40%).1H NMR chemical shifts (500 MHz, DMSO?d6, ppm): δ = 7.77,4.48.13C NMR chemical shifts (125 MHz, DMSO?d6, ppm):δ=164.78,148.49,148.12,128.65,124.93.IR(KBr,cm-1):?=3417,3359,3147,1687,1664,1518,1500,1469,1364,1331,1045,945,849,817, 738, 572. Elemental analysis (C5H3N7O5, 241.12, %): calculated C, 24.91; H,1.25; N, 40.66. Found C, 24.84; H 1.11; N,40.46.

    2.2.2. Synthesis of3

    0.42 g KMnO4in 5 mL water was scooped into to 5 mL 37%hydrochloric acid of2(0.50 g,2.07 mmol).The mixture was stirring for 4 h at 50?C. The terminal solution was treated with 30% H2O2when the reaction was over. And the precipitate was filtered off,washed with water and dried in air to afford3(0.62 g,63%).1H NMR chemical shifts (500 MHz, DMSO?d6, ppm): δ = 5.32.13C NMR chemical shifts (125 MHz, DMSO?d6, ppm): δ = 168.22, 157.38,156.93,148.48,127.41. IR (KBr, cm-1):?= 3563, 3432,1560,1540,1504,1424,1358,1331,1237,1204,1055,1016, 976, 953, 848, 813,756, 735, 608, 587. Elemental analysis (C10H2N14O10, 478.20, %):calculated C, 25.12; H, 0.42; N, 41.01. Found C, 25.22; H, 0.31; N,41.46.

    2.2.3. Synthesis of5

    At a low temperature(<0?C),2(0.24 g,1.00 mmol)was slowly scooped into 5 mL nitric acid (98%). Then it was warmed to room temperature. TLC (thin-layer chromatography) was used to check the completion of the reaction.Subsequently,the reaction solution was quenched with crushed ices and stirred for several hours at 25?C.Ethyl acetate was used as the extractant.The upper extracts were collected and further dried with MgSO4. Hereafter, the ethyl acetate was removed by air to obtain4as yellow oil. The nitration product4was dissolved in 5 mL acetonitrile.And a large amount of NH3(g) was passed through under stirring for 2 h at normal temperature. The precipitate5was afforded by suction filtration and placed in the air to dry (0.27 g, 84%).1H NMR chemical shifts(500 MHz, DMSO?d6, ppm): 7.14 (s, br.).13C NMR chemical shifts(125 MHz,DMSO?d6,ppm):165.56,153.77,150.11,132.70,126.25.IR(KBr,cm-1):?=3196,3012,1527,1509,1492,1425,1384,1373,1310,1212, 1149, 1114, 1078, 1002, 959, 852, 815, 778, 752, 742, 718.Elemental analysis(C5H8N10O7,320.18,%):calcd C,18.76;H,2.52;N,43.75. Found C,18.52; H, 2.36; N, 43.66.

    2.2.4. Synthesis of6

    The synthesis steps were similar to compound5 (40 μL). 50%NH2NH2?H2O was applied in this synthesis process. The dihydrazinium6: yellow solid, 0.23 g, 66%.1H NMR chemical shifts(500 MHz, DMSO?d6, ppm): 6.03 (s, br.).13C NMR chemical shifts(125 MHz,DMSO?d6,ppm):165.58,154.01,150.16,132.86,126.16.IR(KBr, cm-1):?= 3360, 3286, 2646, 1613, 1489, 1471, 1350, 1307,1282,1238,1173,1080, 966,850,816,754,538. Elemental analysis(C5H10N12O7,350.21,%):calculated C,17.15;H,2.88;N,47.99.Found C,17.11; H, 2.86; N,48.16.

    2.2.5. Synthesis of7

    The synthesis steps were also similar to compound5.(50 μL).50% NH2OH solution was applied in this synthesis process. The dihydroxylammonium7: yellow solid, 0.25 g, 71%.1H NMR chemical shifts (500 MHz, DMSO?d6, ppm): δ = 8.51 (s, br.).13C NMR chemical shifts (125 MHz, DMSO?d6, ppm): δ = 165.65, 153.91,150.16,132.82,126.22. IR (KBr, cm-1):?= 3168, 3027,1657,1490,1418,1362,1313,1112,1078,1000,958,920,849,813,741,668,624,612, 545. Elemental analysis (C5H8N10O9, 352.18, %): calculated C,17.15; H, 2.29; N, 39.77. Found C,17.18; H, 2.14; N, 40.06.

    3. Results and discussion

    3.1. Synthesis

    The synthesis processes of all the energetic compounds in this work were present in Scheme 1. In this study, 4,5-dinitro-1H-pyrazole-3-carbohydrazide (1) was synthesized according to the previously reported method [27] The heterocyclization reaction of1with cyanogen bromide in the presence of potassium bicarbonate afforded precursor2.It is worth noting that the previously reported 1,3,4-oxadiazole derivatives obtained from the above heterocyclization reaction were usually collected from the filter cakes.However,in this work,because of the good solubility of the product in this reaction system, precursor2was obtained from the concentrated filtrate instead of the filter cake in high purity.Thereafter, the azo-bridged compound3was prepared smoothly based on the oxidative coupling of C—NH2groups of2. The nitrification reaction of precursor2was performed with the 98%fuming HNO3to improve the detonation performances. Disappointingly,we cannot successfully obtain solid-state product4due to its high hygroscopicity. Thereafter, three commonly used Br?nsted bases(ammonia, 50% hydrazine hydrate and 50% hydroxylamine) were selected to synthesize corresponding energetic salts5—7in the yield of 66—84%.

    Scheme 1. The synthesis process of newly developed compounds 2—7.

    3.2. Single crystal X-ray diffraction

    Single crystal cultivations of compounds2,3, and5were conducted to determine their structures and obtain more configuration information. All three crystals were obtained by slow evaporation of their saturated solution, both3?2H2O and5crystallized from aqueous solution and2?CH3CN from acetonitrile at room temperature.

    Three crystals (2?CH3CN,3?2H2O and5) crystallize in the monoclinic space group P21/n, monoclinic space group P21/c and triclinic space group P-1(2),respectively.The calculated density of2?CH3CN is 1.719 g/cm3at 170 K,which is lower than that of3?2H2O(1.808 g/cm3at 170 K) and5(1.817 g/cm3at 167 K). The lowest density of2?CH3CN among three crystals is blamed on its packing mode and the presence of acetonitrile in the structures. The layer structures of2?CH3CN and3?2H2O are both stacked in the “W/M”mode,but the stacking mode of 3?2H2O is more compact.The layer structures of5are stacked in the layer-by-layer mode. Generally,the face-to-face and the tight packing mode can increase the crystal density [28] (Fig. 2(g)—Fig. 2(i)). The3?2H2O has a near-planar geometry, which can be further confirmed by the torsion angles of C4—O5—C5—N6 179.2 (3)o, N2—N3—C3—C4 178.9 (3)oand C3—C1—C2—N1 179.0 (3)o. Only the nitro groups of3?2H2O are distorted out of the molecular plane because of the spatial resistance (Fig. 2(e)). The dihedral angle between pyrazole and oxadiazole of crystal2?CH3CN is 15.15?,which is smaller than that of5(20.55?). In Fig. 2(g)—Fig. 2(l), the vertical distances between the two layers of2?CH3CN,3?2H2O and5are 3.78, 3.51 and 3.34 ?,respectively, which are all within the range of the distance of π-π interaction (<4.0 ?) [29]. Additionally, there are a great many intramolecular hydrogen bonds between anions and cations in the molecules of5, resulting in the closest interlayer spacing. In Fig.2(i),each ammonium cation and the adjoining three dianionic salts form seven H-bonds N9—H9A???N5, N9—H9B…O2,N9—H9B…O3, N9—H9C…O7, N9—H9C…N2, N9—H9D???O4 and N9—H9D???N6(see ESI:Table S2).All the H-bonds range in length from 2.795 (3) to 3.296 (2) ? in5. In particular, the quite strong intramolecular H-bonds in5were N9—H9C…O7 (D???A: 2.795 (3)?; D-H???A: 102.3 (14)o) and N9—H9A???N5 (D???A: 2.915 (2) ?;D-H???A: 172 (2)o).

    Fig.2. (a)—(c)The X-ray crystal structure of 2?CH3CN,3?2H2O and 5,respectively;(d)—(f)The structure planarity of 2?CH3CN,3?2H2O and 5,respectively(For clarity,the solvents were removed in 3?2H2O); (g)—(i) The packing diagram and intermolecular hydrogen bonds (H-bonds) of 2?CH3CN, 3?2H2O and 5, respectively; (j)—(l) The simplified stacking diagram of 2?CH3CN, 3?2H2O, 5, respectively.

    Fig.3. (a)—(c)ESP-mapped molecular van der Waals(vdW)surface of 2,3 and 5.(The positive and negative points are colored by orange and cyan,respectively.Only larger absolute values of ESP were labeled.).

    3.3. Physicochemical properties and related quantum calculations

    To evaluate the application potential of the newly synthesized compounds, a series of theoretical calculations and practical tests on the performances of these compounds were conducted. All compounds were sufficiently dried at room temperature to remove solvents before tests.The results were summarized in Table 1.

    Table 1Physicochemical properties of 2, 3 and 5—7.

    The two indicators of mechanical and thermal stabilities are commonly discussed in the field of energetic material [30]. In this study,the differential scanning calorimetry under a heating rate of 5?C/min was used to measure the thermal stability. The decomposition onset temperature of compounds2—7is in the range of 120—240?C.Among these compounds,the precursor2has the best thermal stability and the highest initial decomposition temperatureof 240?C. Except for compound6, the initial decomposition temperature of the rest compounds is greater than 190?C,which meets the need of the actual applications. Sensitivity is a safety factor to be considered for high-energy materials. The sensitivity of impact and friction were measured by using standard BAM procedures.In general,the sensitivities of the newly synthesized compounds(2,3and5—7) are lower than that of the traditional explosive RDX(IS > 7.4 J,FS= 120 N). Among them, compound2(IS> 40 J,FS> 360 N) has the lower sensitivity to external stimuli than compound3(IS= 16 J,FS= 120 N) because of its abundant intermolecular H-bonding.

    To further explain the variations of stabilities among the developed compounds, the ESP (electrostatic potential) analysis base on the crystal data of2,3and5were applied to investigate the electrostatic interaction. For all compounds, the maximum electrostatic potential was distributed near the hydrogen atoms,because the electronegativity of hydrogen is less than that of carbon and oxygen. In Fig. 3, the extreme value distribution of electrostatic potential of2(-30.17 to 56.94)is narrower than that of3(-24.52 to 66.76) and5(-44.62 to 85.93), which means that the electrostatic potential distribution of2is more uniform than3and5. Previous works have reported that a compound with more uniform electrostatic potential distribution might have lower sensitivities [31,32]. Thus, compound2has the least sensitivities to external stimuli. Furthermore, compound3has the larger red region (electropositive areas) than that of2, which reveals that the introduction of N-azo bridges might increase the sensitivities.

    Density is also one of indicators considered for energetic materials. The density analyzer we utilized is based on the gas expansion method to obtain the true density(ρ)[34].The density of all compounds is between 1.72 g/cm3and 1.87 g/cm3. The azobridged compound3has the highest density of 1.87 g/cm3among all the newly developed compounds.

    To explore the differences in crystal densities and interlayer spacing among the three crystals, the Hirshfeld surface and 2D fingerprint of crystals2,3and5were employed to reveal weak interactions in the molecular.Three main features can be obtained from Fig.4.Firstly,the H-bonding information of the three crystals can be seen in Fig.4(a)—4(c),the obvious dark red spots represent the sites where H-bonds are formed. Secondly, in Fig. 4(d)—4(f), a pair of remarkable spikes can be found in the bottom left corner of the maps. Generally, the ability of N atoms as hydrogen bond donors is slightly stronger than that of O atoms,so the peaks formed by N atoms as hydrogen bond donors are sharper. Lastly, the specific ratio data can be obtained in Fig.4(g)—4(i),the strength of Hbonding usually reflected by the percentages of O…H and N…H interactions.And the strength of π-π interactions is guided by C…N and C…O interactions. These main features of2,3and5are consistent with the crystal packing discussed above. For example,the total H-bonding interactions of5are up to 62.5%, which is apparently higher than that of2(44.9%) and3(26.0%), indicating the minimum interlayer spacing and the highest crystal density of5. The proportion of O…N interaction of3accounts for 31.30%,which reflects strong interlayer contacts in the molecules.Thus,the suboptimal interlayer spacing and crystal density of3can be explained [35].

    The NCI(noncovalent interaction)analysis is beneficial for us to thoroughly understand the intra- and intermolecular interactions.Generally,the blue flakes represent H-bond interactions,the green flakes represent vdW interactions (π-π interactions) and the red flakes represent steric effect. As can be seen in Fig. 5, the green flakes in compound3are larger than that in2, indicating the stronger π-π interactions of3[36,37],which is consistent with the above analysis in Fig.4.In addition,5shows stronger steric effects than2, which might lead to the increase in the dihedral angle between the pyrazole and oxadiazole rings.

    Fig. 5. (a)—(c) The NCI plots of gradient isosurfaces of 2, 3 and 5, respectively; d The legend of NCI plots. The blue flakes, H-bonds; The green flakes, vdW interactions (π-π interaction) and the red flakes, steric effect.

    All compounds exhibit positive enthalpy of formation (ΔHf),ranging from 0.52 to 2.10 kJ/g.Compared with RDX,the enthalpy of formation of these compounds exceed more than 0.2 kJ/g at least.The high enthalpy of formation has a positive effect on the detonation performance.In the study,the compound3has the highest the enthalpy of formation (2.10 kJ/g), which is much greater than that of RDX (0.32 kJ/g).

    With the main parameters (enthalpy of formation, density)required for the calculation of the detonation performances in hand, the detonation properties can be gained from EXPLO5 v6.01 program.It is worth mentioning that the detonation performances of azo-bridged compound3(Dv= 8904 m/s,P= 34.47 GPa) are higher than that of RDX(Dv=8801 m/s,P=33.60 GPa).Among the three energetic ionic compounds, the detonation performances of the compound6(Dv=9025 m/s,P=34.66 GPa) and compound7(Dv= 8913 m/s,P= 36.32) are both superior than that of RDX.

    4. Conclusions

    The neutral bi-heterocyclic compounds2, azo-bridged compound3and salts5—7were synthesized and fully characterized.In this study,All the compounds show good detonation performances(Dv:ranging from 8120 m/s to 9025 m/s,P:ranging from 27.23 GPa to 36.32 GPa), moderate onset decomposition temperature(ranging from 120 to 240?C) and low sensitivities to both friction and impact stimuli. Additionally, the azo-bridged compound3showed good comprehensive performance, which is superior to RDX. The structure-property relationships among the compounds were further demonstrated by ESP, Hirshfeld surfaces, fingerprint plots and NCI based on the single-crystal data of2,3and5.To sum up,the contradiction between energy and safety can be effectively balanced by hybridizing two heterocyclic skeletons. The assembly of nitrogen-rich heterocycles and the design of reasonable hybrid skeletons provide a significant strategy for synthesis of the promising polyheterocyclic energetic materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was completed with support from the National Natural Science Foundation of China[No.22075143,21875110],as well as the Science Challenge Project [TZ2018004]. H. Yang thanks the Qing Lan Project for the grant.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.03.003.

    免费看av在线观看网站| 久久av网站| 你懂的网址亚洲精品在线观看| 亚洲精品日韩在线中文字幕| 最近最新中文字幕免费大全7| 一二三四中文在线观看免费高清| 丰满饥渴人妻一区二区三| 乱码一卡2卡4卡精品| 岛国毛片在线播放| 欧美精品一区二区免费开放| 成人漫画全彩无遮挡| 9热在线视频观看99| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 久久99精品国语久久久| 一本—道久久a久久精品蜜桃钙片| 精品第一国产精品| 久久99热6这里只有精品| 精品一品国产午夜福利视频| 亚洲精品aⅴ在线观看| 成人国语在线视频| 在线 av 中文字幕| 精品一区二区三卡| 日韩一本色道免费dvd| 亚洲综合色网址| 亚洲成人手机| 国产亚洲av片在线观看秒播厂| 久久精品人人爽人人爽视色| 色婷婷av一区二区三区视频| 春色校园在线视频观看| 精品一区二区三卡| 满18在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 成年人午夜在线观看视频| 极品少妇高潮喷水抽搐| 国产成人精品在线电影| 成人国产av品久久久| 99热国产这里只有精品6| 美女xxoo啪啪120秒动态图| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 国产精品秋霞免费鲁丝片| 一区二区三区四区激情视频| 日日啪夜夜爽| 免费av不卡在线播放| 国产极品粉嫩免费观看在线| 成人无遮挡网站| 韩国精品一区二区三区 | 人妻人人澡人人爽人人| 天天影视国产精品| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 精品人妻熟女毛片av久久网站| 国产精品成人在线| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 老熟女久久久| 国产一级毛片在线| www.熟女人妻精品国产 | 色视频在线一区二区三区| av片东京热男人的天堂| 亚洲综合色惰| 七月丁香在线播放| 我的女老师完整版在线观看| 一边亲一边摸免费视频| 久久精品久久精品一区二区三区| 久久国内精品自在自线图片| 性色av一级| 91成人精品电影| 欧美+日韩+精品| 全区人妻精品视频| 国产极品天堂在线| 精品一区二区免费观看| 青春草亚洲视频在线观看| 性色avwww在线观看| 久久精品久久久久久久性| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 插逼视频在线观看| 高清av免费在线| 黄色视频在线播放观看不卡| 午夜福利,免费看| 中文欧美无线码| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| videossex国产| 制服丝袜香蕉在线| 免费看光身美女| 99re6热这里在线精品视频| 少妇被粗大的猛进出69影院 | 日韩,欧美,国产一区二区三区| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 亚洲国产欧美在线一区| 久久97久久精品| 侵犯人妻中文字幕一二三四区| 亚洲精品一区蜜桃| 宅男免费午夜| 国产免费福利视频在线观看| 99香蕉大伊视频| 欧美国产精品一级二级三级| 春色校园在线视频观看| 国产爽快片一区二区三区| 国产精品国产av在线观看| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看| 国产老妇伦熟女老妇高清| 成年女人在线观看亚洲视频| 日本av免费视频播放| 在线看a的网站| 精品一区二区免费观看| 国产精品久久久久久精品电影小说| av视频免费观看在线观看| 国产精品国产三级专区第一集| 欧美性感艳星| 伊人久久国产一区二区| 老司机影院毛片| 国产成人免费观看mmmm| 黄色视频在线播放观看不卡| 九草在线视频观看| 高清av免费在线| 国产黄色视频一区二区在线观看| 在线精品无人区一区二区三| 久久免费观看电影| 亚洲av电影在线观看一区二区三区| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 精品一区二区免费观看| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 七月丁香在线播放| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产成人免费观看mmmm| 人妻系列 视频| 九草在线视频观看| 国产精品三级大全| 男人舔女人的私密视频| 全区人妻精品视频| 国产综合精华液| 国产深夜福利视频在线观看| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 人成视频在线观看免费观看| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说| 国产极品天堂在线| 午夜福利影视在线免费观看| 日韩成人伦理影院| 一级毛片 在线播放| 曰老女人黄片| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 国产片内射在线| 三上悠亚av全集在线观看| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 丝瓜视频免费看黄片| 永久网站在线| 国精品久久久久久国模美| av在线老鸭窝| 国产精品一国产av| 亚洲国产精品成人久久小说| 免费大片黄手机在线观看| 我的女老师完整版在线观看| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 成人18禁高潮啪啪吃奶动态图| 久久久久久久国产电影| 国产福利在线免费观看视频| 国产av国产精品国产| 在线观看人妻少妇| 亚洲av中文av极速乱| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 观看av在线不卡| 午夜福利影视在线免费观看| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 99热这里只有是精品在线观看| 黑丝袜美女国产一区| 男女高潮啪啪啪动态图| 久久久久久人妻| 国产成人精品久久久久久| 9色porny在线观看| 日韩制服丝袜自拍偷拍| 国产伦理片在线播放av一区| 性高湖久久久久久久久免费观看| 亚洲五月色婷婷综合| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品999| 久久精品人人爽人人爽视色| 最新的欧美精品一区二区| www.色视频.com| 国产日韩一区二区三区精品不卡| 亚洲精品第二区| 一级爰片在线观看| 看免费成人av毛片| 国产永久视频网站| 日本vs欧美在线观看视频| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜爱| 久久99热6这里只有精品| 少妇的逼水好多| 22中文网久久字幕| 欧美少妇被猛烈插入视频| 熟女人妻精品中文字幕| 日韩精品免费视频一区二区三区 | 久久99蜜桃精品久久| 国产亚洲午夜精品一区二区久久| 亚洲国产精品成人久久小说| h视频一区二区三区| 精品福利永久在线观看| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 99re6热这里在线精品视频| 边亲边吃奶的免费视频| 咕卡用的链子| 亚洲成av片中文字幕在线观看 | 激情五月婷婷亚洲| 国产一区有黄有色的免费视频| 成人手机av| 99久国产av精品国产电影| 伦精品一区二区三区| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 亚洲精品aⅴ在线观看| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 桃花免费在线播放| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 亚洲精品久久午夜乱码| 国产午夜精品一二区理论片| 久久久久视频综合| 高清毛片免费看| 亚洲精品视频女| av电影中文网址| 在线精品无人区一区二区三| 中文字幕最新亚洲高清| 亚洲国产看品久久| 99热国产这里只有精品6| 少妇 在线观看| 免费av不卡在线播放| 欧美性感艳星| 久久久欧美国产精品| 美女国产视频在线观看| 中文字幕亚洲精品专区| 大香蕉久久成人网| 狂野欧美激情性bbbbbb| 男人舔女人的私密视频| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 亚洲国产精品一区二区三区在线| 丰满少妇做爰视频| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院 | 国产成人欧美| 国产精品成人在线| 日韩一区二区三区影片| 久久久国产精品麻豆| 七月丁香在线播放| av线在线观看网站| 久久免费观看电影| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 大片电影免费在线观看免费| 丁香六月天网| av片东京热男人的天堂| 乱人伦中国视频| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 日韩成人伦理影院| 国产精品一区二区在线不卡| 成年动漫av网址| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 久久这里只有精品19| 婷婷成人精品国产| 国产黄频视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 夫妻性生交免费视频一级片| 国产成人免费无遮挡视频| 久久亚洲国产成人精品v| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 国产欧美日韩综合在线一区二区| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 五月天丁香电影| 熟女电影av网| 午夜福利影视在线免费观看| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 亚洲精品一二三| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| 国产精品无大码| 最近2019中文字幕mv第一页| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 亚洲国产精品一区二区三区在线| 老司机亚洲免费影院| 老司机影院毛片| 免费观看无遮挡的男女| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 日日撸夜夜添| 精品亚洲成a人片在线观看| 日韩不卡一区二区三区视频在线| 三上悠亚av全集在线观看| 成人黄色视频免费在线看| 亚洲精品第二区| 国产精品 国内视频| 在线 av 中文字幕| 男的添女的下面高潮视频| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠久久av| 免费日韩欧美在线观看| 人成视频在线观看免费观看| 国产精品99久久99久久久不卡 | 国产熟女欧美一区二区| 夜夜骑夜夜射夜夜干| 欧美最新免费一区二区三区| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 一本久久精品| 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 九九在线视频观看精品| 欧美日韩国产mv在线观看视频| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 亚洲成人av在线免费| 视频区图区小说| 性色avwww在线观看| 国产探花极品一区二区| xxx大片免费视频| 国产日韩欧美视频二区| 精品国产一区二区三区久久久樱花| 男女高潮啪啪啪动态图| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 男女高潮啪啪啪动态图| 一级黄片播放器| 99国产综合亚洲精品| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 久久精品国产自在天天线| 美女国产高潮福利片在线看| 热99久久久久精品小说推荐| 日韩中字成人| 丝袜脚勾引网站| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看| 最近的中文字幕免费完整| 九九在线视频观看精品| 美女福利国产在线| 国产不卡av网站在线观看| 亚洲av男天堂| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品在线观看| 中文字幕人妻丝袜制服| 久久97久久精品| 两个人免费观看高清视频| 国产精品秋霞免费鲁丝片| 黄网站色视频无遮挡免费观看| 插逼视频在线观看| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 久久久久久伊人网av| 蜜桃国产av成人99| 伊人亚洲综合成人网| 久久午夜福利片| 在线精品无人区一区二区三| 欧美另类一区| 一个人免费看片子| www.色视频.com| 国产欧美日韩一区二区三区在线| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看 | 在线精品无人区一区二区三| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 男女边摸边吃奶| 丰满少妇做爰视频| 欧美+日韩+精品| 夫妻午夜视频| 丝袜喷水一区| 26uuu在线亚洲综合色| 亚洲人与动物交配视频| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 看免费av毛片| 亚洲欧美成人精品一区二区| 亚洲成国产人片在线观看| 内地一区二区视频在线| 91国产中文字幕| 熟女人妻精品中文字幕| 肉色欧美久久久久久久蜜桃| 91精品国产国语对白视频| 亚洲,欧美,日韩| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 在线观看www视频免费| 亚洲精品aⅴ在线观看| 高清欧美精品videossex| 80岁老熟妇乱子伦牲交| 男女下面插进去视频免费观看 | 老熟女久久久| 欧美日韩综合久久久久久| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 精品一区二区免费观看| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| av线在线观看网站| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 丰满迷人的少妇在线观看| 国产成人精品福利久久| 日韩免费高清中文字幕av| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 亚洲国产av新网站| 日韩电影二区| 观看美女的网站| 看十八女毛片水多多多| 国产亚洲精品久久久com| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 亚洲国产精品专区欧美| 秋霞伦理黄片| 午夜免费鲁丝| 亚洲精品一二三| 久久这里只有精品19| 久久久久久伊人网av| a级毛色黄片| 满18在线观看网站| 国产av国产精品国产| 男女无遮挡免费网站观看| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美| 国产精品偷伦视频观看了| 曰老女人黄片| 免费观看av网站的网址| xxxhd国产人妻xxx| 18+在线观看网站| 久久人人爽人人爽人人片va| 一个人免费看片子| 久久精品久久久久久噜噜老黄| 黄网站色视频无遮挡免费观看| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 亚洲丝袜综合中文字幕| 各种免费的搞黄视频| 国产乱人偷精品视频| 视频区图区小说| 国产xxxxx性猛交| 国产精品女同一区二区软件| 九九在线视频观看精品| 麻豆乱淫一区二区| 少妇人妻久久综合中文| 午夜视频国产福利| 国产成人a∨麻豆精品| 国产成人精品久久久久久| 久久久精品区二区三区| 99久久中文字幕三级久久日本| videos熟女内射| 亚洲国产av新网站| 在线 av 中文字幕| 丝袜在线中文字幕| 日韩av不卡免费在线播放| 男男h啪啪无遮挡| 欧美激情 高清一区二区三区| 亚洲综合色网址| 精品亚洲成国产av| www.色视频.com| 97在线人人人人妻| 成人国产麻豆网| 自线自在国产av| 视频在线观看一区二区三区| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 午夜91福利影院| 久久女婷五月综合色啪小说| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 亚洲综合色惰| videos熟女内射| 亚洲国产av影院在线观看| 久久久久久久国产电影| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 日本色播在线视频| 亚洲国产欧美日韩在线播放| 国产精品一国产av| 久久99热6这里只有精品| 极品人妻少妇av视频| 免费看不卡的av| 欧美日韩国产mv在线观看视频| 最新的欧美精品一区二区| 精品人妻一区二区三区麻豆| 欧美性感艳星| 午夜福利在线观看免费完整高清在| 国产69精品久久久久777片| av免费在线看不卡| 欧美激情 高清一区二区三区| 人妻人人澡人人爽人人| 欧美精品一区二区免费开放| 免费少妇av软件| 国产精品一区二区在线不卡| 全区人妻精品视频| 成人二区视频| 少妇的逼好多水| 五月开心婷婷网| 人妻少妇偷人精品九色| 国产 一区精品| 成人综合一区亚洲| 中文字幕av电影在线播放| 成人毛片60女人毛片免费| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲内射少妇av| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 人人澡人人妻人| 在线观看一区二区三区激情| 极品人妻少妇av视频| 18禁观看日本| 成人手机av| av在线老鸭窝| 一区二区三区四区激情视频| 久久免费观看电影| 精品亚洲成a人片在线观看| 男女国产视频网站| 热99久久久久精品小说推荐| 成人国产av品久久久| 精品熟女少妇av免费看| 国产亚洲精品久久久com| 免费高清在线观看视频在线观看| 韩国精品一区二区三区 | 晚上一个人看的免费电影| 国产一区二区在线观看av| 国产又爽黄色视频| 亚洲精品国产色婷婷电影| 午夜免费观看性视频| 青春草亚洲视频在线观看| 免费在线观看完整版高清| xxxhd国产人妻xxx| 亚洲成色77777| 日韩免费高清中文字幕av| 22中文网久久字幕| 国产精品久久久久久精品古装| 99热网站在线观看| 国产一区有黄有色的免费视频| 亚洲国产精品一区三区| 少妇高潮的动态图| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 超色免费av| 欧美 亚洲 国产 日韩一| 午夜av观看不卡| 一区二区日韩欧美中文字幕 | 国产探花极品一区二区| 水蜜桃什么品种好| 中国三级夫妇交换| 亚洲成av片中文字幕在线观看 | 黄色 视频免费看| 欧美另类一区| 亚洲第一区二区三区不卡| 18禁观看日本| 9色porny在线观看| 伊人亚洲综合成人网| 老女人水多毛片| 国产免费视频播放在线视频|