• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroatom-substituted rhodamine dyes:Structure and spectroscopic properties

    2019-10-31 09:00:32FeiDengZhaochaoXu
    Chinese Chemical Letters 2019年10期

    Fei Deng,Zhaochao Xu

    a CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:

    Rhodamine

    Heteroatom

    Si-rhodamine

    Optical properties

    Fluorescent dyes

    ABSTRACT

    Rhodamine is one class of most popular dyes used in fluorescence imaging due to the outstanding photoproperties including high brightness and photostability.In recent years,replacement the xanthene oxygen with other elements,especially silicon,has attracted great attentions in the development of new rhodamine derivatives.This review summarized the structures and photophysical properties of heteroatom-substituted rhodamines.We hope this review can help to understand the structure-property relationships of rhodamine dyes and then elucidate the way to create derivatives with improved photoproperties.

    1.Introduction

    Fluorescence microscopy is an essential tool for visualizing biological processes in living cells [1-6].The key point of this strategy is to select a proper fluorophore [7-10].Compared with fluorescent proteins and quantum dots,organic dyes are attracting much more attention in recent 20 years,ascribed to their advantages of mall size,easy of chemical modification,good brightness and photostability,and emissions spanning the entire color spectrum[11].Particularly,the single-molecule imaging and super-resolution imaging have been driving the development of new fluorophores with super brightness and photostability [12].

    Rhodamines,a fluorophore with a history over a century,are the most popular dyes used in fluorescence imaging due to their stability,brightness and water solubility[13].A typical structure of rhodamine is showed in Fig.1.Although pyronine and rhodamine share the same chromophore xanthene (Fig.1a,for example,Pyronin Y vs.tetramethylrhodamine(TMR)),rhodamine has higher brightness and stability,and is more suitable for biological application than pyronin.The carbon atom at 9-position of xanthene moiety was stabilized by the phenyl ring in rhodamine,where the one in pyronin Y was much more reactive to limit the applications of pyronine.Another feature of rhodamine is the equilibrium between the ring-opened fluorescent zwitterionic form and the ring-closed non-fluorescent lactone form (Fig.1b).This equilibrium has been widely used to design fluorogenic chemosensors [14].To avoid the formation of non-fluorescent lactone form,the common strategy is to introduce methyl or methoxyl groups at C-3'and C-7'in rhodamines[15,16].However,the absorption and emission of rhodamines within the range of 500-600 nm limit their applications in multicolour imaging and in vivo imaging[17].These scenarios necessitate the development of near-infrared (NIR) rhodamine fluorophores.

    It is required and challenging to extend the absorption and emission wavelength of rhodamines,especially to far-red and nearinfrared(NIR)region.The general strategies to elicit the absorption and emissionto NIR regioninclude theπ-conjugation extension and limited-flexibility of chromophore.The drawbacks of these methods are the associated decrease in brightness and watersolubility[18-20].Another way to shift emission into NIR region is to replace the xanthene oxygen in rhodamine by heteroatoms.This strategy has been demonstrated over half century and represented by C,N,S,Se and Te-rhodamine.Due to the limited improvement in fluorescent properties and complicated synthetic routes,these rhodamines did not get much attention,until the appearance of Si-Pyroninin2008,pioneered by QianandXiao et al.[21].Replacement of the oxygen in the skeleton of rhodamine with silicon produces a significant red-shift toNIR regionwhile maintaining the brightness.According to the advantage of Si-rhodamine in bioimaging,Nagano et al.developed a series of Si-rhodamines from far-red to NIR[22,23].Further studies revealed the fluorogenic behavior and extremely photostability of Si-rhodamine-carboxyl,which made it ideal fluorophore for live-cell super-resolution microscopy[24,25].The big success of Si-rhodamine has allowed a triumphant return of oxygen replacement in rhodamine modification,like borinate,phosphinate and sulfone.Here,we review various heteroatoms replaced rhodamines (Fig.1c) and focus on their photophysical properties in order to facilitate the modification and application of new rhodamine dyes.

    Fig.1.(a) A typical structure of pyronin and rhodamine.(b) Equilibrium of TMR between zwitterionic form and lactone form.(c) Elements used in rhodamine 10-position replacement was shown in red.

    2.Boron group

    Fig.2.Structures of B-rhodamines.

    The boron group is the chemical elements in group 13 of the periodic table,comprising boron(B),aluminium(Al),gallium(Ga),indium (In),thallium (Tl),and perhaps also the chemically uncharacterized nihonium (Nh).At the present time,only the element of boron was reported to replace rhodamine oxygen.The first B-pyronine JS-R was reported by Egawa et al.in 2016 (Fig.2 and Table 1,compound 4) [26].Incorporating a borinate moiety into a xanthene skeleton produced a significant (>60 nm)bathochromic shift compared to its parent dye pyronin Y.The molar absorption coefficient and quantum yield of JS-R were measured to be 1.3×105L mol-1cm-1and 0.59,respectively.Next,Stains et al.synthesized the corresponding B-rhodamine RF620(Fig.2 and Table 1,compound 5) by insertion of 2-methyl phenyl group at the 9-position of JS-R [27].Substitution by aromatic residues caused a slight red shift (<10 nm) in absorption and emission.Besides,molar absorption coefficient and quantum yield of RF620 were decreased to 1.09×105L mol-1cm-1and 0.36,respectively.Similar variation between pyronin Y and TMR were observed,that TMR displayed a deceased absorption and quantum yield compared with pronin Y.

    3.Carbon group

    The carbon group,Group 14 in the p-block,contains carbon(C),silicon(Si),germanium(Ge),tin(Sn),lead(Pb)and flerovium(Fl).Except Pb and Fl,all these elements have been successfully applied in rhodamine oxygen replacement.Compared with traditional Orhodamine,the obtained carbon-group-rhodamine fluorophores displayed significant red-shifts in fluorescence spectra.The bathochromic shift of group 14 rhodamines may be due to their lower LUMO levels.Except C-rhodamine,the existed σ*-π*conjugation in Si-,Ge-and Sn-rhodamine and the LUMO of π-system were stabilized.Besides,the conjugation became less efficient as the atomic number increase.As a consequence,the extent of red shift was C <Sn <Ge <Sn [28].

    3.1.Carbon-rhodamine (C-rhodamine)

    Replacement of rhodamine oxygen with a quaternary carbon elicits a 50-nm bathochromic shift.These C-rhodamines were firstly synthesized by Aaron et al.in 1963[29].In the following half century,few attentions had been paid to the research of Crhodamine,maybe due to the complex synthesis and low yield.Because of the high brightness and phtotostability,C-rhodamines have been successfully applied in super-resolution fluorescent imaging,which brought C-rhodamine back to the attention of dye scientists.

    Lavis et al.reported a series of C-rhodamines by alternating the substituents on the N atoms(Fig.3 and Table 1,compounds 6-9,17 and 18) [30-32].The twist of Caryl--N bond in rhodamine greatly influenced the brightness of the fluorophore.Replacing the N,Ndimethyl group in compound 7 with differently sized rings could mitigate twisted internal charge transfer (TICT) and regulate the brightness of the fluorophore.In particularly,the azetidinyl Crhodamine (compound 8) had higher quantum yield (φ=0.67)compared to compound 7(φ=0.52),while maintained the similar extinction coefficient (ε=1.21×105L mol-1cm-1).

    By introducing fluorine,Hell et al.obtained a series of Crhodamines with maximum absorption in the range of 560-630 nm (Fig.3 and Table 1,compounds 11-16) [33,34].Though the fluorination of the carbonrhodamine in tricyclic cores led to red-shifts of the absorption and emission compared to unmodified C-rhodamine,the extinction coefficients and quantum yields were reduced significantly.Taking compound 14 as an example,the extinction coefficients and quantum yields were only 6700 L mol-1cm-1and 0.06,whereas the unmodified compound 12 were 100,000 L mol-1cm-1and 0.59,respectively.These results were totally different to O-rhodamine.Typically,the fluorination of rhodamine could lead to slight improvement in brightness [35].However,introducing fluorine contained alkyl group into the N atoms of C-rhodamines (compounds 15 and 16) resulted in bathochromic shift while maintained the brightness compared to unmodified C-rhodamine,which was in accord with O-rhodamines.

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    In 2014,Klan et al.reported a NIR C-rhodamine (Fig.3 and Table 1,compound 10) by replacing the aromatic substituents at the position C9 with phenylethynyl group [36].This compound possessed two characteristic absorptions at 472 and 677 nm.Both of the absorption excited the maximum emission at 705 nm.The quantum yields were about 0.15 in methanol.

    3.2.Silicon-rhodamines (Si-rhodamine)

    In 2008,Xiao et al.replaced the oxygen in the pyronine Y with a silicon atom to obtain TMDHS(Fig.4 and Table 1,compound 19)[21].The absorption and emission of TMDHS were at 641 and 659 nm,nearly 90 nm bathochromic shift compared to pyronine Y.To improve the stability,Nagano et al.inserted 2-methyl phenyl group at the 9th position of TMDHS and created Sirhodamine [28].This compound exhibited λmax/λem=646 nm/660 nm,ε=1.1×105L mol-1cm-1and φ=0.31 in PBS buffer.These data illustrated Si-rhodamine was as bright as the Orhodamines.In order to fulfill the requirement of in vivo imaging,Nagano group further developed a series of NIR-excitable Sirhodamine (Fig.4 and Table 1,compounds 21-24) by the expansion of the xanthene ring.These compounds show the emissions over 700 nm [37,38].Especially,compound 22 showed excellent tolerance to photobleaching and high quantum efficiency (φ=0.12) [25].

    Like the modification in C-rhodamines,Lavis et al.also replaced dialkylamino substituents with differently sized rings to mitigate TICT and regulate the brightness in Si-rhodamine (Fig.4 and Table 1,compounds 25-29) [31,34,39,40].The azetidinyl Sirhodamine (compound 27) had similar absorption and emission(λmax/λem=646 nm/664 nm) and higher quantum yield (φ=0.31)compared to N,N-dimethyl Si-rhodamine (compound 26).Also,depending on the free rotation of the bond between the N atom and the Si-substituted xanthene moiety,Urano et al.designed a series of near-infrared fluorescence quenchers(Fig.4 and Table 1,compounds 30 and 31)[38].These compounds showed absorption in NIR region (660 nm and 779 nm) and the quantum yields were almost zero.

    In O-rhodamine modification,introducing halogen,especially fluorine,would improve the photostability and brightness of fluorophore.This strategy was also applied in Si-rhodamine.Lavis and Hell groups have vigorously developed various fluorine-containing Si-rhodamines (Fig.4 and Table 1,compounds 32-42).Similar to C-rhodamine,introducing fluorine into the tricyclic cores of Si-rhodamine decreased the extinction coefficients and quantum yields sharply,albeit with nearly 30 nm red-shift in wavelengths (compounds 32,34 and 36) [33,40].However,the fluorination or chlorination in the bottom phenyl group had a much smaller effect on brightness with 20-30 nm redshifts in wavelengths (compounds 35,37-42).The fluorinated azetidine (compound 33) exhibited ~10 nm blue shift in spectral properties,a slightly higher quantum yield (φ=0.56) relative to compound 27,which was similar to O-rhodamines and Crhodamines [32].

    Replacing the group at the 9-position also induced fluorescence changes(Fig.4 and Table 1,compounds 43-58).Compound 43 with a conjugated phenylethynyl group shifted the absorption and emission over 700 nm [36].The 9-imino-10-silaxanthone compounds 44 and 45 exhibit remarkably large Stokes shifts (around 200 nm),which were related to the excitation of an electron from the HOMO to the LUMO of the chromophores [41].These fluorophores with large Stokes shift would be useful in multicolor nanoscopy[42].Based on the structure of azetidinyl Si-rhodamine(compound 27),Lavis et al.also changed the substituents at the 9th position.(Compounds 46-58 showed similar absorption and emission spectra (~λmax/λem=650 nm/665 nm).The extinction coefficients of these compounds were about 1.2×105L mol-1cm-1.However,the quantum yields were greatly influenced by the substitutes.For example,compound 51 had a lower quantum yield of 0.2,while the quantum yields of compounds 52-56 were over 0.5 [33,40].The intramolecular rotation of phenyl ring in 51 may decrease the quantum yield.

    Dimethylsilane was routinely used as heteroatom in Sirhodamine.Indeed,the different substituents on silicon atoms also affect the fluorescence properties.For example,compounds 59-61 with different Si-substitutes were developed by Zhang et al.(Fig.4 and Table 1).These compounds displayed different bathochromic shifts and quantum yields [43].For compound 62,the substitute was changed from silane to silanediol,and the excitation and emission were further red-shifted to 663 nm and 681 nm,respectively,with ε=1.05×105L mol-1cm-1and φ=0.43 in PBS buffer [27].

    3.3.Germanium-rhodamines (Ge-rhodamine)

    Ge-rhodamines display further about 10 nm hypsochromic shift compared with Si-rhodamine.And the brightness is similar with that of Si-rhodamine (Fig.5 and Table 1,compounds 63-66)[28,34].Taking compound 65 as an example,it displayed λmax/λem=410 nm/471 nm,ε=9.7×104L mol-1cm-1and φ=0.43.Although the attention to Ge-rhodamine is constrained by the fact that synthetic raw materials are not readily available,the outstanding brightness and proper excitation wavelength make Ge-rhodamine a promising fluorophore in bioimaging(Fig.5).

    3.4.Tin-rhodamines (Sn-rhodamine)

    Compared to C-,Si-and Ge-rhodamine,Sn-rhodamines were rarely reported(Fig.6 and Table 1,compounds 67-68)[28].Nagano group synthesized both Sn-pyronine and Sn-rhodamine and found they were really chemical-active.Compound 68 showed the maximum absorption and emission at 614 nm and 628 nm,respectively.

    4.Nitrogen family

    4.1.Nitrogen-rhodamines (N-rhodamine)

    Replacement of the oxygen by a nitrogen atom on the pyronin framework produced acridine orange(69),which have been widely used as a nucleic acid-selective dye over half a century.When bound to DNA,acridine orange displayed a similar emission with that of fluorescein.When bound to RNA,its excitation and emission were shifted to 460 nm and 650 nm,respectively.Lavis et al.replaced the N,N-dimethylamino substituents in acridine orange with four-membered azetidine rings.Compound 70 showed an improved quantum yield from 0.21 to 0.52 (Fig.7 and Table 1,compounds 69-70) [31].

    4.2.Phosphorus-rhodamines (P-rhodamine)

    Fig.3.Structures of C-rhodamines.

    Besides nitrogen,phosphorus was also used to replace rhodamine oxygen.In 2015,Wang et al.reported a series of Prhodamines(Fig.8 and Table 1,compounds 71-73)[44].Due to the electron-withdrawing properties of the phosphorus moiety,these P-rhodamines elicit 140 nm bathochromic shifts relative to O-rhodamine.These compounds displayed similar absorption and emission spectra (λmax/λem=694 nm/711 nm).Due to the restricted intramolecular rotation,the quantum yields of 71-73,which have increasing number of methyl substituents in phenyl group,improved from 0.06 to 0.15.Stains et al.used phosphinate functional group as the bridge and created P-rhodamines 74-77 (Fig.8 and Table 1).Compound 74 exhibited excitation and emission maxima at 666 nm and 685 nm,respectively.The molar extinction coefficients and quantum yields were 1.65×105L mol-1cm-1and φ=0.38,respectively.Moreover,its ethyl ester counterpart compound 75 showed further 35 nm bathochromic shift,though the brightness decreased.By replacing the dimethylaniline in compounds 74 and 75 with julolidine substituent,the excitation and emissions in compounds 76 and 77 were further red-shifted to the rang over 700 nm [45].

    5.Oxygen family

    Due to the similar chemical characteristics in chalcogens,it was reasonable to replace the bridging oxygen atom with other chalcogens.The extent of red shift in emissions was correlate with the atom size(O <S <Se <Te)[46].This trend was thought to be related to the resonance effect of the chalcogen atom,which narrowed the HOMO-LUMO gap [47,48].Besides,the molar extinction coefficients and fluorescence quantum yields decreased with the increasing size of the chalcogen atom,which could be attributed to a strong heavy-atom effect [49].Different with oxygen,the common oxidation states in S,Se,and Te could be-2,+4 and+6.The corresponding oxide can also be applied in replacing the bridging oxygen atom.

    5.1.Sulfur-rhodamines (S-rhodamine)

    Most of S-rhodamines were firstly reported by Detty group(Fig.9 and Table 1,compounds 78-83).Compared to O-rhodamine,S-rhodamines displayed about 20 nm red-shift in absorption and emission spectra.However,the brightness was less than half that of O-rhodamine.Taking compound 78 as an example,it exhibited λmax/λem=571 nm/599 nm,ε=6.26×104L mol-1cm-1and φ=0.44 in methanol.These photophysical properties limited the wide applications of S-rhodamine in biological imaging[46,49,50].

    Guo et al.reported a series of sulfone-rhodamines in 2016(Fig.9 and Table 1,compounds 84-89)[51].The sulfone group serves as the bridge to rigidify their structures and a strong electron withdrawing group.The absorption and emission of sulfone-rhodamines reached 700 nm and 730 nm,respectively.Different substituents in phenyl group influenced the stability and brightness due to the steric effects,which have been referred in P-rhodamines.

    5.2.Selenium-rhodamines (Se-rhodamine)

    When the oxygen bridge was replaced by Selentium,the bathochromic shift in emission was further increased by 30 nm associated with sharply decreased brightness(Fig.10 and Table 1,compounds 90-95) [46,50].For example,compound 90 showed λmax/λem=581 nm/608 nm and ε=4.4×104L mol-1cm-1,but a relatively low φ=0.01 in methanol.Unlike other dyes,Serhodamine had a high yield for singlet oxygen generation,which could be applied as an efficient photosensitizer [49].

    5.3.Tellurium-rhodamines (Te-rhodamine)

    Te-rhodamines were reported with very weak fluorescence(φ <0.001) due to the heavy-atom effect (Fig.11 and Table 1,compounds 96-104)[50,52,53].For Te-rhodamines,Te atom could be easily oxidized by reactive oxygen species (Fig.11 and Table 1,compounds 105-107).The corresponding telluroxide rhodamines exhibited a large red shift compared to Te-rhodamine and showed strong fluorescence.Taking compound 96 as an example,it could be oxidized to compound 105 by reactive oxygen species and exhibited maximum fluorescence emission around 686 nm with φ=0.18 [52].These results indicated that the heavy-atom effect could be weakened by binding of oxygen atom.

    6.Conclusions and perspectives

    Rhodamine is a type of widely used fluorophore.The bridge modification atom at 10 position enriches the color palette of rhodamines.So far,most of the possible element have been applied to build heteroatom-substituted rhodamine.Changing the functional group of the same element at 10 position seems a promising method to further extend the heteroatom-substituted rhodamines in the further.For example,sulfur-rhodamine and sulfonerhodamine share the same element at 10 position but have totally different photophysical properties.Besides,most of the researches in this field are focusing on group 14 elements,especially silicon.A number of methods have been proposed to improve the brightness,photostability and fluorogenicity of rhodamine,C-rhodamine and Si-rhodamine.Among these methods,incorporation of fourmembered azetidine rings into the fluorophore is one of the most attractive.However,these methods have rarely been applied in other element replaced rhodamines so far.We hope that this review paper can draw much more attention on the structural modification of rhodamines.A new way of thinking can be found through the comparison of fluorescence structure-activity relationships.We hope that the structure-activity relationship summarized here,as shown in Table 1,will help to achieve the goal of creating more dyes with high brightness and photostability.

    Fig.4.Structures of Si-rhodamines.

    Fig.5.Structures of Ge-rhodamines.

    Fig.6.Structures of tin-substituted rhodamines.

    Fig.7.Structures of N-rhodamines.

    Fig.8.Structures of P-rhodamines.

    Fig.9.Structures of S-rhodamines and sulfone-rhodamines.

    Fig.10.Structures of Se-rhodamines.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation China (No.21878286) and DICP (Nos.DMTO201603,TMSR201601).

    Fig.11.Structures of Te-rhodamines.

    国产欧美日韩精品一区二区| 国产日本99.免费观看| 制服丝袜大香蕉在线| 免费观看人在逋| 国产高清有码在线观看视频| 淫秽高清视频在线观看| 久久精品综合一区二区三区| 91午夜精品亚洲一区二区三区 | 最近在线观看免费完整版| 校园春色视频在线观看| 国产毛片a区久久久久| 午夜免费成人在线视频| av在线天堂中文字幕| 日韩高清综合在线| 欧美成人免费av一区二区三区| 国产av麻豆久久久久久久| 在线观看66精品国产| 国产 一区精品| a级毛片免费高清观看在线播放| 国产精华一区二区三区| 欧美成人免费av一区二区三区| 韩国av在线不卡| 1000部很黄的大片| 欧美绝顶高潮抽搐喷水| 欧美绝顶高潮抽搐喷水| 老熟妇乱子伦视频在线观看| 日韩在线高清观看一区二区三区 | 色哟哟·www| 少妇裸体淫交视频免费看高清| 丰满乱子伦码专区| 日本a在线网址| 亚洲av免费高清在线观看| 又爽又黄无遮挡网站| 亚洲av不卡在线观看| 欧美高清性xxxxhd video| 精品一区二区三区av网在线观看| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 伦精品一区二区三区| 特级一级黄色大片| 午夜福利在线观看免费完整高清在 | 日本与韩国留学比较| 久久久午夜欧美精品| 国产三级中文精品| 看免费成人av毛片| 国产精品99久久久久久久久| 成人高潮视频无遮挡免费网站| 亚洲专区国产一区二区| 色哟哟哟哟哟哟| 精品人妻1区二区| 亚洲自拍偷在线| 国产一区二区三区av在线 | 九色国产91popny在线| a级一级毛片免费在线观看| 赤兔流量卡办理| 成人国产综合亚洲| 身体一侧抽搐| 国内揄拍国产精品人妻在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 免费看美女性在线毛片视频| 免费看av在线观看网站| 成人国产综合亚洲| 色吧在线观看| 1024手机看黄色片| 色av中文字幕| 99热精品在线国产| 精品无人区乱码1区二区| 免费电影在线观看免费观看| 99热网站在线观看| 舔av片在线| 色噜噜av男人的天堂激情| 亚洲无线在线观看| 日韩欧美精品免费久久| 国产高清有码在线观看视频| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 日本一二三区视频观看| 日本 av在线| 欧美+日韩+精品| 久久精品国产亚洲网站| 久久久久久九九精品二区国产| 国产精品亚洲美女久久久| 亚洲欧美激情综合另类| 俄罗斯特黄特色一大片| www日本黄色视频网| 亚洲,欧美,日韩| 久久久久性生活片| 亚洲精品影视一区二区三区av| 亚洲真实伦在线观看| 少妇高潮的动态图| 午夜久久久久精精品| 最近在线观看免费完整版| 色哟哟·www| 国产av在哪里看| av在线亚洲专区| 亚洲久久久久久中文字幕| 又黄又爽又免费观看的视频| 亚洲av中文字字幕乱码综合| 欧美日韩亚洲国产一区二区在线观看| 午夜精品在线福利| 精品一区二区免费观看| 国产老妇女一区| 国产又黄又爽又无遮挡在线| 午夜老司机福利剧场| or卡值多少钱| 久久久久久久久大av| 亚洲第一区二区三区不卡| 国产色婷婷99| 亚洲欧美激情综合另类| 日日干狠狠操夜夜爽| 日韩中字成人| 中文亚洲av片在线观看爽| 久久久久久久亚洲中文字幕| 亚洲国产色片| 亚洲av第一区精品v没综合| 91麻豆精品激情在线观看国产| 成人特级av手机在线观看| 亚洲成人中文字幕在线播放| 在线天堂最新版资源| 免费一级毛片在线播放高清视频| xxxwww97欧美| 国产精品久久视频播放| 长腿黑丝高跟| av在线观看视频网站免费| 网址你懂的国产日韩在线| 亚洲人成网站高清观看| 日本欧美国产在线视频| 成年女人永久免费观看视频| 久久亚洲精品不卡| 国产一级毛片七仙女欲春2| 特级一级黄色大片| 日本一本二区三区精品| 夜夜夜夜夜久久久久| 国产精华一区二区三区| 国产伦人伦偷精品视频| 88av欧美| 亚洲国产精品sss在线观看| 动漫黄色视频在线观看| av专区在线播放| 九九爱精品视频在线观看| 1024手机看黄色片| 观看美女的网站| 亚洲成人精品中文字幕电影| av天堂中文字幕网| 老师上课跳d突然被开到最大视频| 在现免费观看毛片| 男女做爰动态图高潮gif福利片| 波多野结衣巨乳人妻| 免费看日本二区| 国产成人影院久久av| 麻豆国产97在线/欧美| 欧美激情在线99| 熟女人妻精品中文字幕| 精品日产1卡2卡| 免费人成在线观看视频色| 黄色配什么色好看| 久久香蕉精品热| 国产 一区精品| 香蕉av资源在线| 亚洲无线在线观看| 久久亚洲真实| 日本欧美国产在线视频| 干丝袜人妻中文字幕| 国产 一区 欧美 日韩| 久久久久免费精品人妻一区二区| 免费观看在线日韩| 97人妻精品一区二区三区麻豆| 丰满的人妻完整版| 国产一区二区在线av高清观看| 丝袜美腿在线中文| 热99re8久久精品国产| 欧美高清性xxxxhd video| 精品久久久久久久人妻蜜臀av| 国产白丝娇喘喷水9色精品| 成人国产一区最新在线观看| 丰满人妻一区二区三区视频av| 一区二区三区四区激情视频 | 亚洲电影在线观看av| 日韩欧美精品v在线| 噜噜噜噜噜久久久久久91| 男插女下体视频免费在线播放| 国产亚洲欧美98| 日日摸夜夜添夜夜添小说| 看免费成人av毛片| 亚洲国产精品合色在线| 久久欧美精品欧美久久欧美| 亚洲自偷自拍三级| 嫩草影院入口| 啦啦啦啦在线视频资源| 亚洲图色成人| 色综合婷婷激情| 久久久久久九九精品二区国产| 一进一出好大好爽视频| 亚洲国产精品成人综合色| 韩国av在线不卡| 亚洲三级黄色毛片| 99视频精品全部免费 在线| 日韩中字成人| 欧美性感艳星| 欧美色视频一区免费| 久久人妻av系列| av福利片在线观看| 亚洲精品日韩av片在线观看| 欧美性感艳星| 国产日本99.免费观看| 18+在线观看网站| 国产极品精品免费视频能看的| 色综合亚洲欧美另类图片| 深爱激情五月婷婷| 日本一二三区视频观看| 内地一区二区视频在线| 国产成人一区二区在线| 午夜福利高清视频| 亚洲自偷自拍三级| 久久午夜福利片| 国产久久久一区二区三区| 亚洲国产日韩欧美精品在线观看| 亚洲成人久久性| 成人高潮视频无遮挡免费网站| 午夜免费成人在线视频| 综合色av麻豆| 成年人黄色毛片网站| 内地一区二区视频在线| 亚洲,欧美,日韩| 欧美又色又爽又黄视频| 国产男人的电影天堂91| 嫁个100分男人电影在线观看| 如何舔出高潮| 日韩欧美在线乱码| 日韩一本色道免费dvd| 久久久成人免费电影| 噜噜噜噜噜久久久久久91| 男人和女人高潮做爰伦理| 别揉我奶头 嗯啊视频| 国产伦一二天堂av在线观看| 日本免费一区二区三区高清不卡| 日韩欧美三级三区| 国模一区二区三区四区视频| 蜜桃亚洲精品一区二区三区| av专区在线播放| av在线蜜桃| 国产成年人精品一区二区| 啪啪无遮挡十八禁网站| 韩国av在线不卡| 中文字幕高清在线视频| 1000部很黄的大片| 亚洲熟妇中文字幕五十中出| 97热精品久久久久久| 精品久久久久久成人av| 又黄又爽又免费观看的视频| 天天一区二区日本电影三级| 欧美不卡视频在线免费观看| 亚洲国产精品合色在线| 国产探花极品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩国产亚洲二区| 欧美绝顶高潮抽搐喷水| av天堂中文字幕网| 熟女电影av网| 不卡一级毛片| 波多野结衣高清无吗| 精品人妻视频免费看| 免费电影在线观看免费观看| 丰满乱子伦码专区| 观看美女的网站| 性色avwww在线观看| 在线看三级毛片| 国产免费男女视频| 美女大奶头视频| 最近最新免费中文字幕在线| 日本三级黄在线观看| 日韩,欧美,国产一区二区三区 | 国产男人的电影天堂91| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件 | 久久久久久大精品| 婷婷丁香在线五月| 国产熟女欧美一区二区| 亚洲18禁久久av| 久久九九热精品免费| 国产精品人妻久久久久久| 成人国产一区最新在线观看| 两个人视频免费观看高清| 高清在线国产一区| 永久网站在线| 欧美性猛交╳xxx乱大交人| 亚洲图色成人| 悠悠久久av| 色哟哟·www| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 色噜噜av男人的天堂激情| 97热精品久久久久久| 精品国内亚洲2022精品成人| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 可以在线观看毛片的网站| 美女大奶头视频| 亚洲欧美清纯卡通| 精品久久久久久久人妻蜜臀av| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品 | 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 国产一区二区三区av在线 | 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 免费黄网站久久成人精品| 一区二区三区激情视频| 欧美日韩中文字幕国产精品一区二区三区| 又爽又黄无遮挡网站| 白带黄色成豆腐渣| 日本精品一区二区三区蜜桃| 国产精品嫩草影院av在线观看 | 男人舔奶头视频| videossex国产| 免费在线观看日本一区| 99国产极品粉嫩在线观看| 久久亚洲真实| 国产探花在线观看一区二区| 午夜影院日韩av| 久久午夜福利片| 看片在线看免费视频| 亚洲成人精品中文字幕电影| 免费无遮挡裸体视频| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 欧美丝袜亚洲另类 | 国产精品三级大全| 精品久久久久久成人av| 日韩一本色道免费dvd| 欧美黑人巨大hd| 免费在线观看日本一区| 亚洲精品日韩av片在线观看| 美女cb高潮喷水在线观看| 日日夜夜操网爽| 欧美bdsm另类| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 男人舔奶头视频| 搡老妇女老女人老熟妇| 国产综合懂色| 日韩人妻高清精品专区| 综合色av麻豆| 99久久成人亚洲精品观看| 国产女主播在线喷水免费视频网站 | 听说在线观看完整版免费高清| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| av在线天堂中文字幕| 一本精品99久久精品77| 日韩精品青青久久久久久| 成人无遮挡网站| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 少妇人妻精品综合一区二区 | 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 日本黄大片高清| 99国产精品一区二区蜜桃av| 亚洲av成人精品一区久久| 黄片wwwwww| 丰满乱子伦码专区| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 天堂动漫精品| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 亚洲精品成人久久久久久| 亚洲最大成人av| 午夜福利成人在线免费观看| 国产视频一区二区在线看| 久久人人爽人人爽人人片va| 性色avwww在线观看| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 日本 欧美在线| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 国产精品一区www在线观看 | 校园人妻丝袜中文字幕| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄 | 久99久视频精品免费| 不卡视频在线观看欧美| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 日本黄大片高清| 欧美zozozo另类| a级一级毛片免费在线观看| 亚洲综合色惰| aaaaa片日本免费| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 亚洲四区av| 黄色配什么色好看| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 久久欧美精品欧美久久欧美| 亚洲va在线va天堂va国产| 91在线观看av| 亚洲精品色激情综合| 91麻豆av在线| 久久久久久九九精品二区国产| 啪啪无遮挡十八禁网站| netflix在线观看网站| 波多野结衣高清作品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 嫁个100分男人电影在线观看| 日韩国内少妇激情av| 国产av不卡久久| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 能在线免费观看的黄片| 女同久久另类99精品国产91| 国产高清有码在线观看视频| 窝窝影院91人妻| 免费av毛片视频| 91麻豆av在线| 久久欧美精品欧美久久欧美| 禁无遮挡网站| 老司机深夜福利视频在线观看| 综合色av麻豆| 免费人成在线观看视频色| www.色视频.com| 午夜福利成人在线免费观看| 中文字幕av成人在线电影| 嫁个100分男人电影在线观看| 伊人久久精品亚洲午夜| 国产精品日韩av在线免费观看| 中文在线观看免费www的网站| 村上凉子中文字幕在线| 国产淫片久久久久久久久| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 亚洲中文日韩欧美视频| 亚洲熟妇中文字幕五十中出| 欧美国产日韩亚洲一区| 美女免费视频网站| 国产成人aa在线观看| 久久香蕉精品热| 欧美激情在线99| 国产伦一二天堂av在线观看| 少妇的逼好多水| 日本在线视频免费播放| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| 在线a可以看的网站| 男女之事视频高清在线观看| 少妇的逼水好多| 十八禁网站免费在线| 九色国产91popny在线| 色综合亚洲欧美另类图片| 亚洲精品久久国产高清桃花| 国产探花极品一区二区| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件 | 免费观看人在逋| 午夜日韩欧美国产| 男女边吃奶边做爰视频| 国内精品久久久久精免费| 色吧在线观看| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 免费高清视频大片| 精品久久久噜噜| 99热只有精品国产| 乱码一卡2卡4卡精品| 男女下面进入的视频免费午夜| 久久久国产成人精品二区| av天堂在线播放| 99在线视频只有这里精品首页| .国产精品久久| 欧美成人性av电影在线观看| 国产伦在线观看视频一区| 国产一区二区激情短视频| 国产高清三级在线| 久久久久久伊人网av| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 狂野欧美白嫩少妇大欣赏| 色哟哟哟哟哟哟| 午夜免费激情av| 亚洲成人免费电影在线观看| 一区二区三区免费毛片| 免费看光身美女| 亚洲黑人精品在线| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| 国产在视频线在精品| 男女做爰动态图高潮gif福利片| 1024手机看黄色片| 国产毛片a区久久久久| 一个人免费在线观看电影| 亚洲性久久影院| 丰满乱子伦码专区| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 免费一级毛片在线播放高清视频| 国产一区二区在线av高清观看| 日日夜夜操网爽| 女生性感内裤真人,穿戴方法视频| 日韩一区二区视频免费看| АⅤ资源中文在线天堂| 国产欧美日韩精品一区二区| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 亚洲内射少妇av| 国产探花在线观看一区二区| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 亚洲自偷自拍三级| 成人欧美大片| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 欧美性感艳星| 国产亚洲精品av在线| 18禁在线播放成人免费| 久久久久久久久久成人| 成人午夜高清在线视频| .国产精品久久| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| x7x7x7水蜜桃| eeuss影院久久| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 日本三级黄在线观看| 深夜精品福利| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| 日韩欧美在线乱码| 天美传媒精品一区二区| 国产黄片美女视频| 男人的好看免费观看在线视频| 两个人的视频大全免费| 一级黄片播放器| 欧美日韩精品成人综合77777| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 露出奶头的视频| 伦精品一区二区三区| 69av精品久久久久久| 欧美激情久久久久久爽电影| 日韩欧美精品免费久久| 亚洲电影在线观看av| 最近在线观看免费完整版| 亚洲av中文av极速乱 | 日韩精品青青久久久久久| 久久99热6这里只有精品| 色噜噜av男人的天堂激情| 国内久久婷婷六月综合欲色啪| 97超视频在线观看视频| 精品国内亚洲2022精品成人| 亚洲最大成人av| 日韩精品中文字幕看吧| 亚洲精品影视一区二区三区av| 国产午夜福利久久久久久| 国产真实乱freesex| 婷婷精品国产亚洲av在线| 如何舔出高潮| 色吧在线观看| 成人精品一区二区免费| 一个人免费在线观看电影| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利视频1000在线观看| 国产一级毛片七仙女欲春2| 少妇人妻精品综合一区二区 | 亚洲欧美日韩高清专用| 男人舔奶头视频| 女的被弄到高潮叫床怎么办 | 级片在线观看| 国产一区二区激情短视频| 国产伦一二天堂av在线观看| 一个人观看的视频www高清免费观看| 国产高清不卡午夜福利| 久久午夜亚洲精品久久| 波多野结衣高清无吗| 亚洲精品456在线播放app | 乱码一卡2卡4卡精品| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看| 啪啪无遮挡十八禁网站| 免费观看在线日韩|