• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanocrystals for large Stokes shift-based optosensing

    2019-10-31 09:02:10RonghuiZhouXiomeiLuQinYngPengWu
    Chinese Chemical Letters 2019年10期

    Ronghui Zhou,Xiomei Lu,Qin Yng,Peng Wu,

    a State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University,Chengdu 610041,China

    b Analytical & Testing Center,Sichuan University,Chengdu 610064,China

    c College of Light Industry and Textile and Food Engineering,Sichuan University,Chengdu 610065,China

    Keywords:

    Stokes shift

    Self-absorption

    Band gap

    Optical nanocrystals

    Biosensing

    ABSTRACT

    Stokes shift is an important feature of fluorescence,which reveals the energy loss between the excitation and the emission.For most fluorescent materials (e.g.,organic dyes and proteins),the large overlap between the absorption and emission spectra endow them a small Stokes shift that induced reabsorption by fluorophore itself.Although the self-absorption can be effectively reduced due to the emergence of fluorescent nanomaterials,fluorescence attenuation is still observed in aggregated or concentrated nanocrystals,causing reduced sensitivity of biosensors.Therefore,increasing the Stokes shift can effectively improve the performance of nano-agents based biosensing.In this critical review,through understanding the Stokes shift from the viewpoint of self-absorption,the influence of Stokes shift on fluorescence properties are discussed.Based on the principle of changing the Stokes shift of fluorescent nanomaterials,we described the methods for constructing various optically large Stokes shift-based nanomaterials,and the application of these nanocrystals in biosensing is especially concerned in this review.

    1.Introduction

    Fluorescence is a dominant technology used extensively in bio-optical sensing owing to the benefits of simple,low-cost and sensitive.One well-known feature of fluorescence is that emission occurs typically at longer wavelength than that of absorption.In order to memory the great contribution of Sir Stokes to the fluorescence theory,such phenomenon was denoted as Stokes shift[1].Stokes shift is an important characteristic of the fluorophores,which reveals the energy losses between absorption and emission(Scheme 1).Upon absorption,the fluorophore is pumped to the excited states(Sn),followed by rapid relaxation to the first excited state (S1,internal conversion) and then decay back to the ground state (S0,fluorescence).Loss of the excitation energy during internal conversion results in redshifted emission (versus absorption),and therefore Stokes shift (Scheme 1).

    Depending on the Stokes shifts,varied spectral overlap between the absorption and the emission spectra of fluorophores is presented.For the typical organic dyes and fluorescent proteins,usually small Stokes shifts are observed (<50 nm),resulting in substantial spectral overlap between the absorption and the emission(Scheme 1).Consequently,the fluorescence emission will be absorbed by the fluorophore itself,which is known as selfabsorption.Self-absorption is a typical mechanism of fluorescence quenching that seriously influences the optical performance of the fluorophores[2,3].The existence of spectral overlap directly limits the range of excitation wavelength,as it is problematic to excite optimum fluorescence in the overlap range.Besides,self-absorption also causes concentration quenching or aggregation-caused quenching(ACQ)of fluorophores[4].Therefore,the application of small Stokes shifts-based fluorophores in optosensing is limited due to the relatively small Stokes shift,especially for the sensing ensembles that primarily rely on the spectral overlap,e.g.,fluorescence resonance energy transfer-and inner filter effectbased optosensing.

    As an important alternative to conventional organic fluorophores,fluorescent nanocrystals possess intriguing features of tunable absorption/emission and better photostability[5-7].More important,the Stokes shift of some fluorescent nanocrystals can be conveniently tuned,leading to the development of fluorescent materials with minimized or even zero self-absorption [8,9].Therefore in this review,the recent progress in exploring large Stokes shift fluorescent nanocrystals for optosensing are summarized,with particular emphasis on eliminating the spectral interferences.Various construction strategies of large Stokes shift-based nanocrystals,including doped quantum dots (QDs),alloy QDs,noble metal nanoclusters and rare earth doped nanocrystals,are discussed.Meanwhile,several advanced applications of large Stokes shift-based nanoprobes used for biological detection and imaging are also introduced.

    Scheme 1.The mechanism of Stokes shift generation from the Jablonski energy diagram of fluorescence.

    2.Effect of self-absorption on the nanosensors

    Fluorescent nanocrystal,especially quantum dots (QDs),possess narrow emission,broad excitation and good photostability,but sometimes still suffers from self-absorption [10,11].Accordingly,the effective excitation should be narrowed as compared with the original broad excitation,since fluorescence excited by the wavelength in spectral overlap region will be reabsorbed.As a result,the sensitivity of such fluorescence assays is attenuated,especially for inner filter effect (IFE) and fluorescence resonance energy transfer (FRET) based sensing schemes that primarily rely on the spectral overlap(Scheme 2).For a typical IFE sensing system[12],fluorescence modulation relies on absorption of the excitation and/or emission energy of the donor by an absorber.Accordingly,the Stokes shift of the donor should be a critical parameter that determines the assay sensitivity.While for the FRET sensing system based on spectral overlap between energy donor and acceptor[13,14],not only the Stokes shift of the energy donor,but also the energy acceptor,should be taken into consider.

    Scheme 2.Effect of self-absorption on small Stokes shift based nano-biosensing:(A) IFE; (B) FRET; (C) biological assembly.

    Besides FRET and IFE,the limited brightness of those small Stokes shift-based nanomaterials make it difficult to develop high sensitive fluorescence assays,particularly as fluorescence probes based on fluorescence signal amplification (such as biological assembly,Scheme 2C) [15,16].Meanwhile,the existence of selfabsorption also contributes to the decreased photo-stability and quantum yield of these fluorescent nanomaterials.Together with the common autofluorescence interference of biological systems[17],these weaknesses make small Stokes shift-based fluorophores unfavorable for high-quality biological fluorescence labeling,such as fluorescence imaging.

    3.Construction of large Stokes shift-based nanocrystals

    The generation of Stokes shift suggests that there is a certain energy dissipation of the excitation before the fluorescence(Scheme 1).Thus,the Stokes shift can be tuned through regulation of the energy loss (the emission wavelength).The emission wavelength of nanocrystals is mainly depended on the band gap,namely the minimum energy required to excite an electron from the valence band to the conduction band [18-21].Hence,it is possible to enlarge the Stokes shift via regulating the band gap of nanocrystals as well as reduce the spectral overlap between absorption and emission spectra.

    3.1.Doped quantum dots

    Fluorescence emission of quantum dots (QDs) is the recombination process of the excited state conduction band electrons with the corresponding hole in the valence band,and it is observed that the fluorescence emission can be regulated by adjusting the band gap.Doping intentional impurities (such as Mn2+,Cu2+and Eu3+)into the lattice of the host QDs is the major way to change the optical,electrical and magnetic properties of QDs,which endow the doped QDs (d-dots) with new characteristics and functions[22-26].Importantly,with the introduction of doped ions,new d-band energy levels are introduced,providing a new location for electrons or holes to transfer (Fig.1).

    Fig.1.Exciton relaxation pathways of Mn (A) and Cu (B) doped QDs and their schematic presentation of the range of tunable emission (C).

    The change of the electron-hole recombination pathways resulting in narrowed emission energy gap and thus red-shifted fluorescence emission of d-dots.Due to the small doping amounts of d-dots,the introduction of transition metal ion dopants causes little influence to the crystal structure and size of the host QDs,leading to almost unchanged absorption as compared with their undoped counterparts.Therefore,d-dots can effectively enlarge the Stokes shift of the original host QDs and avoid the selfquenching problem,leading to popular applications in luminescent solar concentrators[27,28].To date,among the various doped QDs,much attention was paid to Mn-and Cu-doped QDs,due to their excellent optical properties and well-developed synthetic knowledge [17,29].

    For Mn2+doped QDs,as the d-orbital energy levels of Mn2+are located between the band gap of the most host QDs,and the excited QDs will quickly transfer energy to the d-bands of Mn2+(Fig.1A).As a result,the fluorescence of the host QDs is quenched,and the emission wavelength of Mn2+doped QDs is red shifted to 580 nm (Mn2+4T1→6A1transition) [30-33].As the d-dots still gains energy from the host QDs,the decreased emission energy by Mn2+doping results in greatly increased Stokes shift of QDs.Moreover,the self-absorption effect can be minimized when Mn2+ion doped into host QDs with large energy gap,especially ZnS(Eg~3.6 eV) and ZnSe (Eg~2.7 eV),which is appealing for biosensing applications.

    Recently,Mn-doped ZnS QDs were chosen as fluorophore for IFE assayofalkalinephosphatase(ALP,Fig.2)[34].TheabsorptionofPNPP(p-nitrophenylphosphate,a substrate for alkaline phosphatase,ALP) overlaps considerably with the excitation of Mn-ZnS d-dots,leading to quenched phosphorescence of the Mn-ZnS d-dots through IFE.After ALP enzymatic reaction (PNPP → PNP,p-nitrophenol),the absorption of product PNP no longer overlaps with the excitation of Mn-ZnS d-dots,resulting inphosphorescence turn-on detection of ALP.Importantly,due to the large Stokes shift(up to 300 nm) of Mn-ZnS d-dots,a “silence area” (Fig.2) was provided for PNP (Absorber) to be located in and eliminates the possible re-absorption of the emission by PNP and itself.Compared with the undoped ZnS QDs with the same excitation as Mn-ZnS d-dots,the emission of undoped ZnS QDs (~450 nm) would be easilyre-absorbedbyPNP,thus decreasing the detection sensitivity.

    Fig.2.Mn-doped ZnS d-dots as fluorophore for phosphorescent IFE-based ALP sensing.Copied with permission [34].Copyright 2017,Royal Society of Chemistry.

    For Cu2+-doped QDs,the T2state of Cu2+also locates inside the bandgap of the host QDs.Upon excitation,the hole in the valence band transfers to the T2state,resulting in dopant emission from the recombination of electron on the conduction band of host QDs and the hole on the Cu T2state(Fig.1B).Accordingly,in contrast to the Mn-doped QDs,the emission of Cu-doped QDs is tunable from blue to near-infrared(NIR),depending on the bandgap of the host QDs[35,36].In other words,the Stokes shifts of Cu-doped QDs can be tuned through varying the composition and size of the host QDs(Fig.1C).Harvesting the enlarged Stokes shift of Cu-doped QDs for decreased self-absorption,Li et al.developed a dually-enriched strategy to assemble Cu-doped CdS QDs for generating a highly luminescent fluorescent imaging probe (Fig.3).No appreciable aggregation-caused quenching was observed from the enriched Cu-doped CdS QDs due to its large Stokes shift (~200 nm) that feature almost zero self-absorption.While for undoped CdS QDs assembly,a significant quenching was exist ascribe to its smaller Stokes shift (Fig.3) [16].Apparently,large Stokes shift-based nanocrystals are advantageous for highly sensitive bioassays.

    3.2.Alloy quantum dots

    Alloy QDs,including ternary and even quaternary semiconductor QDs,have been intensively investigated due to its unique optical properties.As the band gap of QDs canbe regulated by changing their composition,it is possible to regulate the band gap of QDs through adjusting the composition of the binary nanocrystals for constructing large Stokes shift based QDs[37-39].Specifically,bychangingthe ratio of cations or anions in alloy QDs,the band gap will be regulated so as to change the emission wave length with out changing the size of the QDs[40-42],demonstrating that alloyQDs is one effective way to construct fluorescent nanocrystals with large Stokes shift[43].For example,the bulk CdS nanocry stals with blue emission color possess a small Stokes shift near 20 nm.After adding Te2-ion to form CdSxTe1-xalloy QDs [44],no significant change was observed in absorption spectrum,while the Stokes shift was greatly enlarged to 270 nm,due to the decreased band gap upon alloying (Fig.4).Similarly,the Stokes shift of CuxInS alloyed nanocrystals can also be enlarged with the increasing concentration of Cu2+ion[45].To date,owning to the unique optical properties,alloy QDs have been widely used for bioapplications,especially nanocrystals with near-infrared(NIR) emission that was beneficial to eliminate autofluorescence in vivo.However,few sensors were constructed based on the property of large Stokes shift until now.Thus,taking the superiority of large Stokes shift,alloy QDs can be further explored for sensor design with high sensitivity such as enhanced bioimaging.

    Fig.3.Comparison of the Stokes shift and fluorescence enriched performance between Cu doped QDs and undoped QDs.Copied with permission[16].Copyright 2015,Royal Society of Chemistry.

    Fig.4.The decreasing spectral overlap of CdSxTe1-x (A) and CuxInS (B) alloyed nanocrystals as well as the comparison of band gap and Stokes shift(C).Reproduced with permission [44,45].Copyright 2012 and 2008,American Chemical Society.

    3.3.Fluorescent noble metal nanoclusters

    Noble metal nanoclusters (NCs) is a kind of aggregation that typically composed of a few to several hundred metal atoms,including mainly gold naonclusters (AuNCs) [46]and silver nanoclusters (AgNCs) [47].Compared to semiconductor QDs and organic dyes,noble metal NCs are of special interest as their ultrasmall size (<2 nm) that close to the fermi level of the electrons,which results in molecule-like properties of discrete electronic states.Furthermore,noble metal NCs with different atomic numbers and ligands show different energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO)[48,49].In this regard,noble metal NCs can be designed to fluoresce from visible to nearinfrared.For example,upon increasing the molar ratio of Ag/PMAA from 400%to 800%,the absorption peak of poly (methacrylic acid)(PMAA) stabilized silver nanoclusters almost retained,but the center of the emission peak was red-shifted,resulting in increased Stokes shift [50].

    Due to low toxicity and good biocompatibility,noble metal NCs should be a favorable choice as large Stokes shift-based nanoparticles in designing of high sensitive fluorescent assays[51,52].Recently,using Cu nanoclusters (NCs) as energy donor,Li et al.developed a FRET-based sensor for GSH.As the emission spectra of Cu NCs did not overlap with the absorption spectrum but exactly overlapped with the absorption spectrum of MnO2(acceptor),the sensitive and selective detection of GSH in human whole blood samples was successfully realized without selfabsorbing interference[53].Also in a previous work,BSA protected AuNCs was employed as the fluorophore in IFE system for extreme acidity detection with ascorbic acid as the absorber [54].The as-prepared NIR-emitting AuNCs possess large Stokes shift near 400 nm,indicating no re-absorption will generate for influencing the detection (Fig.5).Therefore,on the basis of the regular absorption change of ascorbic acid in extremely acidic pH,the fluorescence of AuNCs showed a good linearity versus pH in the range of 2.4-4.6.The developed probe was also explored for extremely acidic pH detection in several bacteria.

    3.4.Rare earth doped nanocrystals

    Rare earth (Ln) doped nanocrystals is one type of realizable large Stokes shift based fluorescent material due to its tunable energy levels of Ln3+.Especially,Ln-based NIR probes show appealing downshifting luminescence with NaLuF4,NaYF4,CaF2,and LaF3as host materials[55-57].Currently,Ho3+-or Er3+-doped nanocrystals have been reported as excellent candidates for deeptissue imaging since they possess emissions at 1200 nm (Ho3+,NIR-II)and 1550 nm(Er3+,NIR-III),respectively.Meanwhile,Yb3+is the most commonly explored co-dopant and sensitizer in Ho3+-or Er3+-doped nanocrystals that possess a relatively strong absorption at 980 nm,realizing large Stokes shift for Ho3+or Er3+ions doped nanocrystals (Table 1) [58-65].

    To minimize the potential photo-damage to the biological tissue and background absorption in organism,Nd3+ion is a promising sensitizer due to its relatively large absorption cross-section at 800 nm.Thus,Nd3+ion is a good replacement of Yb3+to construct rare-earth doped nanocrystals with enhanced Stokes shift near 750 nm [66-68].Besides,in order to realize NIR-II wavelength excitation for better imaging resolution,recent report by Zhang has introduced Tm3+as a new sensitizers that can be excited in the NIR-II window and efficiently transfer energy to Ho3+and Er3+[65].As a consequence,the as-prepared NaYF4:Tm3+,Er3+@NaYF4nanocrystal canbeusedtoharvest1208 nmphotonsfromTm3+andthenproduce 1550 nm emission by Er3+,which also realizing a large Stokes shift.

    Recently,based on an absorption competition between Cy7.5 fluorophores and Er3+-doped lanthanide nanoparticles at 808 nm,Zhang et al.chose NaErxY1-xF4@NaYF4nanocrystals as a NIR-II signal unit while Cy7.5 as the competition absorber,developing a 1550 nm emissive ratiometric nanoprobe in response to HOCl with a detection limit down to 500 nmol/L[69].Due to the reduced light absorption and increased tissue penetration of Er3+-doped nanocrystals,the as-prepared probe further demonstrated its utility for high-resolution ratiometric sensing of lymphatic inflammation in vivo (Fig.6).

    Fig.5.Large Stokes shift-based AuNCs as fluorophore for IFE-based extreme acidity sensing.Copied with permission [54].Copyright 2017,Royal Society of Chemistry.

    Table 1 Luminescence properties of rare earth doped nanocrystal with different sensitizer and activator.

    4.Conclusions and outlooks

    In conclusion,large Stokes shift-based nanocrystals for optical biosensing were summarized in this review.In most fluorescence assays,the detection sensitivity may suffer from the effect of self-absorption,which is a typical mechanism of fluorescence quenching that originates from the overlap between absorption and emission spectra.Consequently,the key to minimizing the self-absorption is to enlarge the Stokes shifts of the fluorophores,which decrease the spectral overlap of absorption and the emission of the fluorophore.Fluorescence nanocrystals with tunable band gap made it possible to enlarge the Stokes shift and resulting in self-absorption reduced.

    For constructing large Stokes shift-based nanocrystals,doped QDs is one of the most representative method due to the constant absorption spectrum and increased energy loss upon doping.Mn2+and Cu2+doped QDs feature almost zero self-absorption that have widely applied for high sensitivity bioassay and bioimaging.Besides,Mn2+-containing QDs can be used as MRI/fluorescent dual-modal imaging probe [70,71]while Cu64doped QDs can be served as PET/ fluorescent dual-modal imaging probe [72].Thus,combining the property of large stokes shift and multifunctional imaging capability; it is possible to achieve both high sensitivity and high spatial resolution bioimaging.Similarity,alloy QDs can continuously regulate their band gap by adjusting different cation or anion ratios without size change,realizing Stokes shift enlarging.However,the current synthetic protocol for high-quality alloy QDs suitable for aqueous biosensing and bioimaging applications needs further development.

    Fig.6.Schematic illustration showing the ratiometric response of Er3+-doped nanocrystals to HOCl based on an absorption competition-induced emission mechanism.Copied with permission [69].Copyright 2019,American Chemical Society.

    While for noble metal NCs,large Stokes shifted-based nanocrystals can be easily obtained under mild conditions through controlling ligands and other factors,which also show good stability in acidic environment.Yet,most noble metal NCs-based sensors utilize their properties such as small size and low toxic,while sensors that developed based on large Stokes shift have been reported seldom until now.Therefore,the unique of large Stokes shift can be further explored for sensor design.

    Among these large Stokes shift-based nanocrystals,rare earth doped nanocrystals have proven to be the best candidate for NIR imaging since the choice of the rare earth dopant allows for the adjustment of both excitation and emission wavelengths.Nevertheless,the disadvantage of low quantum yield for rare earth doped nanocrystals restricts its further application in some cases.

    In addition,in order to meet the practical application of various fields,accurately regulating the band gap of these above large Stokes shift-based nanocrystals and endow them specific properties need to be further studied.Besides,the disadvantage of low quantum yield in most large Stokes shift-based nanocrystals has yet to be solved for higher sensitivity.Moreover,for biomedical applications,the potential toxicity of these nanocrystals should be a major concern.Therefore,advanced research is necessary to ensure the safety of large Stokes shift-based nanocrystals for application in biosensing.

    Acknowledgments

    The authors gratefully acknowledge the financial support from the Youth Science Foundation of Sichuan Province(No.2016JQ0019) and the Postdoctoral Science Foundation of China (No.2018M633359).

    国产高潮美女av| 亚洲欧美清纯卡通| 精品一区二区免费观看| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久久免费视频| 别揉我奶头~嗯~啊~动态视频| or卡值多少钱| 国产精品,欧美在线| av中文乱码字幕在线| 国产精品乱码一区二三区的特点| 国产精品一区二区免费欧美| 亚洲一区高清亚洲精品| 最近在线观看免费完整版| 91在线精品国自产拍蜜月| 欧美黄色片欧美黄色片| 国产av在哪里看| ponron亚洲| 国产黄片美女视频| 在线十欧美十亚洲十日本专区| 午夜精品一区二区三区免费看| 黄色丝袜av网址大全| 首页视频小说图片口味搜索| 狂野欧美白嫩少妇大欣赏| 一个人观看的视频www高清免费观看| a级毛片a级免费在线| 久久久久久久久久黄片| 最新中文字幕久久久久| 97人妻精品一区二区三区麻豆| 日韩人妻高清精品专区| 国产在线男女| 热99re8久久精品国产| 久久性视频一级片| 亚洲精华国产精华精| 嫩草影院新地址| a级毛片免费高清观看在线播放| 九色成人免费人妻av| 欧美黑人欧美精品刺激| 亚洲国产精品999在线| 女同久久另类99精品国产91| 婷婷精品国产亚洲av| 日本成人三级电影网站| 99久久九九国产精品国产免费| 久久久久免费精品人妻一区二区| 少妇的逼水好多| 两性午夜刺激爽爽歪歪视频在线观看| 91九色精品人成在线观看| 亚洲国产日韩欧美精品在线观看| 美女被艹到高潮喷水动态| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清在线视频| 免费在线观看亚洲国产| 男人和女人高潮做爰伦理| 午夜福利在线观看吧| 欧美激情在线99| а√天堂www在线а√下载| 深爱激情五月婷婷| or卡值多少钱| 嫩草影院新地址| 亚洲七黄色美女视频| 欧美zozozo另类| 免费搜索国产男女视频| 国产伦人伦偷精品视频| 超碰av人人做人人爽久久| АⅤ资源中文在线天堂| www.999成人在线观看| 91麻豆精品激情在线观看国产| 天堂动漫精品| 九色成人免费人妻av| 日韩欧美免费精品| 嫩草影院精品99| 免费观看人在逋| 欧美在线一区亚洲| 欧美日韩乱码在线| 夜夜爽天天搞| 嫁个100分男人电影在线观看| 日本一二三区视频观看| 97热精品久久久久久| 午夜老司机福利剧场| 日韩欧美精品免费久久 | 亚洲欧美清纯卡通| 日韩高清综合在线| 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 欧美日韩亚洲国产一区二区在线观看| 亚洲久久久久久中文字幕| 天堂影院成人在线观看| 十八禁国产超污无遮挡网站| 看免费av毛片| netflix在线观看网站| 麻豆一二三区av精品| 91狼人影院| 国产黄片美女视频| h日本视频在线播放| 成人毛片a级毛片在线播放| 色在线成人网| eeuss影院久久| 美女高潮喷水抽搐中文字幕| 国产高清视频在线观看网站| 色哟哟·www| 欧美性猛交黑人性爽| 男女之事视频高清在线观看| 18美女黄网站色大片免费观看| 久久久久国内视频| 欧美乱妇无乱码| 99热这里只有是精品在线观看 | 亚洲中文字幕日韩| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| 午夜福利18| 一级a爱片免费观看的视频| 久久精品国产亚洲av香蕉五月| 美女黄网站色视频| 91麻豆精品激情在线观看国产| 精品久久久久久久久av| 露出奶头的视频| 国产伦人伦偷精品视频| 亚洲黑人精品在线| 一本久久中文字幕| 男人和女人高潮做爰伦理| 国产成人av教育| 免费看日本二区| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久成人av| av黄色大香蕉| www.熟女人妻精品国产| 久久国产精品人妻蜜桃| 麻豆一二三区av精品| 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久噜噜老黄 | x7x7x7水蜜桃| 一级作爱视频免费观看| 国内精品久久久久久久电影| 最新在线观看一区二区三区| 午夜福利成人在线免费观看| 校园春色视频在线观看| 乱码一卡2卡4卡精品| 中文字幕高清在线视频| 国产熟女xx| 国产乱人伦免费视频| 免费在线观看影片大全网站| 亚洲自拍偷在线| 亚洲片人在线观看| 天堂√8在线中文| av在线天堂中文字幕| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 级片在线观看| 国产色婷婷99| 欧美高清成人免费视频www| 亚洲av二区三区四区| 又粗又爽又猛毛片免费看| 一区福利在线观看| 国产成人福利小说| 成人午夜高清在线视频| 青草久久国产| 久久久国产成人精品二区| 最近最新中文字幕大全电影3| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 麻豆久久精品国产亚洲av| 久久国产乱子免费精品| 国产欧美日韩一区二区三| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频| 美女 人体艺术 gogo| 亚洲avbb在线观看| 亚洲av成人精品一区久久| 两性午夜刺激爽爽歪歪视频在线观看| 三级国产精品欧美在线观看| 五月伊人婷婷丁香| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 99精品久久久久人妻精品| 成熟少妇高潮喷水视频| 怎么达到女性高潮| 欧美不卡视频在线免费观看| 成人av一区二区三区在线看| 亚洲成人中文字幕在线播放| 床上黄色一级片| 国模一区二区三区四区视频| 女人被狂操c到高潮| 亚洲人成网站高清观看| 免费看光身美女| 欧美日韩黄片免| 一a级毛片在线观看| 精品久久久久久久久av| 中亚洲国语对白在线视频| 18禁黄网站禁片午夜丰满| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| 波野结衣二区三区在线| 亚洲精品一区av在线观看| 免费高清视频大片| 中亚洲国语对白在线视频| 国产单亲对白刺激| 国产亚洲精品综合一区在线观看| 日韩人妻高清精品专区| 国产一区二区激情短视频| 能在线免费观看的黄片| 午夜免费男女啪啪视频观看 | 亚洲不卡免费看| 亚洲av五月六月丁香网| av欧美777| 精品久久久久久久末码| 亚洲成a人片在线一区二区| 老女人水多毛片| 亚洲一区二区三区不卡视频| 久久精品91蜜桃| av国产免费在线观看| 亚州av有码| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 别揉我奶头 嗯啊视频| 国产在线男女| 国产老妇女一区| 村上凉子中文字幕在线| 麻豆国产97在线/欧美| 国产成人影院久久av| 很黄的视频免费| 成人美女网站在线观看视频| 一本综合久久免费| 亚洲av成人不卡在线观看播放网| av欧美777| 国产精品爽爽va在线观看网站| 午夜福利视频1000在线观看| 亚洲一区高清亚洲精品| 免费人成在线观看视频色| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 久久中文看片网| 最近视频中文字幕2019在线8| 欧美成人一区二区免费高清观看| 很黄的视频免费| 国产色爽女视频免费观看| 精品福利观看| 最好的美女福利视频网| 波多野结衣高清作品| 男女之事视频高清在线观看| 在线a可以看的网站| av在线观看视频网站免费| 美女黄网站色视频| 99国产精品一区二区蜜桃av| 免费在线观看亚洲国产| 看免费av毛片| 免费av不卡在线播放| av中文乱码字幕在线| 免费高清视频大片| 日韩欧美精品免费久久 | 亚洲真实伦在线观看| 亚洲18禁久久av| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 真人做人爱边吃奶动态| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| www.色视频.com| 国产黄色小视频在线观看| x7x7x7水蜜桃| 国内精品久久久久精免费| 变态另类成人亚洲欧美熟女| 中文字幕人成人乱码亚洲影| 国产黄色小视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲一区二区三区色噜噜| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 日韩有码中文字幕| 又黄又爽又刺激的免费视频.| 老熟妇乱子伦视频在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久午夜电影| 在现免费观看毛片| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 亚洲七黄色美女视频| 国产精品伦人一区二区| 亚洲,欧美,日韩| 悠悠久久av| 五月玫瑰六月丁香| 18禁裸乳无遮挡免费网站照片| 亚洲avbb在线观看| 亚洲国产日韩欧美精品在线观看| 好男人电影高清在线观看| 国产一区二区亚洲精品在线观看| 好男人在线观看高清免费视频| 国产 一区 欧美 日韩| h日本视频在线播放| 精品一区二区免费观看| 色播亚洲综合网| 国产真实乱freesex| 国产精品野战在线观看| 亚洲成人久久性| 亚洲内射少妇av| 能在线免费观看的黄片| 免费人成在线观看视频色| 亚洲成人久久性| 久久久久久国产a免费观看| 一进一出抽搐动态| 中文字幕高清在线视频| 我的老师免费观看完整版| 国产精品免费一区二区三区在线| 97热精品久久久久久| 免费黄网站久久成人精品 | 国产精品精品国产色婷婷| 亚洲成人久久爱视频| 赤兔流量卡办理| 国产精品综合久久久久久久免费| 变态另类丝袜制服| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 国产极品精品免费视频能看的| 欧美黄色片欧美黄色片| 欧美乱妇无乱码| 国产精品电影一区二区三区| 国产乱人视频| 中文字幕熟女人妻在线| 一级黄片播放器| 亚洲午夜理论影院| 神马国产精品三级电影在线观看| 午夜福利免费观看在线| 很黄的视频免费| 中文字幕av成人在线电影| 97碰自拍视频| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久精品影院6| aaaaa片日本免费| 色5月婷婷丁香| 日韩中字成人| 久久久久九九精品影院| 窝窝影院91人妻| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| 欧美xxxx性猛交bbbb| 一本综合久久免费| 搡老岳熟女国产| 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 亚洲精品在线美女| a级毛片a级免费在线| 热99re8久久精品国产| 91九色精品人成在线观看| 日韩成人在线观看一区二区三区| 免费人成视频x8x8入口观看| 亚洲国产精品久久男人天堂| 亚洲国产高清在线一区二区三| 色哟哟·www| 美女高潮的动态| 网址你懂的国产日韩在线| 宅男免费午夜| 99精品久久久久人妻精品| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 久久久久国内视频| 窝窝影院91人妻| 国产精品一区二区性色av| 国产一区二区在线av高清观看| 99热6这里只有精品| 欧美激情国产日韩精品一区| 99久久精品热视频| 国产欧美日韩一区二区精品| 国产精品人妻久久久久久| 97人妻精品一区二区三区麻豆| 最后的刺客免费高清国语| 日日夜夜操网爽| 美女免费视频网站| 国产精品日韩av在线免费观看| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻一区二区三区麻豆 | 午夜福利免费观看在线| 美女免费视频网站| 超碰av人人做人人爽久久| 国内精品久久久久久久电影| 在线十欧美十亚洲十日本专区| 免费av毛片视频| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片 | 热99在线观看视频| 亚洲欧美清纯卡通| 免费av观看视频| 色噜噜av男人的天堂激情| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 国产精品久久久久久精品电影| 1024手机看黄色片| 伊人久久精品亚洲午夜| 日韩欧美三级三区| 两人在一起打扑克的视频| 欧美日韩综合久久久久久 | 亚洲真实伦在线观看| 午夜老司机福利剧场| 赤兔流量卡办理| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 国产一区二区三区视频了| 欧美一区二区国产精品久久精品| 99热这里只有精品一区| 一区二区三区高清视频在线| 亚洲av熟女| 看黄色毛片网站| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 欧美丝袜亚洲另类 | 国产免费男女视频| 亚洲18禁久久av| 午夜福利成人在线免费观看| 亚洲成人久久性| 成人午夜高清在线视频| 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| xxxwww97欧美| 亚洲专区国产一区二区| 欧美性感艳星| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 午夜亚洲福利在线播放| 精品久久久久久成人av| 成人国产一区最新在线观看| 成人午夜高清在线视频| 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 亚洲人成伊人成综合网2020| 看十八女毛片水多多多| 亚洲无线在线观看| av黄色大香蕉| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 久久久久久久久久成人| 久久中文看片网| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 免费人成视频x8x8入口观看| 久久久精品大字幕| 午夜福利欧美成人| 热99re8久久精品国产| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 在线观看舔阴道视频| 亚州av有码| 婷婷丁香在线五月| 91字幕亚洲| 亚洲欧美清纯卡通| 黄色配什么色好看| 综合色av麻豆| 久久国产精品人妻蜜桃| 91av网一区二区| ponron亚洲| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 麻豆一二三区av精品| 色吧在线观看| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 毛片女人毛片| 国产探花极品一区二区| 国产成人福利小说| 久久人妻av系列| 日韩中字成人| aaaaa片日本免费| 悠悠久久av| 午夜福利在线观看吧| 91在线观看av| 国产av不卡久久| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 国内精品久久久久久久电影| 身体一侧抽搐| 成人无遮挡网站| 伦理电影大哥的女人| 99国产综合亚洲精品| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 亚洲人成网站在线播| 深夜a级毛片| 99久久精品国产亚洲精品| 国产精品综合久久久久久久免费| a在线观看视频网站| 欧美激情久久久久久爽电影| 国内毛片毛片毛片毛片毛片| 国产精品电影一区二区三区| 国产高清激情床上av| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 国产精品99久久久久久久久| a级毛片a级免费在线| 久久久精品大字幕| 九九久久精品国产亚洲av麻豆| 精品午夜福利视频在线观看一区| 久久人人精品亚洲av| 一进一出抽搐动态| 两个人的视频大全免费| 亚洲最大成人手机在线| 黄色日韩在线| 日韩av在线大香蕉| 亚洲,欧美,日韩| 乱人视频在线观看| 看黄色毛片网站| 床上黄色一级片| 看免费av毛片| 88av欧美| 国产在视频线在精品| 在线观看一区二区三区| 免费看日本二区| 免费看a级黄色片| 99热6这里只有精品| ponron亚洲| 国产人妻一区二区三区在| 永久网站在线| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 亚洲激情在线av| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区 | 欧美一区二区国产精品久久精品| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 亚洲精品一区av在线观看| 国产日本99.免费观看| 我的老师免费观看完整版| 十八禁人妻一区二区| 久久国产精品影院| 免费搜索国产男女视频| 黄色配什么色好看| а√天堂www在线а√下载| 日韩欧美在线乱码| 成年女人永久免费观看视频| 99久久精品一区二区三区| 亚洲av成人av| 午夜久久久久精精品| 高清日韩中文字幕在线| 国产在视频线在精品| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 日韩成人在线观看一区二区三区| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 无人区码免费观看不卡| 嫩草影视91久久| 真人一进一出gif抽搐免费| 999久久久精品免费观看国产| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 亚洲av免费高清在线观看| 亚洲 欧美 日韩 在线 免费| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 欧美最新免费一区二区三区 | 如何舔出高潮| av在线观看视频网站免费| 色视频www国产| 久久国产乱子伦精品免费另类| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9| 99久久成人亚洲精品观看| 久久精品国产亚洲av香蕉五月| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 香蕉av资源在线| 午夜久久久久精精品| 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影| 一本精品99久久精品77| 欧美黄色片欧美黄色片| 国产色婷婷99| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 欧美性猛交╳xxx乱大交人| 内射极品少妇av片p| 久久久久久久精品吃奶| 黄色日韩在线| 亚洲成av人片免费观看| 人妻夜夜爽99麻豆av| 欧美日韩福利视频一区二区| 波多野结衣高清无吗| 国内精品久久久久久久电影| 午夜影院日韩av| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 国产亚洲精品av在线| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 嫁个100分男人电影在线观看| 亚洲成人久久性| 少妇人妻精品综合一区二区 | 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 91麻豆av在线| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 国产精品爽爽va在线观看网站| 欧美激情国产日韩精品一区| 嫩草影院入口| 国产精品一区二区性色av| 99热这里只有是精品在线观看 | 又爽又黄无遮挡网站|