趙智偉 田思琪 杜宇 王春光 陳曉杰 郝雪琴
摘 要:以2-氨基-4,5-雙(2-甲氧基乙氧基)苯甲酸乙酯鹽酸鹽為起始原料,經(jīng)過環(huán)合、氯化、取代得到厄洛替尼,然后在其端基炔結(jié)構(gòu)上通過點(diǎn)擊化學(xué)反應(yīng)與芐基疊氮反應(yīng)得到4種1,2,3-三氮唑類化合物,其中化合物5a對(duì)肺癌細(xì)胞HCC827及其吉非替尼耐藥細(xì)胞的HCC827GR具有一定的抑制效果,優(yōu)于厄洛替尼,并且引起HCC827細(xì)胞阻滯在G2/M期,引起HCC827GR細(xì)胞在G0/G1期阻滯.
關(guān)鍵詞:厄洛替尼;1,2,3-三氮唑;抗腫瘤藥物;細(xì)胞周期
中圖分類號(hào):R914.5文獻(xiàn)標(biāo)志碼:A
厄洛替尼(erlotinib,圖1)是一款經(jīng)典的表皮生長(zhǎng)因子受體(Epidermal Growth Factor Receptor,EGFR)小分子抑制劑,于2004年被美國(guó)食品及藥物管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)上市,作為一種口服的可逆性競(jìng)爭(zhēng)性表皮生長(zhǎng)因子受體酪氨酸激酶抑制劑(Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors,EGFR-TKI),能夠與突變的EGFR的三磷酸腺苷(Adenosine Triphosphate,ATP)結(jié)合口袋結(jié)合,阻礙EGFR磷酸化,從而抑制了下游信號(hào)通路激活.其最初被批準(zhǔn)用于治療經(jīng)傳統(tǒng)化療失敗的晚期非小細(xì)胞肺癌(Non-small Cell Lung Cancer,NSCLC),與傳統(tǒng)化療藥物的臨床治療相比,厄洛替尼治療后可以使患者中位生存期從4月提升到40月以上[1],并且在無進(jìn)展生存率、治療有效率、生活質(zhì)量和耐受性方面均有更好的表現(xiàn)[2].盡管厄洛替尼在NSCLC靶向治療中顯著延緩了疾病的進(jìn)展,但是與另外兩種第一代EGFR抑制劑吉非替尼(gefitinib,圖1)[3-4]和??颂婺幔╥cotinib,圖1)[5-6]一樣,在用藥治療約9 ~ 14月后,耐藥性問題逐漸顯現(xiàn),幾乎所有的腫瘤再次進(jìn)入進(jìn)展期,因此如何解決厄洛替尼耐藥性問題一直是藥學(xué)工作者研究的重點(diǎn)[7-8].
1,2,3-三氮唑是一種非常重要的含氮雜環(huán)化合物,由3個(gè)氮原子和2個(gè)碳原子構(gòu)建成五元雜環(huán)[9],分子式為C2H3N3.1,2,3-三氮唑具有特殊的平面剛性結(jié)構(gòu),因而擁有較強(qiáng)的嵌入DNA的能力,同時(shí)具有大偶極矩,能夠與不同生物靶點(diǎn)形成疏水、氫鍵、范德華力和偶極-偶極鍵等多種非共價(jià)相互作用力[10].另外,1,2,3-三氮唑的結(jié)構(gòu)特征允許其作為酰胺、酯、羧酸、烯烴剛性類似物等的電子等價(jià)取代物,因此具有廣譜的生物活性,常作為重要的分子砌塊用于活性化合物的合成,如制備抗菌[11]、抗瘧[12]、抗真菌[13]、抗病毒[14]、抗結(jié)核[15]和抗癌活性化合物[16]等.在藥物化學(xué)領(lǐng)域具有廣泛的應(yīng)用,有多種臨床藥物經(jīng)1,2,3-三氮唑修飾改造后增強(qiáng)了原有的生物活性或獲得了新的生物活性,例如利用抗人免疫缺陷病毒(human immunodeficiency virus,HIV)藥物齊多夫定帶有疊氮基團(tuán)的結(jié)構(gòu)特性,與端基炔類化合物經(jīng)點(diǎn)擊化學(xué)反應(yīng)得到具有1,2,3-三氮唑的化合物(圖2a),對(duì)大腸桿菌和金黃色葡萄球菌具有抑制作用[17].有課題組在苯環(huán)或苯胺結(jié)構(gòu)上引入1,2,3-三氮唑得到化合物MMG-0358和Vertex-AT[18](圖2(b,c)),作為吲哚胺-2,3-雙加氧酶1(indoleamine-(2,3)-dioxygenase 1,IDO1)抑制劑,這兩個(gè)化合物都能夠深入到IDO1的靶點(diǎn)蛋白中,且1,2,3-三氮唑環(huán)能與靶點(diǎn)血紅素中的亞鐵離子形成氫鍵作用,三氮唑鏈接的苯環(huán)可以深入到有Cys129,Leu234和Gly262氨基酸所包圍的疏水性口袋中,其中MMG-0358苯環(huán)上的羥基可以與Ser167形成氫鍵作用;這兩個(gè)化合物都具有優(yōu)異的IDO1抑制活性,半抑制濃度(half maximal inhibitory concentration,IC50)分別達(dá)到82 nmol·L-1和23 nmol·L-1[18].
為尋找更加新型高效的對(duì)突變細(xì)胞有抑制作用的抗腫瘤藥物,本研究通過點(diǎn)擊反應(yīng)對(duì)厄洛替尼進(jìn)行了改造,與芐基疊氮類化合物反應(yīng)得到一個(gè)結(jié)構(gòu)新穎的厄洛替尼衍生物(圖3),希望其能夠在解決耐藥性問題方面起到作用.為了進(jìn)一步探究該新合成的化合物對(duì)肺癌細(xì)胞HCC827以及所對(duì)應(yīng)的耐藥性細(xì)胞的抑制活性,利用二苯基四氮唑溴鹽(3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide,MTT)比色法進(jìn)行實(shí)驗(yàn),對(duì)HCC827以及吉非替尼耐藥的HCC827GR細(xì)胞進(jìn)行了體外抗腫瘤活性檢,并以厄洛替尼作為陽性對(duì)照藥物,研究了其對(duì)這兩種細(xì)胞的細(xì)胞周期影響.
1 實(shí)驗(yàn)部分
1.1 試劑與儀器
DF-101S集熱式恒溫加熱磁力攪拌器(鄭州予華儀器有限公司);YRE-2020旋轉(zhuǎn)蒸發(fā)儀(鄭州予華儀器有限公司);布魯克AV400型核磁共振儀(德國(guó)Bruker公司);LC 1260高效液相色譜儀(美國(guó)安捷倫公司).
厄洛替尼(99.5%,阿拉丁試劑);2,4-二溴芐基疊氮(99.5%,阿拉丁試劑);3-氯-4-氟芐基疊氮(99%,阿拉丁試劑);2-氟-4-溴芐基疊氮(99%,阿拉丁試劑);3-氯-6-氟芐基疊氮(99%,阿拉丁試劑);五水硫酸銅(98%,國(guó)藥集團(tuán));抗壞血酸鈉(99%,國(guó)藥集團(tuán));其余試劑均為市售分析純.
1.2 合成方法
1.2.1 6,7-二甲氧乙氧基喹唑啉-4-酮的合成(化合物2)
在帶有攪拌的反應(yīng)瓶中,把2-氨基-4,5-雙(2-甲氧基乙氧基)苯甲酸乙酯鹽酸鹽(化合物1)(3.5 g,0.01 mol)加入甲酰胺100 mL中,再加入甲酸銨2 g(0.03 mol),攪拌均勻后在氮?dú)夥諊?,緩慢加熱?60 ℃,反應(yīng)約10 h,薄層色譜法(Thin Layer Chromatography,TLC)監(jiān)控原料反應(yīng)完全,冷卻至室溫,向反應(yīng)液中加入乙酸乙酯100 mL和水80 mL,攪拌后分出有機(jī)相,濃縮后得到6,7-二甲氧乙氧基喹唑啉-4-酮2.1 g(化合物2),收率為71.4%;1H NMR(400 MHz,DMSO-d6)δ:7.97(s,1H),7.47(s,1H),7.16(s,1H),4.19~4.27(m,4H),3.70~3.74(m,4H),3.35~3.37(m,6H).
1.2.2 4-氯-6,7-二(2-甲氧基乙氧基)喹唑啉的合成(化合物3)
在帶有攪拌的反應(yīng)瓶中,把6,7-二甲氧乙氧基喹唑啉-4-酮(化合物2)3 g(0.01 mol)和N,N-二甲基甲酰胺1 g加入到二氯亞砜30 mL中,攪拌均勻后緩慢升溫至80 ℃,反應(yīng)結(jié)束后,在0~10 ℃條件下加入飽和氫氧化鈉溶液100 mL,調(diào)節(jié)反應(yīng)液pH到8~9,攪拌20 min,用二氯甲烷50 mL萃取多次,合并有機(jī)相,然后用飽和食鹽水洗滌1次,再用水洗滌多次,無水硫酸鈉干燥后濃縮得到4-氯-6,7-二(2-甲氧基乙氧基)喹唑啉2.3 g(化合物3),收率為73.7%,LC-MS(ESI):m/z 313[M+H]+.
1.2.3 N-(3-乙炔苯基)-6,7-雙(2-甲氧乙氧基)-4-喹啉胺的合成(化合物4)
在反應(yīng)瓶中,把4-氯-6,7-二(2-甲氧基乙氧基)喹唑啉(化合物3)3 g(0.01mol)加入異丙醇100 mL中,再加入間氨基苯乙炔1.3 g(0.011 mol),加熱回流,反應(yīng)3 h, TLC監(jiān)控原料反應(yīng)完全,置于0 ℃攪拌30 min,抽濾后烘干得到N-(3-乙炔苯基)-6,7-雙(2-甲氧乙氧基)-4-喹啉胺(化合物4)2.4 g,收率為61%;1H NMR(600 MHz,DMSO-d6)δ:9.48(s,1H),8.51(s,1H),8.00(s,1H),7.91(d,J=12.0 Hz,1H),7.87(s,1H),7.41(t,J=6.0 Hz,1H),7.17~7.27(m,2H),4.29~4.31(m,4H),4.21(s,1H),3.75~3.80(m,4H),3.38(s,3H),3.36(s,3H).
1.2.4 目標(biāo)化合物的合成(以化合物5a為例)
在反應(yīng)瓶中,依次加入N-(3-乙炔苯基)-6,7-雙(2-甲氧乙氧基)-4-喹啉胺(化合物4)0.5 g,2,4-二溴芐基疊氮0.5 g,叔丁醇10 mL,水10 mL,四氫呋喃10 mL,五水硫酸銅0.25 g,抗壞血酸鈉0.5 g,在70 ℃條件下反應(yīng),TLC監(jiān)控原料反應(yīng)完全,加入二氯甲烷20 mL,過濾反應(yīng)液,水相用二氯甲烷萃取兩次,合并有機(jī)相經(jīng)無水硫酸鎂干燥后,濃縮后用甲醇重結(jié)晶得到白色的產(chǎn)品0.47 g,收率為55.13%.化合物5a,1H NMR(600 MHz,DMSO-d6)δ:9.58(s,1H),8.72(s,1H),8.49(s,1H),8.28(s,1H),7.89~7.99(m,2H),7.86(s,1H),7.64(s,2H),7.57(d,J=7.6 Hz,1H),7.47(t,J=7.9 Hz,1H),7.24(s,1H),5.70(s,2H),4.26~4.35(m,4H),3.73~3.83(m,4H),3.39(s,3H),3.36(s,3H);13C NMR(150 Hz,DMSO-d6):156.84,154.06,153.39,148.56,147.45,147.22,140.83,140.56,133.73,131.21,130.67,129.51,123.23,122.41,120.83,119.30,109.44,108.68,103.71,70.61,70.54,68.84,68.51,58.88,58.82,52.01.
分別采用 3-氯-4-氟芐基疊氮0.5 g,2-氟-4-溴芐基疊氮0.5 g,2-氟-6-氯芐基疊氮0.5 g替換5a合成過程中的2,4-二溴芐基疊氮0.5 g,得到化合物5b(收率為71.97%),5c(收率為70.74%),5d(收率為40.1%).化合物5b,1H NMR(400 MHz,DMSO-d6)δ:9.55(s,1H),8.60(s,1H),8.26(s,1H),7.90~7.95(m,2H),7.54~7.55(m,2H),7.44~7.49(m,2H),7.28~7.33(m,2H),5.75(s,2H),4.31~4.33(m,4H),3.75~3.81(m,4H),3.39(s,3H),3.37(s,3H);13C NMR(100 Hz,DMSO-d6):163.5,161.1,153.7,148.7,146.9,140.4,134.3,134.2,133.0,131.3,130.0,129.5,122.4,122.3,120.9,119.3,117.6,117.4,115.5,115.3,70.5,68.8,68.5,58.8,50.7.化合物5c,1H NMR(400 MHz,DMSO-d6)δ:9.58(s,1H),8.63(s,1H),8.26(s,2H),7.91(s,1H),7.37~7.66(m,6H),5.71(s,2H),4.30~4.32(m,4H),3.77~3.79(m,4H),3.39(s,3H),3.37(s,3H);13C NMR(100 Hz,DMSO-d6):161.7,159.2,148.7,147.0,140.4,132.8,131.2,129.5,122.9,122.7,122.6,122.4,122.2,120.9,119.7,119.4,119.3,70.5,68.8,68.5,58.8,47.2.化合物5d,1H NMR(400 MHz,DMSO-d6)δ:9.57(s,1H),8.61(s,1H),7.89~8.23(m,3H),7.34~7.59(m,6H),5.78(s,2H),4.30~4.33(m,4H),3.77~3.81(m,4H),3.38(s,3H),3.37(s,3H);13C NMR(100 Hz,DMSO-d6):140.4,132.3,132.2,131.2,129.4,126.3,122.4,122.2,121.4,121.2,120.9,119.3,115.5,115.3,104.0,70.5,70.5,68.8,68.5,58.8,45.1.
1.3 統(tǒng)計(jì)學(xué)處理
采用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行分析.計(jì)量資料符合正態(tài)分布且方差齊,以均數(shù)±標(biāo)準(zhǔn)差表示,非正態(tài)分布用中位數(shù)表示.組間差異應(yīng)用t檢驗(yàn),相關(guān)性分析采用線性相關(guān)分析,P<0.05表示差異有統(tǒng)計(jì)學(xué)意義.
2 結(jié)果分析與討論
2.1 抗腫瘤活性研究
2.1.1 MTT法測(cè)定化合物對(duì)腫瘤細(xì)胞增殖的抑制
采用MTT法測(cè)試4個(gè)化合物和erlotinib對(duì)HCC827細(xì)胞和HCC827GR細(xì)胞的活性.首先收集對(duì)數(shù)期細(xì)胞,調(diào)整細(xì)胞懸液含量為3×107/L,96孔板中每孔加入100? μL細(xì)胞懸液(邊緣孔用無菌PBS填充).5% CO2(體積分?jǐn)?shù)),37 ℃孵育過夜,加入濃度梯度的藥物(0,6.25,12.50,25.00,50.00 μmol/L),設(shè)5個(gè)復(fù)孔.5% CO2,37 ℃孵育48 h,倒置顯微鏡下觀察細(xì)胞狀態(tài).每孔加入10 μL MTT溶液(5 mg/mL),繼續(xù)培養(yǎng)4 h.終止培養(yǎng),小心吸去孔內(nèi)培養(yǎng)液,每孔加入100 μL二甲基亞砜,置搖床上低速振蕩10 min,使結(jié)晶物充分溶解.在酶聯(lián)免疫檢測(cè)儀490 nm處測(cè)量各孔的吸光值,同時(shí)設(shè)置調(diào)零孔(培養(yǎng)基、MTT、二甲基亞砜),對(duì)照孔(細(xì)胞、相同濃度的藥物溶解介質(zhì)、培養(yǎng)液、MTT、二甲基亞砜).
HCC827GR細(xì)胞是HCC827細(xì)胞通過吉非替尼低濃度長(zhǎng)時(shí)間培養(yǎng)傳代得到的對(duì)吉非替尼耐藥的細(xì)胞,HCC827細(xì)胞和HCC827GR細(xì)胞對(duì)吉非替尼的IC50如表1所示,HCC827GR對(duì)吉非替尼的48 h耐藥指數(shù)達(dá)到12.06.化合物5a對(duì)HCC827細(xì)胞具有良好的活性抑制作用,IC50達(dá)到8.17 μmol/L,優(yōu)于erlotinib(IC50=11.81 μmol/L,表2).化合物5a對(duì)HCC827GR細(xì)胞同樣具有良好的活性抑制作用,IC50達(dá)到2.38 μmol/L,優(yōu)于erlotinib(IC50>20 μmol/L).說明引入苯基三氮唑后,針對(duì)實(shí)體瘤抑制活性方面比對(duì)照藥物有顯著提高[19].4種化合物中5a抗腫瘤活性最好,因此進(jìn)一步選取化合物5a研究腫瘤抑制活性.
2.1.2 化合物5a對(duì)HCC827和HCC827GR細(xì)胞周期分布的影響
通過流式細(xì)胞術(shù)進(jìn)行細(xì)胞周期分析,具體步驟如下:提前24 h將2 mL的HCC827/ HCC827GR的細(xì)胞懸液(1×105/孔)接種在6孔板中培養(yǎng)過夜;除去原始培養(yǎng)基,每孔加入2 mL含不同濃度化合物5a和erlotinib(終濃度為0,3.5,7.0,14.0,28.0 μmol/L)的完全培養(yǎng)基處理24 h,0.1 %(體積分?jǐn)?shù))DMSO(完全培養(yǎng)基稀釋)作為對(duì)照;胰蛋白酶消化、離心收集細(xì)胞,用70%(體積分?jǐn)?shù))乙醇重懸細(xì)胞,-20 ℃至少3 h;PBS洗滌細(xì)胞,加100 μL RNaseA重懸細(xì)胞,室溫放置1 h,然后用碘化丙啶(Propidium iodide,PI,最終質(zhì)量濃度1.8 μg/mL,Biolegend cat:640945)避光染色15 min;將細(xì)胞轉(zhuǎn)移到BD FACSCaliburTM流式細(xì)胞儀檢測(cè)管中進(jìn)行檢測(cè).所有結(jié)果均使用FlowJo軟件v105.3.6進(jìn)行分析.
為了研究化合物5a和elotinib對(duì)細(xì)胞周期的影響,采用不同濃度的化合物5a或elotinib處理肺癌細(xì)胞HCC827,經(jīng)過24 h后,通過流式細(xì)胞儀檢測(cè)細(xì)胞周期(圖4).在化合物處理24 h時(shí),對(duì)HCC827細(xì)胞周期檢測(cè)顯示,和對(duì)照相比,用5a處理時(shí),隨著濃度升高(3.5,7.0,14.0和28.0 μmol/L),G0/G1期細(xì)胞比例變化不明顯,S期細(xì)胞比例隨著濃度的提高而減少,G2/M期細(xì)胞比例隨著濃度的提高而增大,且呈現(xiàn)濃度梯度依賴性;用erlotinib處理HCC827細(xì)胞,在低濃度(3.5 μmol/L)的時(shí)候,G0/G1期細(xì)胞明顯增加,S期細(xì)胞比例明顯減少,G2/M期細(xì)胞比例變化不明顯,繼續(xù)升高濃度,細(xì)胞各個(gè)周期變化均不明顯.因此5a使HCC827細(xì)胞阻滯在G2/M期,erlotinib 對(duì)HCC827細(xì)胞周期阻滯在G0/G1期.
用DMSO 作為對(duì)照,以及不同濃度的5a和erlotinib對(duì)耐藥性食管癌細(xì)胞HCC827GR進(jìn)行處理,通過流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期時(shí)相.在化合物處理24 h時(shí),對(duì)HCC827GR細(xì)胞周期檢測(cè)顯示(圖5),和對(duì)照相比,用5a處理后,隨著濃度升高(3.5,7.0,14.0和28.0 μmol/L),G0/G1細(xì)胞比例逐漸升高;S期細(xì)胞比例隨著濃度的提高逐漸減少,呈現(xiàn)濃度梯度依賴性;G2/M期細(xì)胞比例隨著濃度的提高變化不明顯;用erlotinib處理時(shí),在低濃度(3.5μmol/L)時(shí)HCC827GR細(xì)胞G0/G1期細(xì)胞比例有著明顯提高,后續(xù)隨著濃度提高變化不明顯;S期細(xì)胞數(shù)量比例在隨著濃度的提高而減少,呈現(xiàn)濃度梯度依賴性;G2/M期細(xì)胞比例在3.5 μmol/L時(shí)降低比較明顯,后續(xù)隨著濃度的提高而增加.因此5a和erlotinib 使HCC827GR細(xì)胞阻滯在G0/G1期.
3 結(jié) 論
本文通過對(duì)厄洛替尼進(jìn)行結(jié)構(gòu)修飾,在其端基炔結(jié)構(gòu)上通過點(diǎn)擊化學(xué)反應(yīng)與芐基疊氮反應(yīng)得到4種1,2,3-三氮唑類化合物,其中化合物5a對(duì)肺癌HCC827細(xì)胞及其吉非替尼耐藥性的HCC827GR細(xì)胞具有一定的抑制效果,優(yōu)于厄洛替尼,并且對(duì)HCC827細(xì)胞在G2/M期引起阻滯,對(duì)HCC827GR細(xì)胞在G0/G1期引起阻滯.
參 考 文 獻(xiàn)
[1] ?胡鵬程,耿僡臨,魏慎海,等.晚期非小細(xì)胞肺癌靶向治療的研究進(jìn)展[J].山東醫(yī)藥,2020,60(16):102-106.
HU P C,GENG H L,WEI S H,et al.[J].Shandong Medical Journal,2020,60(16):102-106.
[2]毛龍飛,吳瓊,孫格,等.用于臨床治療非小細(xì)胞肺癌的 EGFR 抑制劑的研究進(jìn)展[J].中國(guó)藥物化學(xué)雜志,2021,31(2):152-161.
MAO L F,WU Q,SUN G,et al.Research progress in EGFR-TKIs for clinical treatment of NSCLC[J].Chinese Journal of Medicinal Chemistry,2021,31(2):152-161.
[3]盧紅,王建軍,周芳,等.吉非替尼聯(lián)合紫杉醇對(duì)食管癌細(xì)胞體內(nèi)外生長(zhǎng)抑制實(shí)驗(yàn)研究[J].中華腫瘤防治雜志,2014,21(17):1334-1338.
LU H,WANG J J,ZHOU F,et al.Experimental study on growth inhibition of Gefitinid combined with paclitaxel on esophageal carcinoma cells in vitro and in vivo[J].Chinese Journal of Cancer Prevention and Treatment,2014,21(17):1334-1338.
[4]羅小平,吳均.吉非替尼與厄洛替尼治療非小細(xì)胞肺癌的療效觀察[J].中國(guó)腫瘤臨床與康復(fù),2021,28(6):704-706.
LUO X P,WU J.Efficacy of gefitinib and erlotinib in the treatment of non-small cell lung cancer[J].Chinese Journal of Clinical Oncology and Rehabilitation,2021,28(6):704-706.
[5]SHI Y,ZHANG L,LIU X,et al.Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer(ICOGEN):a randomised,double-blind phase 3 non-inferiority trial[J].The Lancet Oncology,2013,14(10):953-961.
[6]MAO L F,SUN G,ZHAO Y,et al.Design,synthesis and antitumor activity of icotinib derivatives[J].Bioorganic Chemistry,2020,105:104421.
[7]ROSELL R,CARCERENY C,GERVAIS R,et al.Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer(EURTAC):a multicentre,open-label,randomised phase 3 trial[J].The Lancet Oncology,2012,13(3):239-246.
[8]AYYAPPAN S,PRABHAKAR D,SHARMA N.Epidermal growth factor receptor(EGFR)-targeted therapies in esophagogastric cancer[J].Anticancer Research,2013,33(10):4139-4155.
[9]黃國(guó)成,呂早生,劉明亮,等.1,2,3-三氮唑類化合物的抗結(jié)核活性[J].國(guó)外醫(yī)藥(抗生素分冊(cè)),2018,39(1):50-58.
HUANG G C,LYU Z S,LIU M L,et al.[J].World Notes on Antibiotics,2018,39(1):50-58.
[10]KUMAR P P,SIVA B,RAO B V,et al.Synthesis and biological evaluation of bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents[J].Bioorganic Chemistry,2019,91:103161.
[11]ASHOUR H F,ABOU-ZEID L A,EL-SAYED M A,et al.1,2,3-Triazole-Chalcone hybrids:Synthesis,in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226[J].European Journal of Medicinal Chemistry,2020,189:112062.
[12]QI Z Y,HAO S Y,TIAN H Z,et al.Synthesis and biological evaluation of 1-(benzofuran-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole derivatives as tubulin polymerization inhibitors[J].Bioorganic Chemistry,2020,94:103392.
[13]KUMAR R,VATS L,BUA S,et al.Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I,II,IV and IX inhibitors[J].European Journal of Medicinal Chemistry,2018,155:545-551.
[14]DA SILVA V D,DE FARIA B M,COLOMBO E,et al.Design,synthesis,structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells[J].Bioorganic Chemistry,2019,83:87-97.
[15]ALLAM M,BHAVANI A K D,MUDIRAJ A,et al.Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents[J].European Journal of Medicinal Chemistry,2018,156:43-52.
[16]BISTROVIC′A,KRSTULOVIC′ L,HAREJ A,et al.Design,synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer[J].European Journal of Medicinal Chemistry,2018,143:1616-1634.
[17]MAO L F,XU G Q,SUN B,et al.Design,synthesis and antibacterial evaluation of novel 1,2,3-triazole derivatives incorporating 3'-deoxythymidine[J].Journal of Chemical Research,2017,41(11):645-649.
[18]RHRIG U F,REYNAUD A,MAJJIGAPU S R,et al.Inhibition mechanisms of indoleamine 2,3-dioxygenase 1(IDO1)[J].Journal of Medicinal Chemistry,2019,62(19):8784-8795.
[19]MAO L F,WANG Z Z,WU Q,et al.Design,synthesis,and antitumor activity of erlotinib derivatives[J].Frontiers in Pharmacology,2022,13:849364.
Synthesis and antitumor activity of erlotinib derivatives
Zhao Zhiwei1a,b, Tian Siqi1a, Du Yu1a, Wang Chunguang2, Chen Xiaojie1a,b, Hao Xueqin1a,b
(1. a. School of Basic Medical Sciences; The First Affiliated Hospital; b. Henan Provincial Key Laboratory of Tumor Epigenetics,
Henan University of Science and Technology, Luoyang 471003, China; 2. Henan Wanliu Biotechnology Co., Ltd., Luoyang 471000, China)
Abstract: Erlotinib was obtained from 2-amino-4,5-bis(2-methoxyethoxy)ethyl benzoate hydrochloride by cyclization, chlorination and substitution. Then four erlotinib derivatives were designed and synthesized from erlotinib with azido compounds via click reaction. Their anti-tumor activity were evaluated against HCC827 and HCC827GR tumor cells. Compound 5a
showed a certain inhibitory effect on non-small cell lung cancer HCC827 cell and corresponding gefitinib-resistant cell HCC827GR cell, which was superior to erlotinib. Compound 5a
also can block HCC827 cells in G2/M phase and HCC827GR cells in G0/G1 phase.
Keywords: erlotinib; 1,2,3-triazole; antitumor drugs; cell cycle
[責(zé)任編校 趙曉華 陳留院]
收稿日期:2022-04-27;修回日期:2022-11-10.
基金項(xiàng)目:河南省自然科學(xué)基金(182300410370);河南省科技攻關(guān)項(xiàng)目(222102310362).
作者簡(jiǎn)介:趙智偉(1980-),男,河南洛陽人,河南科技大學(xué)副主任醫(yī)師,主要從事抗腫瘤藥物合成研究,E-mail:1980zhaozhiwei@sina.com.
通信作者:郝雪琴,E-mail:haoxueqin@haust.edu.cn.