李海剛 徐龍娟
摘 要:在過去的50年,復(fù)合材料的發(fā)展無疑是現(xiàn)代技術(shù)中的一個(gè)重要且成功的領(lǐng)域.復(fù)合材料通常由基體材料和夾雜材料復(fù)合而成. 高對比度復(fù)合材料在使用過程中,當(dāng)夾雜彼此靠得很近時(shí),往往會(huì)產(chǎn)生電場、磁場或應(yīng)力場等物理場的集中現(xiàn)象,這是數(shù)學(xué)物理領(lǐng)域中的一個(gè)重要課題. 將著重介紹在過去的二十多年彈性復(fù)合材料應(yīng)力集中問題在偏微分方程理論方面取得的一些重要進(jìn)展和一些待解決的關(guān)鍵問題.
關(guān)鍵詞:復(fù)合材料;拉梅方程組;梯度估計(jì);爆破速度;漸近展示
中圖分類號:O175.23;O175.25文獻(xiàn)標(biāo)志碼:A
現(xiàn)代科技的飛速發(fā)展離不開材料科學(xué)的發(fā)展,如新型納米結(jié)構(gòu)材料以及器件的設(shè)計(jì)與研制、周期納米結(jié)構(gòu)與等效模量等材料聲學(xué)參數(shù)的構(gòu)效關(guān)系等復(fù)合材料問題的研究,這些在航空航天、深海探測等高端科技領(lǐng)域有著極為迫切的需求.先進(jìn)復(fù)合材料的研制與應(yīng)用已成為21世紀(jì)科技發(fā)展的主要方向之一,其核心技術(shù)的突破遇到了大量的數(shù)學(xué)挑戰(zhàn),涉及偏微分方程、變分法、幾何測度論、隨機(jī)分析、非線性分析等領(lǐng)域,因此材料科學(xué)的持續(xù)長遠(yuǎn)發(fā)展需要大量基礎(chǔ)數(shù)學(xué)研究人才的加入.
復(fù)合材料通常是由兩種或兩種以上的金屬、陶瓷或高分子等材料經(jīng)過復(fù)合工藝而制備成的一種多相材料, 其中基體材料與夾雜材料在某一特性方面的對比度往往比較高.在高對比度復(fù)合材料中,當(dāng)夾雜靠得很近時(shí)會(huì)產(chǎn)生物理場的集中現(xiàn)象,如電場、電磁場、應(yīng)力場等.隨著新型復(fù)合材料數(shù)目的不斷增加和新的材料不斷被開發(fā),美國科學(xué)院院士FRIEDMAN A在《對數(shù)學(xué)未來的思考》中認(rèn)為:人類迄今在材料科學(xué)的數(shù)學(xué)研究方面所取得的成就,可以說僅僅是一個(gè)開始,還遠(yuǎn)遠(yuǎn)不能滿足實(shí)際應(yīng)用的需求,甚至對已經(jīng)研究了很多年的標(biāo)準(zhǔn)材料也仍然面臨著大量的數(shù)學(xué)挑戰(zhàn).例如,當(dāng)一個(gè)均勻的彈性體在承受高壓時(shí)會(huì)破裂.那么,破裂從何時(shí)開始,怎么開始? 它們又將如何擴(kuò)展,何時(shí)會(huì)分裂成許多裂片,以至于材料最終徹底失效.
自20世紀(jì)60年代以來,工業(yè)上的巨大發(fā)展促進(jìn)了復(fù)合材料背后數(shù)學(xué)理論的發(fā)展,新的數(shù)學(xué)工具出現(xiàn)也帶動(dòng)其他領(lǐng)域的發(fā)展.如均勻化、變分法、有限元方法、夾雜形狀優(yōu)化、補(bǔ)償緊方法、擬共形映照等.這些理論的發(fā)展與完善既需要數(shù)學(xué)家、物理學(xué)家、力學(xué)家以及工程師們之間的相互交流與互動(dòng),也需要理論數(shù)學(xué)家與計(jì)算數(shù)學(xué)家之間更深層次的通力合作.由于玻璃纖維和輕質(zhì)碳纖維復(fù)合材料在航空航天工業(yè)和體育器材等領(lǐng)域都有廣泛的應(yīng)用,1999 年,自適應(yīng)有限元?jiǎng)?chuàng)始人BABUKA IVO(美國工程院院士) 與瑞典航空研究所的兩名工程師合作研究纖維增強(qiáng)復(fù)合材料中裂紋與破壞的計(jì)算分析[1].在復(fù)合材料中往往會(huì)有大量的纖維相互接觸或幾乎接觸,而纖維之間的相互位置會(huì)嚴(yán)重影響復(fù)合材料能承受的最大應(yīng)力.由于在碳纖維增強(qiáng)復(fù)合材料中,小形變就會(huì)產(chǎn)生大應(yīng)力,甚至產(chǎn)生裂紋,所以研究線性彈力方程組——拉梅(Lamé)方程組μΔu+(λ+μ)(·u)=0(1)
能夠精確地達(dá)到目的,其中(λ,μ)在基體材料與纖維材料中取不同的值.為了理解這個(gè)問題,研究對應(yīng)的標(biāo)量方程
·(au)=0(2)
也頗有價(jià)值,其中a在基體與纖維中也取不同常數(shù).關(guān)于相互接觸纖維之間應(yīng)力的有界性,以及如何刻畫纖維靠近時(shí)應(yīng)力的集中行為,都是數(shù)值仿真過程中需要解決的關(guān)鍵問題[1].該問題也被稱為Babuka問題.
在過去的二十多年間,Babuka問題得到了眾多數(shù)學(xué)家與應(yīng)用數(shù)學(xué)家的關(guān)注,如 阿貝爾獎(jiǎng)得主NIRENBERG L(美國科學(xué)院院士) ,國際數(shù)學(xué)家大會(huì)報(bào)告人LI Y(李巖巖),KANG H,MILTON G,以及AMMARI H(歐洲科學(xué)院院士),VOGELIUS M等,取得了一系列重要進(jìn)展.由應(yīng)力-應(yīng)變關(guān)系,應(yīng)力的集中問題對應(yīng)著偏微分方程解的梯度估計(jì)問題,本文將從以下3個(gè)方面介紹這方面的進(jìn)展:(1)對比度有限情形梯度的一致有界估計(jì);(2)高對比度的極限情形梯度的最佳爆破估計(jì)與漸近展示;(3)雙參數(shù)情形梯度的統(tǒng)一估計(jì),并介紹在此過程中發(fā)展的多種偏微分方程方法,如層位勢方法、Neumann-Poincaré算子的譜方法、能量方法和Green函數(shù)方法等.
參 考 文 獻(xiàn)
[1] ?BABUKA I,ANDERSSON B,SMITH P,et al.Damage analysis of fiber composites. I. Statistical analysis on fiber scale[J].Comput Methods Appl Mech Engrg,1999,172(1/2/3/4):27-77.
[2]KELLER J.Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders[J].J Appl Phys,1963,34: 991-993.
[3]BONNETIER E,VOGELIUS M.An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section[J].SIAM J Math Anal,2000,31:651-677.
[4]LI Y,VOGELIUS M.Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients[J].Arch Rational Mech Anal,2000,153:91-151.
[5]LI Y,NIRENBERG L.Estimates for elliptic systems from composite material[J].Comm Pure Appl Math,2003,56:892-925.
[6]AMMARI H,KANG H,LIM M.Gradient estimates for solutions to the conductivity problem[J].Math Ann,2005,332(2):277-286.
[7]AMMARI H,KANG H,LEE H,et al.Optimal estimates for the electric field in two dimensions[J].J Math Pures Appl,2007,88(4):307-324.
[8]YUN K.Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape[J].SIAM J Appl Math,2007,67:714-730.
[9]YUN K.Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections[J].J Math Anal Appl,2009,350:306-312.
[10]BAO S,LI Y,YIN B.Gradient estimates for the perfect conductivity problem[J].Arch Ration Mech Anal,2009,193:195-226.
[11]BAO S,LI Y,YIN B.Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions[J].Comm Partial Differential Equations,2010,35:1982-2006.
[12]LI H,XU L.Optimal estimates for the perfect conductivity problem with inclusions close to the boundary[J].SIAM J Math Anal,2017,49(4):3125-3142.
[13]CHEN Y,LI H,XU L.Optimal gradient estimates for the perfect conductivity problem with C1,α inclusions[J].Ann Inst H Poincar Anal Non Linaire,2021,38(4):953-979.
[14]DONG H,LI Y,YANG Z.Optimal gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2110.11313.
[15]DONG H,LI Y,YANG Z.Gradient estimates for the insulated conductivity problem:the non-umbilical case[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2203.10081.
[16]LI Y,YANG Z.Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-15].https://doi.org/10.48550/arXiv.2012.14056.
[17]WEINKOVE B.The insulated conductivity problem,effective gradient estimates and the maximum principle:10.48550/arxiv.2013.14143[P].2021-03-25.
[18]AMMARI H,BONNETIER E,TRIKI F,et al.Elliptic estimates in composite media with smooth inclusions:an integral equation approach[J].Ann Sci éc Norm Supér,2015,48(2):453-495.
[19]BUDIANSKY B,CARRIER G.High shear stresses in stiff fiber composites[J].J App Mech,1984,51:733-735.
[20]BONNETIER E,TRIKI F.On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D[J].Arch Ration Mech Anal,2013,209(2):541-567.
[21]DONG H.Gradient estimates for parabolic and elliptic systems from linear laminates[J].Arch Ration Mech Anal,2012,205(1):119-149.
[22]DONG H,ZHANG H.On an elliptic equation arising from composite materials[J].Arch Rational Mech Anal,2016,222(1):47-89.
[23]GORB Y.Singular behavior of electric field of high-contrast concentrated composites[J].Multiscale Model Simul,2015,13(4):1312-1326.
[24]GORB Y,BERLYAND L.Asymptotics of the effective conductivity of composites with closely spaced inclusions of optimal shape[J].Quart J Mech Appl Math,2005,58:83-106.
[25]KANG H,KIM E.Estimation of stress in the presence of closely located elastic inclusions:A numerical study[J].Contemporary Math,2016,660:45-57.
[26]LI H,LI Y,BAO S,et al.Derivative estimates of solutions of elliptic systems in narrow regions[J].Quart Appl Math,2014,72(3):589-596.
[27]LIM M,YU S.Asymptotics of the solution to the conductivity equation in the presence of adjacent circular inclusions with finite conductivities[J].J Math Anal Appl,2015,421:131-156.
[28]LIM M,YUN K.Blow-up of electric fields between closely spaced spherical perfect conductors[J].Comm Partial Differential Equations,2009,34:1287-1315.
[29]CIRAOLO G,SCIAMMETTA A.Gradient estimates for the perfect conductivity problem in anisotropic media[J].J Math Pures Appl,2019,127:268-298.
[30]CIRAOLO G,SCIAMMETTA A.Stress concentration for closely located inclusions in nonlinear perfect conductivity problems[J].J Differential Equations,2019,266(9):6149-6178.
[31]GORB Y,NOVIKOV A.Blow-up of solutions to a p-Laplace equation[J].Multiscale Model Simul,2012,10:727-743.
[32]KANG H,LIM M,YUN K.Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities[J].J Math Pures Appl,2013,99:234-249.
[33]AMMARI H,CIRAOLO G,KANG H,et al.Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity[J].Arch Ration Mech Anal,2013,208(1):275-304.
[34]KANG H,LEE H,YUN K.Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions[J].Math Ann,2015,363:1281-1306.
[35]KANG H,LIM M,YUN K.Characterization of the electric field concentration between two adjacent spherical perfect conductors[J].SIAM J Appl Math,2014,74:125-146.
[36]LI H,WANG F,XU L.Characterization of Electric Fields between two Spherical Perfect Conductors with general radii in 3D[J].J Differential Equations,2019,267(11):6644-6690.
[37]LI H.Asymptotics for the electric field concentration in the perfect conductivity problem[J].SIAM J Math Anal,2020,52:3350-3375.
[38]LI H,LI Y,YANG Z.Asymptotics of the gradient of solutions to the perfect conductivity problem[J].Multiscale Model Simul,2019,17:899-925.
[39]CHEN Y,HAO X,XU L.Upper and lower bounds for stress concentration in linear elasticity when C1,α inclusions are close to boundary[J].Quart Appl Math,2022.DOI:10.1090/qam/1621.
[40]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients[J].Arch Ration Mech Anal,2015,215(1):307-351.
[41]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients in dimensions greater than two[J].Adv Math,2017,305:298-338.
[42]LI H.Lower bounds of gradient's blow-up for the Lamé system with partially infinite coefficients[J].J Math Pures Appl,2021,149:98-134.
[43]CHEN Y,LI H.Estimates and asymptotics for the stress concentration between closely spaced stiff C1,γ inclusions in linear elasticity[J].J Funct Anal,2021, 281:1-63.
[44]BAO J,JU H,LI H.Optimal boundary gradient estimates for Lamé systems with partially infinite coefficients[J].Adv Math,2017, 314:583-629.
[45]LI H,ZHAO Z.Boundary blow-up analysis of gradient estimates for Lamé systems in the presence of M-convex hard inclusions[J].SIAM J Math Anal,2020,52(4):3777-3817.
[46]KANG H,YU S.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticity[J].Arch Rational Mech Anal,2019,232:121-196.
[47]LI H,XU L.Asymptotics of the stress concentration in high-contrast elastic composites:1048550/arXiv:2004.06310[P].2020-04-14.
[48]FLAHERTY J,KELLER J.Elastic behavior of composite media[J].Comm Pure Appl Math,1973,26:565-580.
[49]KANG H,YU S.A proof of the Flaherty-Keller formula on the effective property of densely packed elastic composites[J].Calc Var Partial Differential Equations,2020,59(1):13.
[50]LI H,LI Y.An extension of Flaherty-Keller formula for density packed m-convex inclusion[J/OL].[2022-10-20].https://doi.org/10.48550/arxiv.192.13261.
[51]DONG H,LI H.Optimal estimates for the conductivity problem by Green's function Method[J].Arch Ration Mech Anal,2019,231:1427-1453.
[52]JI Y,KANG H.Spectrum of the Neumann-Poincaré operator and optimal estimates for transmission problems in presence of two circular inclusions[J/OL].[2022-10-21].https://doi.org/10.1093/imrn/rnac057,2022.
[53]DONG H,YANG Z.Optimal estimates for transmission problems including relative conductivities with different signs[J/OL].[2022-10-23].https://doi.org/10.48550/arXiv.2208.12237.
On study for the theory of partial differential equations in composite materials
Li Haigang1, Xu Longjuan2
(1. School of Mathematical Sciences; Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University,
Beijing 100875, China; 2. Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China)
Abstract: In the past 50 years, the improvement of composite materials is undoubtedly an important and successful field in modern technology. It is composed of the matrix and inclusions. In high contrast composite materials, a high concentration of physical fields such as electric field, magnetic field or stress field will occur when the inclusions are close to each other, which is an important subject in the field of mathematical physics. In this paper, we will focus on the important advances in the theory of partial differential equations and some key open problems for the stress concentration of elastic composite materials in the past 20 years.
Keywords: composite materials; Lamé systems; gradient estimates; blow-up rates; asymptotics
[責(zé)任編校 陳留院 趙曉華]
收稿日期:2022-10-28;修回日期:2022-12-22.
基金項(xiàng)目:國家自然科學(xué)基金 (11971061).
作者簡介(通信作者):
李海剛(1981-),男,河南安陽人,北京師范大學(xué)教授,博士生導(dǎo)師,教育部青年長江學(xué)者,主要從事材料科學(xué)中的偏微分方程理論研究,E-mail:hgli@bnu.edu.cn.