申培萍 王亞飛 吳殿曉
摘 要:研究了一類Minimax分式規(guī)劃問題(MFP).首先通過引進變量,將問題(MFP)等價轉(zhuǎn)化為問題(EP1),其次,再將問題(EP1)中的約束函數(shù)整理成正項式的形式,然后,利用特殊不等式的性質(zhì)將問題(EP1)轉(zhuǎn)化為易于求解的幾何規(guī)劃問題(GP),通過求解一系列(GP) 問題獲得原問題的最優(yōu)解,最后,給出求解問題(MFP)的迭代算法以及算法的收斂性分析,數(shù)值結(jié)果表明了算法的有效性.
關(guān)鍵詞:Minimax分式規(guī)劃;幾何規(guī)劃;迭代算法
中圖分類號:O221.2文獻標(biāo)志碼:A
從表1中的數(shù)值結(jié)果可知,本文提出的算法與文獻[9-10]中的其他方法相比,可以在較少的次數(shù)內(nèi)得到問題的解,并且獲得的最優(yōu)值優(yōu)于文獻[9-10]獲得的最優(yōu)值.另外,本文提出的算法的迭代次數(shù)以及運行時間均少于文獻[9-10]中的數(shù)據(jù).
5 結(jié) 論
本文考慮一類Minimax分式規(guī)劃問題并提出相應(yīng)的算法,首先,通過引入輔助變量將其轉(zhuǎn)化為等價問題,然后根據(jù)等價問題的自身特點,將其轉(zhuǎn)化為形式更簡單的(Q)問題,最后,再利用不等式的性質(zhì),將(Q)問題轉(zhuǎn)化為一系列易于求解的幾何規(guī)劃問題,數(shù)值結(jié)果表明了算法的可行性和有效性.另外,該模型也可以應(yīng)用于特殊模型的求解.
參 考 文 獻
[1] ?BARRODALE I.Best rational approximation and strict quasiconvexity[J].SIAM Journal on Numerical Analysis,1973,10(1):8-12.
[2]LU X L,SHI W L,ZHOU W.Decomposition based least squares iterative estimation algorithm for two-input single-output output error systems[J].Journal of the Franklin Institute,2014,351(12):5511-5522.
[3]DING F.Decomposition based fast least squares algorithm for output error systems[J].Signal Process,2013,93:1235-1242.
[4]WANG C F,JIANG Y,SHEN P P.A new branch-and-bound algorithm for solving minimax linear fractional programming[J].Journal of Mathematics,2018,38(1):113-123.
[5]FENG Q G,JIAO H W,MAO H P.A Deterministic Algorithm for Min-max and Max-min Linear Fractional Programming Problems[J].International Journal? of Computational Intelligence Systems,2011,4:134-141.
[6]ZARE A,ASHRAFI A,XIA Y.Quadratic double-ratio minimax optimization[J].Operations Research Letters,2021,49:543-547.
[7]申培萍,陳曉.一類Minmax分式問題的迭代算法[J].河南師范大學(xué)學(xué)報(自然科學(xué)版),2018,46(1):16-22.
SHEN P P,CHEN X.An iterative algorithm for a class of Minmax fractional programming problems[J].Journal of Henan Normal University(Natural Science Edition),2018,46(1):16-22.
[8]MASAO F.非線性最優(yōu)化基礎(chǔ)[M].林貴華譯.北京:科學(xué)出版社,2011.
[9]JIAO H W,LIU S Y.A new linearization technique for minimax linear fractional programming[J].International Journal of Computer Intelligence Systems,2011,4(2):134-141.
[10]ZHAO Y F,LIU S Y,JIAO H W.A new branch and bound algorithm for minimax ratios problems[J].Open Mathematics,2017,15(1): 840-851.
Iterative a geometric programming method for solving a class of minimax fractional optimization problems
Shen Peiping, Wang Yafei, Wu Dianxiao
(School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
Abstract: This paper studies a class of Minimax fractional programming problems. Firstly, by introducing variables, the problem (MFP) is equivalently converted to problem (EP1). Secondly, the constraint function in the problem (EP1) is organized into a positive term. Then, by using the properties of special inequalities, problem (EP1) is transformed into an easy-to-solve geometric programming problem (GP), and the optimal solution of the original problem is obtained by solving a series of (GP) problems.? Finally, the iterative algorithm for solving problem (MFP) and the convergence analysis of the algorithm are given, and the numerical results show that the algorithm is feasible and effective.
Keywords: Minimax fractional programming; geometric programming; iterative algorithm
[責(zé)任編校 陳留院 趙曉華]