• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多能互補條件下轉(zhuǎn)輪優(yōu)化對水輪機低負荷區(qū)穩(wěn)定性能的影響

    2023-06-12 04:13:08趙亞萍鄭小波郭鵬程
    農(nóng)業(yè)工程學報 2023年7期
    關鍵詞:轉(zhuǎn)輪水輪機水管

    趙亞萍,鄭小波,張 歡,郭鵬程

    多能互補條件下轉(zhuǎn)輪優(yōu)化對水輪機低負荷區(qū)穩(wěn)定性能的影響

    趙亞萍1,鄭小波1※,張 歡2,郭鵬程1

    (1. 西安理工大學水利水電學院,西安 710048;2. 浙江富春江水電設備有限公司,杭州 311121)

    多能互補系統(tǒng)中新能源發(fā)電的不穩(wěn)定性使得作為調(diào)能機組的水電機組頻繁在水力效率低、振動劇烈的低負荷區(qū)運行,嚴重影響機組的壽命。該研究以多能互補系統(tǒng)中的混流式水輪機為研究對象,在前期考慮工況權重系數(shù)的轉(zhuǎn)輪多工況優(yōu)化設計結(jié)果基礎上,對比分析了優(yōu)化前后轉(zhuǎn)輪葉片的幾何參數(shù)變化,不同負荷區(qū)的水輪機內(nèi)部流動狀態(tài)及壓力脈動特征差異。研究結(jié)果表明:優(yōu)化后葉片包角、安放角以及葉片長度均有所增加,葉片表面壓力分布及轉(zhuǎn)輪進出水邊速度矩分布更加均勻,有助于改善水輪機低負荷區(qū)的空化性能、提高能量轉(zhuǎn)換能力。轉(zhuǎn)輪進出口安放角的增加很好地抑制了轉(zhuǎn)輪進口背面脫流渦及出水邊的脫流渦區(qū),改善了尾水管的入流條件,使得尾水管渦帶的強度和影響范圍明顯減小。葉片優(yōu)化后,轉(zhuǎn)輪內(nèi)各頻率的壓力脈動幅值均有不同程度的降低,尾水管內(nèi)壓力脈動改善明顯。尾水管內(nèi)0.2ff為轉(zhuǎn)頻)和14f壓力脈動在低負荷工況(OP1)幅值降幅分別為45%和40%,額定工況(OP4)尾水管內(nèi)0.2f壓力脈動基本消除,14f壓力脈動幅值降幅為31%。本文所得研究結(jié)果對多能互補系統(tǒng)中水輪機轉(zhuǎn)輪的設計優(yōu)化及運行具有參考意義。

    水力發(fā)電;混流式水輪機;壓力脈動;多能互補;低負荷工況;渦帶

    0 引 言

    碳達峰碳中和背景下,能源結(jié)構(gòu)的變化使得新能源發(fā)電飛速發(fā)展[1-2],風、光、水多能互補已成為中國能源轉(zhuǎn)型的主流方向之一。由于風、光等新能源的波動性、間歇性和不穩(wěn)定性,使得運行靈活、啟動迅速的水力發(fā)電在多能互補系統(tǒng)中常需要承擔調(diào)節(jié)負荷的任務[3]。

    常規(guī)水電機組轉(zhuǎn)為多能互補發(fā)電系統(tǒng)中的調(diào)能機組后,水輪機被迫長時間在水流流動紊亂、水力效率低、振動劇烈的低負荷區(qū)運行,嚴重影響機組的安全運行[4-5]。所以,改善水輪機過流部件的優(yōu)化設計方法、抑制水力不穩(wěn)定現(xiàn)象、拓寬水輪機的高效穩(wěn)定運行范圍成為多能互補系統(tǒng)中水電機組研究的迫切需求[6-7]。

    張軍智等[8]針對多能互補下水電站的穩(wěn)定運行進行了較早的研究,總結(jié)了李家峽水電站水輪機的轉(zhuǎn)輪改造關鍵點,提出了風光水多能互補條件下混流式水輪機轉(zhuǎn)輪全負荷運行下轉(zhuǎn)輪改造關鍵,為風光水多能互補下水電站水輪機轉(zhuǎn)輪設計提供了思路。ZHAO等[9-11]對水輪機穩(wěn)定工況及過渡過程的振動信號和壓力脈動特性進行系統(tǒng)研究,揭示了誘發(fā)不穩(wěn)定高振幅壓力脈動的主要原因,討論了在不穩(wěn)定情況發(fā)生前檢測不穩(wěn)定的可能性。劉靜[12]對風-水互補發(fā)電系統(tǒng)的供電質(zhì)量和水力機組的運行穩(wěn)定性進行了大量研究,分析了該系統(tǒng)中不同參數(shù)(如不同風水容量配比)對其頻率、電壓等方面的影響。馬騰宇等[13-16]針對混流式水輪機在水光互補系統(tǒng)中非設計工況下水輪機的穩(wěn)定性進行了研究,發(fā)現(xiàn)轉(zhuǎn)輪進口水流角與安放角的不匹配所引起的主頻為導葉通過頻率的壓力脈動以及尾水管渦帶所引起的壓力脈動,是水輪機振動劇烈的主要因素,會引起葉片出水邊與上冠和下環(huán)連接部分的較大形變,甚至斷裂。由此可見,風、光、水多能互補系統(tǒng)中,考慮水電機組的調(diào)節(jié)功能時,水輪機內(nèi)水力振動是無法忽視的問題。

    對水輪機性能的常規(guī)改善方法主要是結(jié)合數(shù)值模擬和優(yōu)化算法對轉(zhuǎn)輪進行優(yōu)化設計[17]。MARCOS等[18-21]在實現(xiàn)轉(zhuǎn)輪葉片的批量建模的基礎上,建立了包含計算流體動力學、試驗設計法、響應模型和多目標遺傳算法的多目標優(yōu)化設計系統(tǒng),以葉片效率、空化、應力等參數(shù)為目標函數(shù),有效的提高水輪機的效率和穩(wěn)定性,改善了轉(zhuǎn)輪的空化及受力情況,利用可視化系統(tǒng)較好的展示了優(yōu)化前后轉(zhuǎn)輪的形狀與葉片附近的速度流線和應變。ZBIGNIEW等[22]基于速度矢量理論,結(jié)合算流體動力學結(jié)果對高比轉(zhuǎn)速的混流式水輪機葉片進行逆向分析,調(diào)整流道和葉片形狀,經(jīng)過模型試驗驗證了優(yōu)化后葉片效率升高,表明了該優(yōu)化方法的可行性。

    目前,通過轉(zhuǎn)輪優(yōu)化設計改善水輪機穩(wěn)定性的研究對象主要以常規(guī)水力發(fā)電機組為主,而對多能互補系統(tǒng)中調(diào)能水輪機穩(wěn)定性的研究主要集中在控制策略和系統(tǒng)評價上[23-27]。多能互補機組由于頻繁運行在低負荷工況,且需頻繁變換工況,機組運行的穩(wěn)定差,因此對轉(zhuǎn)輪水力設計也提出了更高的要求,文獻[8]在總結(jié)李家峽水電站作為風光水多能互補系統(tǒng)中的調(diào)能機組進行改造的具體經(jīng)驗時,指出不同工況權重因子對于水輪機的整體性能具有重要影響??梢姸嗄芑パa系統(tǒng)中工況權重因子是水輪機水力設計過程中需著重考慮的重要因素之一。

    風光水多能互補條件下,對作為調(diào)能機組運行的水輪機的基本要求是在保證額定負荷區(qū)運行性能的前提下,提高低負荷區(qū)甚至超低負荷區(qū)的水力效率,改善和抑制水輪機振動,拓寬水輪機的高效穩(wěn)定運行范圍。前期的研究中以多能互補系統(tǒng)中混流式水輪機為例,建立了基于超傳遞近似法確定最優(yōu)的運行工況權重系數(shù)的多能互補條件下的水輪機轉(zhuǎn)輪多工況多目標優(yōu)化方法[28]。優(yōu)化得到的轉(zhuǎn)輪葉片能夠在保證額定工況的能量特性的同時提高水輪機低負荷工況的運行性能。

    振動劇烈是限制混流式水輪機低負荷運行的主要原因?;诖?,本文在轉(zhuǎn)輪葉片優(yōu)化的基礎上[28],對優(yōu)化前后的水輪機進行非定常數(shù)值計算,詳細對比優(yōu)化前后轉(zhuǎn)輪葉片幾何形狀差異,研究優(yōu)化前后水輪機轉(zhuǎn)輪內(nèi)不穩(wěn)定流動特征、渦結(jié)構(gòu)的分布特征及產(chǎn)生機理,系統(tǒng)分析水輪機內(nèi)不同頻率壓力脈動的產(chǎn)生機理,探討葉片幾何參數(shù)對水輪機內(nèi)部流動的影響,為考慮運行工況權重因子的多工況多目標優(yōu)化系統(tǒng)的可行性提供理論支持。

    1 數(shù)值計算方法

    1.1 計算域及工況點選取

    本文以某多能互補條件下的混流式水輪機為例,選取水輪機整機為計算域(圖1),包括蝸殼、固定導葉、活動導葉、轉(zhuǎn)輪以及尾水管。水輪機轉(zhuǎn)輪直徑1=2.46 m,額定轉(zhuǎn)速=250 r/min,活動導葉和固定導葉數(shù)為24,轉(zhuǎn)輪葉片數(shù)為14。

    圖1 計算域及網(wǎng)格劃分

    由于多能互補系統(tǒng)中水輪機頻繁在低負荷區(qū)運行,因此當混流式水輪機轉(zhuǎn)為調(diào)能機組時,希望其具有較寬的運行范圍,尤其是低負荷區(qū)運行性能良好。因此本文根據(jù)水輪機模型特性曲線,考慮到多能互補條件下水輪機的運行范圍有可能會涉及全工況范圍,因此在同時兼顧額定工況和偏工況下水輪機的穩(wěn)定運行,又能提高水輪機在低負荷區(qū)的運行性能的條件下,最終分別選取40%、60%、70%及100%出力的4個工況點,分別記為:OP1、OP2、OP3和OP4。其中OP3和OP4分別為最優(yōu)工況和額定工況。各個工況的特征參數(shù)如表1所示。

    表1 工況點參數(shù)

    1.2 計算域網(wǎng)格劃分

    本文采用六面體網(wǎng)格對計算域進行離散。在優(yōu)化設計過程中涉及轉(zhuǎn)輪批量劃分網(wǎng)格的過程,利用Turbogrid軟件在旋轉(zhuǎn)機械領域能短時間畫出高質(zhì)量網(wǎng)格的優(yōu)勢,采用Turbogrid對參數(shù)化后的轉(zhuǎn)輪及優(yōu)化設計中生成的樣本空間進行網(wǎng)格劃分。其余部件均采用ICEM CFD軟件進行網(wǎng)格劃分,為保證計算數(shù)據(jù)準確性,在劃分各流體域網(wǎng)格時,針對蝸殼隔舌處、導葉及轉(zhuǎn)輪葉片進出口、尾水管壁面等幾何突變位置進行了網(wǎng)格加密處理。為了減小網(wǎng)格數(shù)對數(shù)值計算結(jié)果的影響,盡量提高計算效率、縮短優(yōu)化時長,本文以水頭為變量,選取額定工況點進行網(wǎng)格無關性驗證,如圖2所示??梢姰斦麄€流體域的網(wǎng)格總數(shù)為4.75×106時,水頭增長的趨勢逐漸趨于穩(wěn)定。因此最終選取流體域網(wǎng)格數(shù)量為475萬,其中蝸殼網(wǎng)格數(shù)為20.5萬、固定導葉網(wǎng)格數(shù)為90.1萬、活動導葉網(wǎng)格數(shù)為126.7萬、轉(zhuǎn)輪網(wǎng)格數(shù)為162.5萬、尾水管網(wǎng)格數(shù)為72.4萬,各個部件的網(wǎng)格分布如圖1中的網(wǎng)格局部圖。為了更好的捕捉近壁區(qū)的流動特征,網(wǎng)格劃分過程對轉(zhuǎn)輪區(qū)域的近壁面網(wǎng)格進行控制,最終轉(zhuǎn)輪內(nèi)除下環(huán)出口局部高湍流區(qū)外,大部分區(qū)域的Yplus小于10,滿足湍流模型。

    圖2 網(wǎng)格無關性驗證

    1.3 數(shù)值計算模型

    水輪機內(nèi)的流動是以水為介質(zhì)的三維非穩(wěn)態(tài)流動,一般認為水是不可壓縮流體,熱交換量很小,可以不考慮能量守恒,因此水輪機內(nèi)復雜的三維黏性不可壓縮流動,可由連續(xù)性方程和動量方法來描述[29]:

    1)連續(xù)性方程

    2)動量方程

    式中為流體的密度,kg/m3;τ為流體的切應力,N/m2;為壓強,Pa;為流體速度矢量,m/s;;xx為空間坐標分量,m;S為附加源項,N/m3。

    通過N-S方程描述湍流運動時具有不封閉性,因此引入湍流模型來封閉方程組,本文采用考慮了湍流剪切應力運輸、不會對渦流黏度造成過度預測[30]的-SST湍流模型來求解水輪機內(nèi)部復雜的三維不可壓縮流動。

    數(shù)值計算過程中,以蝸殼進口作為計算域的進口,尾水管出口為計算域出口。具體的邊界條件為:進口給定質(zhì)量流量,并假設速度方向垂直于蝸殼進口面;出口給定相對壓力;假設固壁面無滑移,靠近壁面區(qū)域采用標準壁面函數(shù)法進行處理;導葉域與轉(zhuǎn)輪域以及轉(zhuǎn)輪域與尾水管域之間的靜止和轉(zhuǎn)動部分采用凍結(jié)轉(zhuǎn)子法。

    為了驗證數(shù)值模擬結(jié)果的可靠性,本文以水輪機效率為評價值,將數(shù)值模擬結(jié)果與原模型試驗結(jié)果進行對比,如圖3所示??梢?,數(shù)值模擬值與試驗值具有很好的一致性,表明采用該計算模型預估水輪機轉(zhuǎn)輪在不同運行工況下的水力性能是可行的。

    圖3 試驗及數(shù)值模擬結(jié)果對比

    1.4 壓力測點布置

    本文重點對轉(zhuǎn)輪與尾水管內(nèi)的水力不穩(wěn)定因素及其特征進行分析,并在轉(zhuǎn)輪葉片壓力面、吸力面及尾水管內(nèi)布置壓力脈動測點。圖4a、圖4b為數(shù)值計算過程中轉(zhuǎn)輪葉片壓力測點布置,測點命名規(guī)律如下:葉片壓力面記為RNPS,在靠近葉片上冠附近,沿流線方向分別布置3個監(jiān)測點。其中RN表示轉(zhuǎn)輪,PS表示壓力面,PS后第一位數(shù)字表示處于葉片上冠附近,最后一位數(shù)字表示監(jiān)測點編號。在葉片中部布置監(jiān)測點(RNPS21、RNPS22、RNPS23)、葉片下環(huán)附近布置監(jiān)測點(RNPS31、RNPS32、RNPS33)。葉片吸力面記為RNSS,吸力面上的監(jiān)測點布置情況與壓力面類似,轉(zhuǎn)輪葉片兩側(cè)監(jiān)測點總計18個。尾水管監(jiān)測點布置如圖4c、圖4d所示,從尾水管錐管段至彎肘段共選取4個監(jiān)控截面,每個截面布置4個壓力監(jiān)控點,監(jiān)控點布置規(guī)則為:每個沿截面圓周順時針方向等間距對稱布置4個監(jiān)控點,編號為DT01至DT04。其中DT表示尾水管,DT后第一位數(shù)字表示該點所在平面,后兩位數(shù)字表示監(jiān)測點編號,尾水管中監(jiān)測點總計16個。

    圖4 水輪機內(nèi)監(jiān)測位置示意圖

    為探究轉(zhuǎn)輪優(yōu)化前后葉片幾何參數(shù)的變化對水輪機內(nèi)部水力振動特征的影響,對各個監(jiān)測點所得的壓力脈動統(tǒng)一壓力系數(shù)C進行無量綱化如式(3)。通過快速傅里葉變換獲得水輪機內(nèi)不同部位的壓力脈動頻譜特性。

    2 優(yōu)化前后葉片幾何參數(shù)對比

    基于文獻[28]建立的多能互補系統(tǒng)中水輪機轉(zhuǎn)輪的優(yōu)化設計方法得到的優(yōu)化前后的轉(zhuǎn)輪葉片。圖5為水輪機優(yōu)化前后的幾何形狀及葉片表面均勻分布的5個三維截面對比,其中Span0為葉片上冠處截面;Span1.00為葉片下環(huán)處截面;Span0.25、Span0.50、Span0.75為葉片中間均勻布置的3個截面。為了更為詳細的描述優(yōu)化前后葉片幾何差異,圖6分別給出了優(yōu)化前后葉片不同截面的安放角,包角及厚度分布。

    從圖6a可以看出,葉片包角從頭部到尾部均有增加,且越靠近葉片出水邊(流向=1),包角的增加越明顯,尤其葉片下環(huán)處翼型包角由45°增加至51°,增幅約為13%,使得葉片長度增加10%,葉片的表面積也相應增加。因此單位面積葉片上承受的壓差減小,有助于改善葉片的空化性能。圖6b中葉片優(yōu)化前后安放角差異最大的位置位于葉片靠上冠處,其余截面的安放角從頭部到尾部逐漸增加。葉片進口靠上冠處安放角較原始葉片增大約7%,葉片進口靠下環(huán)處安放角較原始葉片增大約5%,靠近葉片頭部10%~30%處安放角增加并不明顯。葉片出口從上冠至下環(huán),葉片安放角增加明顯,增加幅度約為12%。葉片進出口安放角的增加必然會對尾水管內(nèi)的流動狀態(tài)產(chǎn)生影響。圖6c中,優(yōu)化前后葉片厚度差異主要集中在Span 0.75和Span 1.00處,其余截面厚度變化較小,究其原因主要是由于葉片包角的增加使得葉片在軸面上的投影厚度增加。

    注:Span表示葉高位置。

    圖6 優(yōu)化前后葉片幾何參數(shù)對比

    3 結(jié)果與分析

    3.1 水輪機內(nèi)部流動特性分析

    圖7為工況OP1和OP4轉(zhuǎn)輪葉片表面壓力分布,從圖可以看出,優(yōu)化后葉片包角增大長度增加使得葉片表面低壓區(qū)面積減小,壓力分布更加均勻。在OP1工況40%出力時,優(yōu)化后葉片正面出水邊近上冠處以及葉片背面近下環(huán)處的低壓區(qū)明顯減小。葉片進口處壓力增加了35.39 kPa,葉片尾部最低壓力提高了34.51 kPa。在100%出力工況時,優(yōu)化后葉片進口處壓力提升較為明顯,葉片從頭部到尾部的壓力梯度變化較大,葉片出水邊低壓區(qū)沿葉展方向的分布明顯減小。由圖8的轉(zhuǎn)輪軸面速度矩分布可以看出,額定工況(OP4),優(yōu)化前后轉(zhuǎn)輪軸截面上的速度矩分布差別較小,而低負荷工況(OP1),優(yōu)化后的轉(zhuǎn)輪進出水邊速度矩分布更加均勻,因此葉片沿葉展方向的做功能力更加均衡,有助于改善低負荷區(qū)葉片表面的受力狀態(tài)??梢?,優(yōu)化后的轉(zhuǎn)輪葉片在保證100%出力工況水輪機性能的情況下,能夠很好的改善低負荷區(qū)葉片頭部撞擊空化以及葉片背面翼型空化,從而降低水力損失,提高水輪機水力效率。

    圖7 葉片表面壓力分布

    圖8 轉(zhuǎn)輪軸面速度矩分布

    水輪機內(nèi)部的復雜不穩(wěn)定渦是造成低負荷區(qū)運行時性能惡劣的主要原因,圖9給出了40%出力工況時(OP1)轉(zhuǎn)輪內(nèi)部的渦分布。從圖中可以看出,優(yōu)化前轉(zhuǎn)輪內(nèi)的渦主要由葉道渦(渦1)、葉片靠上冠處過大正沖角引起的葉片背面脫流渦(渦2)、葉片靠下環(huán)處頭部過大負沖角引起的葉片正面脫流渦(渦3)、以及葉片背面出水邊的脫流渦區(qū)(渦4)組成。葉片靠上冠處,水流到達葉片頭部位置時以較大的正沖擊擾流葉片在葉片頭部背面形成脫流,當脫流遠離葉片背面時便產(chǎn)生回流,形成渦1;受渦1影響,使得葉道內(nèi)水流產(chǎn)生由葉片正面向相鄰葉片背面運動的趨勢,并與轉(zhuǎn)輪的旋轉(zhuǎn)方向恰恰相反,因此形成渦2。由于優(yōu)化前葉片中部靠近下環(huán)處為負沖角,過大的負沖角使得葉片頭部正面產(chǎn)生脫流,隨著轉(zhuǎn)輪的旋轉(zhuǎn),當葉片背面的水流運動至葉片中后方時產(chǎn)生大面積的脫流區(qū),形成渦4;而靠近下環(huán)處,受下環(huán)壁面的約束水流無法充分發(fā)展,因此在下環(huán)處形成從葉片頭部發(fā)展至尾部的旋轉(zhuǎn)渦,形成渦3。通過對轉(zhuǎn)輪葉片進行優(yōu)化,葉片靠上冠處從頭部到尾部安放角增加改善了此處水流的繞流狀態(tài),有效的減小了葉道渦(渦1),破壞了渦2的形成條件;同時在葉片包角和安放角的增大使得葉片長度增加,延長了水流繞流葉片的路徑,使得水流能夠得到充分發(fā)展,有效的抑制了葉片背面出水邊的脫流渦4。轉(zhuǎn)輪內(nèi)渦流的改善將有助于于降低水力損失和渦流引起的壓力脈動。

    圖10為40%出力工況下水輪機內(nèi)部湍動能分布,從圖可以看出,轉(zhuǎn)輪內(nèi)的高湍動能區(qū)域也主要分布在產(chǎn)生渦的位置。葉片靠上冠處高湍動能區(qū)主要位于葉片背面,其位置與渦1、渦2和渦4一致,如圖10c;葉片靠下環(huán)處的高湍動能區(qū)主要存在于葉片頭部正面及葉片背面出水邊,其位置與渦3和渦4一致。通過對轉(zhuǎn)輪葉片進行優(yōu)化,葉片進口安放角增加,有效的減小了葉片頭部的正撞擊,抑制了葉片頭部渦2的形成,使得渦1的強度得以削弱;葉片出水邊安放角減加,改善了葉片背面的翼型脫流,很好的控制了葉片背面靠出水邊的脫流渦,使得此處的湍動能減小。

    轉(zhuǎn)輪幾何參數(shù)的變化不僅會引起轉(zhuǎn)輪內(nèi)部流動特性的變化,同時會對尾水管內(nèi)流態(tài)產(chǎn)生影響。圖11為轉(zhuǎn)輪優(yōu)化前后各個工況下尾水管渦帶及圖4c所示截面的壓力分布情況??梢钥闯觯贠P1和OP2工況下,轉(zhuǎn)輪優(yōu)化前,尾水管錐管段形成一段明顯螺旋狀偏心渦帶,轉(zhuǎn)輪優(yōu)化后的尾水管渦帶強度明顯減小,渦帶偏心度也較小,各個截面的低壓區(qū)面積減小,壓力分布趨于均勻。OP3工況為最優(yōu)工況點,水輪機整體流態(tài)較好,在轉(zhuǎn)輪出口與尾水管交界面中心位置形成柱狀渦帶,且低壓區(qū)一直處于尾水管中心位置,轉(zhuǎn)輪優(yōu)化后,由于尾水管最低壓力值升高,尾水管中心柱狀渦的體積明顯減小,在截面2處柱狀渦帶已經(jīng)消失。在OP4工況下,尾水管內(nèi)形成體積較大中心柱狀渦,尾水管中心壓力值更低,壓力分布具有明顯的對稱性,轉(zhuǎn)輪優(yōu)化后的尾水管內(nèi)的柱狀渦帶消失,形成半徑增加,但長度顯著減小的柱狀渦帶,很好的減小了尾水管渦帶的影響范圍。

    3.2 水輪機壓力脈動特征分析

    3.2.1 轉(zhuǎn)輪內(nèi)壓力脈動分析

    圖12和圖13分別為OP1工況和OP4工況轉(zhuǎn)輪優(yōu)化前后葉片兩側(cè)各個監(jiān)測點的時域與頻域圖。從圖可以看出,優(yōu)化前后葉片上各個監(jiān)測點的壓力脈動系數(shù)隨時間變化規(guī)律相似,葉片進口以及葉片中部處的壓力脈動系數(shù)隨時間變化的趨勢較出口處比較平緩,出口處的壓力脈動系數(shù)幅值相對較高。轉(zhuǎn)輪內(nèi)頻率為轉(zhuǎn)頻f的壓力脈動幅值很小。此外,葉片進口邊靠下環(huán)位置(監(jiān)測點RNPS31、RNSS31)與導葉的距離最近,轉(zhuǎn)輪旋轉(zhuǎn)過程動靜干涉現(xiàn)象在該位置最為突出,因此出現(xiàn)了與導葉數(shù)相關的24f頻率的壓力脈動。葉片優(yōu)化前,轉(zhuǎn)輪內(nèi)以0.20f和0.80f頻率的壓力脈動為主,葉片靠近上冠及中間位置的壓力脈動幅值沿進口至出口逐漸增加,葉片下環(huán)處壓力脈動幅值變化均勻。優(yōu)化后轉(zhuǎn)輪內(nèi)壓力脈動幅值下降明顯,尤其是0.20f的低頻壓力脈動基本消失。0.80f頻率的壓力脈動在轉(zhuǎn)輪優(yōu)化前后均存在,且吸力面的幅值明顯大于壓力面,壓力脈動幅值最大的位置分別為位于葉片出水邊的RNSS/PS13、RNSS/PS23這4個點,可見,壓力脈動幅值最大位置存在于葉片出水邊。轉(zhuǎn)輪優(yōu)化后靠葉片進水邊及中間位置的幅值下降明顯,該現(xiàn)象與葉片背面脫流渦區(qū)4分布一致,而在葉片出水邊靠下環(huán)處(RNSS/PS33處),優(yōu)化后的壓力脈動幅值有微小的上升,主要是由于優(yōu)化后渦4的體積明顯減小,且緊貼葉片與下環(huán)形成的三角區(qū)流出葉道,導致下環(huán)位置流動紊亂,并引起壓力脈動幅值的增加,可見該頻率的壓力脈動主要由于葉片出水邊脫流渦4引起。轉(zhuǎn)輪進口脫流渦(渦2、渦3)以及葉道渦(渦1)雖然并未產(chǎn)生明顯的壓力脈動,因此對低負荷情況下轉(zhuǎn)輪的穩(wěn)定性差的貢獻較小。從OP4工況(圖12)葉片表面壓力脈動可知,優(yōu)化前后葉片表面的壓力脈動差異較小,主要以轉(zhuǎn)頻f為主,在葉片進口邊靠下環(huán)處由于與導葉的動靜干涉作用存在主頻為24f的壓力脈動??梢?,優(yōu)化后的轉(zhuǎn)輪能夠在保證額定工況的性能的情況下使得很好的改善低負荷區(qū)的壓力脈動特征,使得各頻率的壓力脈動幅值整體降低。

    圖10 轉(zhuǎn)輪內(nèi)部湍動能分布

    圖11 尾水管渦帶及截面壓力分布

    注:fn為轉(zhuǎn)輪的旋轉(zhuǎn)頻率,Hz;Cp為壓力系數(shù)。

    圖13 OP4工況轉(zhuǎn)輪壓力脈動時域圖與頻域圖

    3.2.2 尾水管內(nèi)壓力脈動分析

    圖14和圖15為OP1和OP4兩個工況下尾水管4個平面內(nèi)各個監(jiān)測點的壓力脈動頻譜特性。尾水管上各個平面以主頻為0.20f的壓力脈動為主,且其幅值遠大于轉(zhuǎn)輪內(nèi)存在的0.20f頻率的壓力脈動,并且在離轉(zhuǎn)輪較近位置(截面1)存在14f(葉片通過頻率)的壓力脈動。

    圖14 OP1工況尾水管壓力脈動時域圖與頻域圖

    圖15 OP4工況尾水管壓力脈動時域圖與頻域圖(100%出力)

    從圖14可以看出,在OP1工況,14f的壓力脈動幅值較低,對尾水管內(nèi)部整體流態(tài)影響不大。在截面1、2上0.20f的壓力脈動最大值出現(xiàn)在監(jiān)測點3、4位置,隨著流態(tài)的發(fā)展,受逆時針轉(zhuǎn)動的尾水管渦帶的影響,壓力脈動的最大位置沿逆時針方向轉(zhuǎn)動轉(zhuǎn)移至截面3、4的測點2、3位置。轉(zhuǎn)輪優(yōu)化后,尾水管內(nèi)的壓力脈動仍然為0.20f和14f兩個頻率,但壓力脈動幅值有顯著的降低,其中一階主頻(0.2f)壓力脈動最大幅值降低約45%,二階主頻(14f)壓力脈動最大幅值降低約40%。從圖15可以看出,在額定工況下,尾水管錐管段的壓力脈動較小,水流進入彎肘段(截面4),過流通道的劇烈變化引起水流流動狀態(tài)的變異,使得0.2f的低頻壓力脈動幅值增加。同時位于截面1的14f頻率壓力脈動幅值與OP1的差異較小,并未向下游傳遞。轉(zhuǎn)輪優(yōu)化前,尾水管內(nèi)0.2f的低頻壓力脈動的壓力脈動最大值的壓力系數(shù)為0.121、而優(yōu)化后幅值僅為0.0015,同時14f頻率壓力脈動幅值也由0.0055降為0.0038,降幅約31%。可見,轉(zhuǎn)輪的通過頻率對水輪機尾水管的穩(wěn)定性影響較小,通過對轉(zhuǎn)輪進行優(yōu)化,能夠很好地改善不同負荷區(qū)尾水管內(nèi)的低頻壓力脈動,進而提高水輪機的穩(wěn)定性。

    由上面分析可知,轉(zhuǎn)輪和尾水管內(nèi)均存在0.2f的低頻壓力脈動,且該頻率的壓力脈動在尾水管內(nèi)幅值遠大于轉(zhuǎn)輪內(nèi),因此推測該壓力脈動來源于尾水管錐管段,與尾水管渦帶有關。為了進一步證明該推測,截取如圖16a所示的監(jiān)測點DT105的時域信息圖(圖16b)的各個時刻尾水管中渦帶的形態(tài)(圖16c)進行對比分析。從尾水管渦帶形態(tài)可以看出,時刻A與C尾水管渦帶形態(tài)相似,相位相差360°,時刻B與D的尾水管渦帶形態(tài)似度極高。時刻在A,尾水管渦帶距監(jiān)測點較遠,壓力脈動系數(shù)為最小值。時刻B,螺旋狀的尾水管渦轉(zhuǎn)至監(jiān)測點附近,此時對應壓力脈動的波峰??梢娫趶臅r刻B到D(=3.22~4.51 s)尾水管渦帶運動一個周期,頻率約為0.2f,其后尾水管渦帶進行重復性運動,引發(fā)錐管段產(chǎn)生周期性壓力脈動。由此可見,尾水管中0.20f是由尾水管渦帶引起。

    注:A、B、C、D為波峰或波谷時刻。

    通過對轉(zhuǎn)輪葉片優(yōu)化前后的水輪機性能進行分析可知,優(yōu)化后的轉(zhuǎn)輪能夠很好的改善水輪機在低負荷區(qū)的空化性能及穩(wěn)定性,更適用于風光水多能互補系統(tǒng)。

    4 結(jié) 論

    本文以多能互補運行條件下的混流式水輪機轉(zhuǎn)輪為研究對象,對其進行考慮工況權重系數(shù)的轉(zhuǎn)輪多工況優(yōu)化設計,獲得適用于多能互補條件下的水輪機轉(zhuǎn)輪。并對優(yōu)化前后水輪機不同負荷區(qū)的運行性能進行詳細分析,得出以下結(jié)論:

    1)基于前期的優(yōu)化結(jié)果,分析優(yōu)化前后葉片幾何參數(shù)可知,葉片包角及安放角從頭部到尾部均逐漸增加,優(yōu)化后葉片包角、安放角以及葉片長度的最大增幅分別為13%、7%和10%,且優(yōu)化后葉片表面壓力分布及轉(zhuǎn)輪進出水邊速度矩分布更加均勻,有助于很好的改善低負荷區(qū)空化特性及能量轉(zhuǎn)換能力。

    2)優(yōu)化后轉(zhuǎn)輪進出口安放角的增加很好的抑制了轉(zhuǎn)輪進口背面脫流渦及出水邊的脫流渦區(qū),改善了尾水管的入流條件,使得低負荷區(qū)尾水管最低壓力值升高,尾水管渦帶強度和影響范圍明顯減小。

    3)低負荷區(qū)域,引起水輪機內(nèi)明顯壓力脈動的因素有靠下環(huán)處的轉(zhuǎn)輪與導葉的動靜干涉引起的頻率為24f壓力脈動、葉片背面靠出水邊的不穩(wěn)定脫流渦引起的頻率為0.8f低頻壓力脈動、轉(zhuǎn)輪出口動靜干涉引起的頻率為14f壓力脈動以及尾水管渦帶引起的頻率為0.2f低頻壓力脈動,且尾水管渦帶引起的壓力脈動會向上游傳遞,使得轉(zhuǎn)輪內(nèi)的壓力脈動狀況更加復雜。通過對轉(zhuǎn)輪進行優(yōu)化,雖并未消除某個頻率的壓力脈動,但使得壓力脈動的幅值明顯減小,尤其尾水管內(nèi)壓力脈動改善明顯。低負荷工況(OP1)尾水管內(nèi)0.2f和14f壓力脈動在幅值降幅可達45%和40%,額定工況(OP4)尾水管內(nèi)0.2f壓力脈動基本消除,14f壓力脈動幅值降幅為31%,很好的改善水輪機在低負荷區(qū)的運行穩(wěn)定性。

    [1] 莊貴陽. 我國實現(xiàn)“雙碳”目標面臨的挑戰(zhàn)及對策[J]. 人民論壇,2021(18):50-53.

    [2] 曹軍文,鄭云,張文強,等. 能源互聯(lián)網(wǎng)推動下的氫能發(fā)展[J]. 清華大學學報(自然科學版),2021,61(4):302-311.

    CAO Junwen, ZHENG Yun, ZHANG Wenqiang, et al. Hydrogen energy development driven by the energy internet[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4): 302-311. (in Chinese with English abstract)

    [3] 羅興锜,朱國俊,馮建軍. 水輪機技術進展與發(fā)展趨勢[J]. 水力發(fā)電學報,2020,39(8):1-18.

    LUO Xingqi, ZHU Guojun, FENG Jianjun. Progress and development trends in hydraulic turbine technology[J]. Journal of Hydroelectric Engineering, 2020, 39(8): 1-18. (in Chinese with English abstract)

    [4] 劉攀,陳學力,汪泉,等. 高水頭混流式水輪機的動靜干涉與振動問題研究[J]. 水力發(fā)電學報,2016,35(3):91-98.

    LIU Pan, CHEN Xueli, WANG Quan, et al. Analysis of rotor-stator interaction and vibration in high-head Francis turbines[J]. Journal of Hydroelectric Engineering, 2016, 35(3): 91-98. (in Chinese with English abstract)

    [5] 馮金海,凌祖光,趙子文,等. 偏負荷工況混流式水輪機轉(zhuǎn)輪結(jié)構(gòu)穩(wěn)定性研究[J]. 水力發(fā)電學報,2021,40(1):107-114.

    FENG Jinhai, LING Zuguang, ZHAO Ziwen, et al. Study on structural stability of Francis turbine impellers under partial load condition[J]. Journal of Hydroelectric Engineering, 2021, 40(1): 107-114. (in Chinese with English abstract)

    [6] YU G Y. Analysis of the development status and prospect of multi-energy complementary technology[C]. Jinan, 6th International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE 2020),2020

    [7] 鮑海艷,龍麗婷,付亮,等. 水輪機調(diào)速器功率調(diào)節(jié)模式下負荷調(diào)節(jié)過渡過程穩(wěn)定性研究[J]. 農(nóng)業(yè)工程學報,2019,35(17):50-57.

    Bao Haiyan, Long Liting, Fu Liang, et al. Stability of load regulation transition process of hydro turbine governor in powerregulation mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 50-57. (in Chinese with English abstract)

    [8] 張軍智,何振忠,王子瑞,等. 風光水多能互補混流式水輪機全負荷范圍穩(wěn)定經(jīng)濟運行設計[J].西北水電,2021(6):15-21.

    ZHANG Junzhi, HE Zhenzhong, WANG Zirui, et al. Design for stable and economical operation of francis turbine of Full-Load range in Wind-PV-Hydro complementary power system[J]. Northwest Hydropower, 2021(6): 15-21. (in Chinese with English abstract)

    [9] ZHAO W Q, PRESAS A, EGUSQUIZA M, et al. Increasing the operating range and energy production in Francis turbines by an early detection of the overload instability[J]. Measurement, 2021, 181: 109580.

    [10] 陳會向,劉漢中,王胤淞,等. 抽水蓄能機組低水頭起動過渡過程壓力脈動分析[J]. 農(nóng)業(yè)工程學報,2023,39(6):63-72.

    CHEN Huixiang, LIU Hanzhong, WANG Yinsong, et al. Pressure pulsation during low head start-up transient in a pumpedstorage hydropower unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 63-72. (in Chinese with English abstract)

    [11] 孫龍剛,郭鵬程,鄭小波,等. 混流式水輪機葉道空化渦誘發(fā)高振幅壓力脈動特性[J]. 農(nóng)業(yè)工程學報,2021,37(21):62-70.

    SUN Longgang, GUO Pengcheng, ZHENG Xiaobo, et al. Characteristics of high-amplitude pressure fluctuation induced byinter-blade cavitation vortex in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions ofthe CSAE), 2021, 37(21): 62-70. (in Chinese with English abstract)

    [12] 劉靜. 風水互補發(fā)電系統(tǒng)的電能質(zhì)量與穩(wěn)定性研究[D]. 楊凌:西北農(nóng)林科技大學,2020.

    LIU Jing. Research on the Power Quality and Stability of Wind-Hydro Complementary Power System[D]. Yangling: Northwest A&F University, 2020. (in Chinese with English abstract)

    [13] 馬騰宇,唐雯,徐連琛,等. 水光互補系統(tǒng)中混流式水輪機轉(zhuǎn)輪結(jié)構(gòu)穩(wěn)定性研究[J]. 水利水電快報,2022,43(6):78-84.

    MA Tengyu, TANG Wen, XU Lianchen, et al. Research on structural stability of runner of Francis turbinebased on water-light complementarity[J]. Express Water Resources & Hydropower Information, 2022, 43(6): 78-84. (in Chinese with English abstract)

    [14] ZUO Z G, LIU S H, LIU D M, et al. Numerical predictions and stability analysis of cavitating draft tube vortices at high head in a model Francis turbine[J]. Science China Technological Sciences, 2014, 57(11): 2106-2114.

    [15] 龐嘉揚,劉小兵,宋罕,等. 基于水光蓄互補聯(lián)合發(fā)電系統(tǒng)混流式水輪機在超低出力區(qū)工況穩(wěn)定性研究[J]. 水電與抽水蓄能,2021,7(5):39-46.

    PANG Jiayang, LIU Xiaobing, SONG Han. Study on stability of francis turbine in ultra-low output region based on hydro-photovoltaic-storage combined power generation system[J]. Hydropower and Pumped Storage, 2021, 7(5): 39-46. (in Chinese with English abstract)

    [16] 楊鈞翔,劉小兵,龐嘉揚,等. 多能互補發(fā)電系統(tǒng)中楊家灣水電站水輪機壓力脈動特性的數(shù)值研究[J]. 水電與抽水蓄能,2021,7(5):59-63,110.

    YANG Junxiang, LIU Xiaobing, PANG Jiayang, et al. Numerical study on pressure fluctuation characteristics ofturbine in yangjiawan hydropower station in multi-energy complementary power generation system[J]. Hydropower and Pumped Storage, 2021, 7(5): 59-63, 110. (in Chinese with English abstract)

    [17] ZHOU Y K, ZHENG S Q. Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling[J]. Energy, 2020, 202: 117747.

    [18] TSUZUKI M, VATANABE S L, CASTRO E G, et al. Development of a complete methodology to reconstruct, optimize, analyze and visualize francis turbine runners[C]// Ottawa, 15th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2015), 2015.

    [19] ZHU B S, WANG X H, TAN L, et al. Optimization design of a reversible pump-turbine runner with high efficiency and stability[J]. Renewable Energy, 2015, 81: 366-376.

    [20] LEONEL A T, FRANCISCO J L, Sara A R. Performance improvement of a 500 kW Francis turbine based on CFD[J]. Renewable Energy, 2016, 96: 977-992.

    [21] LIU L H, ZHU B S, BAI L, et al. Parametric design of an ultrahigh-head pump-turbine runner based on multiobjective optimization[J]. Energies, 2017, 10: 01169.

    [22] ZBIGNIEW K, JANUSZ S. High specific speed Francis turbine for small hydro purposes- Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience[J]. Renewable Energy, 2021, 169: 1210-1228.

    [23] XIONG H L, EGUSQUIZA M, ALBERG ? P, et al. Multi-objective optimization of a hydro-wind-photovoltaic power complementary plant with a vibration avoidance strategy[J]. Applied Energy, 2021, 301: 117459.

    [24] SEYED M M, MOHAMMAD R S, HAMID M. A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 62-72.

    [25] 李劍鋒,郝曉光,曾四鳴,等. 多能互補的綜合能源微網(wǎng)多目標優(yōu)化運行方法研究[J/OL]. 華北電力大學學報(自然科學版):1-10[2022-09-09]. http://kns.cnki.net/kcms/detail/ 13.1212.TM.20211122.1515.002.html

    LI Jianfeng, HAO Xiaoguang, ZENG Siming, et al. Research on multi-energy complementary integrated energy micro-grid multi-objective optimal operation method[J/OL]. Journal of North China Electric Power University (Natural Science Edition): 1-10[2022-09-09]. http://kns.cnki.net/kcms/detail/ 13.1212.TM.20211122.1515.002.html

    [26] 趙鳳展,李奇,張啟承,等. 多能互補能源系統(tǒng)多維度綜合評價方法[J]. 農(nóng)業(yè)工程學報,2021,37(17):204-210.

    ZHAO Fengzhan, LI Qi, ZHANG Qicheng, et al. Multi-dimensional comprehensive evaluation of multi-energy complementary energy system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 204-210. (in Chinese with English abstract)

    [27] 王玨,廖溢文,韓文福,等. 碳達峰背景下抽水蓄能-風電聯(lián)合系統(tǒng)建模及有功功率控制特性研究[J]. 水利水電技術,2021,52(9):172-181.

    WANG Jue, LIAO Yiwen, HAN Wenfu, et al. Modeling and active power control characteristics of pumped storage-wind hybrid power system in the context of peak carbon dioxide emission[J]. Water Resources and Hydropower Engineering, 2021, 52(9):172-181. (in Chinese with English abstract)

    [28] Zheng X B, Zhao Y P, Zhang H, et al. Optimization and performance analysis of Francis turbine runner based on super-transfer approximate method under multi-energy complementary conditions[J]. Sustainability, 2022, 14(16): 10331

    [29] 陶文銓. 數(shù)值傳熱學[M]. 西安:西安交通大學出版社,2001.

    [30] 周宇,錢煒祺,鄧有奇,等.-SST兩方程湍流模型中參數(shù)影響的初步分析[J]. 空氣動力學學報,2010,28(2):213-217.

    ZHOU Yu, QIAN Weiqi, DENG Youqi, et al. Introductory analysis of the influence of Menter’s-SST turbulence model’s parameters[J]. Acta Aerodynamica Sinica, 2010, 28(2): 213-217. (in Chinese with English abstract)

    Influences of runner optimization on the stability performance of hydraulic turbine in the low-load range under the condition of multi-energy complementary

    ZHAO Yaping1, ZHENG Xiaobo1※, ZHANG Huan2, GUO Pengcheng1

    (1.-,,710048,; 2.,.,311121,)

    Hydropower is often required to adjust the load in the multi-energy complementary system, due to the strong volatility, intermittency, and instability of new energy power generation. Therefore, the turbine is forced to operate in a low-load area with the low efficiency and severe vibration over a long time. The operating conditions vary frequently to threaten the stability and operating life of the unit. It is necessary to optimize the overcurrent components of the turbine for the hydroelectric unit in the multi-energy complementary system. The hydraulically unstable flow can be suppressed to broaden the high-efficiency operation range of the turbine. In this study, a multi-operating optimization of the runner was implemented to consider the weight coefficient in the operation of the turbine under the condition of multi-energy complementation of wind, solar and water. The runner of turbine was obtained suitable for the multi-energy complementary condition. The unsteady numerical analysis and comparison were also carried out on the turbines before and after optimization. The research results show that: An appropriate increase in the weight coefficient of the operating conditions in the low-load area was effectively improved the cavitation performance and the efficiency of the turbine after the multi-condition optimization, particularly with the operational performance of the turbine in the high-load area. There was an increase in the inlet and outlet placement angles of the optimized runner blades, leading to effectively reduce the attack angle of the heading edge of the blade and the flow angle of the tailing edge of the blade under low-load conditions. The vortex was better restrained from the heading edge to the back of the blade. There was an increase in the flow separation area at the tailing edge of the blade, and the inflow conditions of the draft tube. The strength of the vortex band in the draft tube was significantly reduced. Under the low load conditions, the pressure pulsation in the draft tube was mainly the 0.2flow-frequency pressure pulsation that caused by the vortex, and the low-amplitude pressure pulsation with the blade passing frequency at the inlet of the draft tube that caused by the rotation of the runner. The pressure pulsation in the runner was mainly the 0.8fn pressure pulsation that caused by the flow separation area at the tailing edge of the blade, while the 24fhigh-frequency pressure pulsation was caused by the dynamic and static interference between the guide vane and the runner near the band. The 0.2flow-frequency pressure pulsation was passed up from the draft tube. The pressure pulsation amplitudes of different frequencies in the runner and the draft tube were effectively reduced after optimization of the runner blade, indicating the particularly outstanding improvement of pressure pulsation in the draft tube. The amplitudes of pressure pulsation were reduced by 45% and 40%, respectively, in the draft tube with the frequency of 0.2fand 14funder the low load condition (OP1). There was no pressure pulsation with the frequency of 0.2fin the draft tube under rated condition (OP4). The amplitude of pressure pulsation of 14fn was reduced by 31%. The operation stability of the turbine was better improved in the low load area. The finding can provide a strong reference to optimize the operation of the turbine runner in the multi-energy complementary system.

    hydro power; Francis turbine; pressure pulsation; multi-energy complementation; low load condition; vortex

    2022-09-10

    2023-01-13

    國家自然科學基金項目(52009105;51839010)

    趙亞萍,博士,講師,研究方向為水力機械優(yōu)化設計及流動分析。Email:zyp0168@xaut.edu.cn.

    鄭小波,博士,副教授,研究方向為流體機械振動與穩(wěn)定性分析。Email:zxb@xaut.edu.cn

    10.11975/j.issn.1002-6819.202209081

    S277.9+4; TK733+.3

    A

    1002-6819(2023)-07-0067-10

    趙亞萍,鄭小波,張歡,等. 多能互補條件下轉(zhuǎn)輪優(yōu)化對水輪機低負荷區(qū)穩(wěn)定性能的影響[J]. 農(nóng)業(yè)工程學報,2023,39(7):67-76. doi:10.11975/j.issn.1002-6819.202209081 http://www.tcsae.org

    ZHAO Yaping, ZHENG Xiaobo, ZHANG Huan, et al. Influences of runner optimization on the stability performance of hydraulic turbine in the low-load range under the condition of multi-energy complementary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 67-76. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209081 http://www.tcsae.org

    猜你喜歡
    轉(zhuǎn)輪水輪機水管
    水輪機過流面非金屬材料的修復及防護
    大電機技術(2022年3期)2022-08-06 07:48:56
    大中型水斗式水輪機的關鍵技術
    大電機技術(2021年3期)2021-07-16 05:38:24
    詞語大轉(zhuǎn)輪
    ——“AABC”和“無X無X”式詞語
    安奇奇與小cool龍(第五回)
    寺廟里有座大書架——神奇的轉(zhuǎn)輪藏
    水輪機虛擬仿真動畫制作的研究
    首席水管工
    特別文摘(2018年6期)2018-08-14 09:25:14
    小賽和水管
    小太陽畫報(2018年8期)2018-05-14 17:06:37
    我國第一臺分半鑄造的30萬千瓦水輪發(fā)電機轉(zhuǎn)輪實制成功
    蘭臺世界(2017年12期)2017-06-22 14:17:25
    水輪機過流部件改造與節(jié)能增效
    亚洲美女视频黄频| 日韩一本色道免费dvd| 在线免费十八禁| 激情 狠狠 欧美| 亚洲欧洲日产国产| 亚洲av免费在线观看| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 亚洲激情五月婷婷啪啪| 三级国产精品欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 真实男女啪啪啪动态图| 精品欧美国产一区二区三| 日韩不卡一区二区三区视频在线| 国产成人freesex在线| 日韩在线高清观看一区二区三区| 美女被艹到高潮喷水动态| 久久精品熟女亚洲av麻豆精品 | 一级毛片久久久久久久久女| 国产亚洲5aaaaa淫片| 亚洲电影在线观看av| 亚洲精华国产精华液的使用体验| 美女被艹到高潮喷水动态| 最近最新中文字幕大全电影3| 99久国产av精品| 水蜜桃什么品种好| 久久99蜜桃精品久久| 精品不卡国产一区二区三区| 伦理电影大哥的女人| 欧美人与善性xxx| 中文天堂在线官网| 中文在线观看免费www的网站| 久久人人爽人人片av| 久久久久九九精品影院| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区视频9| 亚洲最大成人中文| 人人妻人人看人人澡| 国产免费又黄又爽又色| 麻豆av噜噜一区二区三区| 好男人视频免费观看在线| 男女边吃奶边做爰视频| 黄片wwwwww| 永久免费av网站大全| 久久鲁丝午夜福利片| 国产精品麻豆人妻色哟哟久久 | 三级经典国产精品| 午夜免费观看性视频| 午夜久久久久精精品| 99热6这里只有精品| 亚洲av免费高清在线观看| 一区二区三区四区激情视频| av在线天堂中文字幕| 日本与韩国留学比较| 全区人妻精品视频| 欧美成人午夜免费资源| 亚洲图色成人| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久人人人人人人| 一个人看视频在线观看www免费| 日韩国内少妇激情av| 欧美人与善性xxx| 免费看不卡的av| 男插女下体视频免费在线播放| 亚洲18禁久久av| 99久久中文字幕三级久久日本| 免费电影在线观看免费观看| 国产一区亚洲一区在线观看| 国产精品国产三级国产av玫瑰| 亚洲精品日韩在线中文字幕| 男的添女的下面高潮视频| 欧美不卡视频在线免费观看| 女人久久www免费人成看片| 免费大片黄手机在线观看| 欧美人与善性xxx| 看十八女毛片水多多多| 在线播放无遮挡| 亚洲丝袜综合中文字幕| 日韩一区二区视频免费看| 老女人水多毛片| 狠狠精品人妻久久久久久综合| 国产一级毛片在线| 久久精品国产鲁丝片午夜精品| 欧美日韩亚洲高清精品| 欧美成人一区二区免费高清观看| 青青草视频在线视频观看| 观看美女的网站| 久久6这里有精品| 国产亚洲最大av| 高清日韩中文字幕在线| 久久国产乱子免费精品| 日韩精品青青久久久久久| 一区二区三区高清视频在线| 国产午夜福利久久久久久| .国产精品久久| 国产老妇女一区| 成年女人在线观看亚洲视频 | 免费在线观看成人毛片| 18禁裸乳无遮挡免费网站照片| 日本av手机在线免费观看| 中文精品一卡2卡3卡4更新| 九九久久精品国产亚洲av麻豆| 免费看a级黄色片| 中文天堂在线官网| 九九在线视频观看精品| 天堂中文最新版在线下载 | 日韩欧美精品免费久久| 亚洲av一区综合| 综合色av麻豆| 国产成人精品婷婷| 七月丁香在线播放| 久久这里只有精品中国| 精华霜和精华液先用哪个| 亚洲自拍偷在线| 日本午夜av视频| 91aial.com中文字幕在线观看| 亚洲精品,欧美精品| 男女下面进入的视频免费午夜| 久久久久久久久久黄片| 少妇的逼好多水| 国产综合懂色| 亚洲久久久久久中文字幕| 精品久久久久久久久久久久久| 国产日韩欧美在线精品| 亚洲欧美成人精品一区二区| 内射极品少妇av片p| 国产白丝娇喘喷水9色精品| 老司机影院毛片| 国产爱豆传媒在线观看| 97人妻精品一区二区三区麻豆| 国产精品福利在线免费观看| 亚洲欧美精品专区久久| 大话2 男鬼变身卡| 中文天堂在线官网| 人人妻人人澡欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆| 五月玫瑰六月丁香| 久久精品综合一区二区三区| 亚洲国产av新网站| 精品久久久久久电影网| 国产 亚洲一区二区三区 | 欧美区成人在线视频| 91久久精品电影网| 亚洲欧美日韩无卡精品| 亚洲18禁久久av| 舔av片在线| 国产黄片视频在线免费观看| 国产在视频线精品| 人妻少妇偷人精品九色| 韩国av在线不卡| 欧美 日韩 精品 国产| 国产一区有黄有色的免费视频 | 大香蕉久久网| 人人妻人人看人人澡| a级一级毛片免费在线观看| 亚洲最大成人中文| 边亲边吃奶的免费视频| 亚洲精品成人久久久久久| 91av网一区二区| 亚洲精品视频女| 亚洲国产精品sss在线观看| 久久久久精品久久久久真实原创| 精品久久久久久电影网| 国产成年人精品一区二区| 一级片'在线观看视频| 少妇的逼好多水| 成人漫画全彩无遮挡| 国产免费视频播放在线视频 | 中文字幕制服av| 午夜精品国产一区二区电影 | 在线免费十八禁| 大香蕉97超碰在线| 免费看av在线观看网站| 亚洲三级黄色毛片| 欧美人与善性xxx| 全区人妻精品视频| 婷婷色麻豆天堂久久| 日本免费在线观看一区| 亚洲精品成人久久久久久| 国产 亚洲一区二区三区 | 日日啪夜夜撸| 国产欧美另类精品又又久久亚洲欧美| xxx大片免费视频| 久久国内精品自在自线图片| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 超碰av人人做人人爽久久| 国产91av在线免费观看| 国产高清不卡午夜福利| 国产精品三级大全| 成人二区视频| av在线蜜桃| 欧美一区二区亚洲| 99热这里只有是精品50| 免费观看a级毛片全部| 亚洲精品影视一区二区三区av| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 在线播放无遮挡| 亚洲欧洲国产日韩| 一级黄片播放器| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 久热久热在线精品观看| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 美女国产视频在线观看| av免费观看日本| 久久精品久久久久久噜噜老黄| 免费av毛片视频| 又粗又硬又长又爽又黄的视频| 久久久久久久午夜电影| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区 | 99久久精品热视频| 亚洲国产最新在线播放| 亚洲成人一二三区av| 亚洲精品国产av蜜桃| 久久久久久久国产电影| 成人欧美大片| 亚洲av二区三区四区| 国产精品久久久久久久电影| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 国产美女午夜福利| 国产老妇女一区| 色综合站精品国产| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 噜噜噜噜噜久久久久久91| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 女人久久www免费人成看片| 亚州av有码| 秋霞在线观看毛片| 九九在线视频观看精品| 欧美激情在线99| 午夜精品一区二区三区免费看| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 中文资源天堂在线| 黑人高潮一二区| 少妇熟女欧美另类| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 亚洲三级黄色毛片| 亚洲国产av新网站| 色视频www国产| 欧美最新免费一区二区三区| 嫩草影院精品99| 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 国产精品日韩av在线免费观看| 丝瓜视频免费看黄片| 久久久午夜欧美精品| 精品久久久精品久久久| 不卡视频在线观看欧美| 久久久精品欧美日韩精品| 国产综合懂色| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 国产精品一区二区性色av| 91在线精品国自产拍蜜月| 精品一区二区三卡| 美女黄网站色视频| 在现免费观看毛片| 18禁在线无遮挡免费观看视频| 色综合亚洲欧美另类图片| 国产成人免费观看mmmm| 国产亚洲最大av| 毛片女人毛片| 欧美成人午夜免费资源| 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 欧美3d第一页| 午夜日本视频在线| 成人av在线播放网站| 国产黄片美女视频| 一区二区三区四区激情视频| 麻豆成人av视频| 一边亲一边摸免费视频| 精品一区二区三卡| 国产男人的电影天堂91| 老女人水多毛片| 看非洲黑人一级黄片| 丝袜美腿在线中文| 女的被弄到高潮叫床怎么办| 国产成人福利小说| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 91狼人影院| 欧美日韩在线观看h| 观看美女的网站| 极品教师在线视频| 岛国毛片在线播放| 少妇的逼好多水| 国产在线一区二区三区精| 少妇人妻一区二区三区视频| 国产精品一二三区在线看| 国产精品一区二区性色av| 最后的刺客免费高清国语| 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看| 亚洲国产日韩欧美精品在线观看| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 天堂√8在线中文| 高清在线视频一区二区三区| 热99在线观看视频| 99热这里只有精品一区| 亚洲欧美成人综合另类久久久| 麻豆av噜噜一区二区三区| 久久热精品热| 午夜激情欧美在线| 汤姆久久久久久久影院中文字幕 | 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 国产极品天堂在线| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 水蜜桃什么品种好| 午夜福利高清视频| 乱系列少妇在线播放| av.在线天堂| 欧美日韩国产mv在线观看视频 | 色5月婷婷丁香| 国国产精品蜜臀av免费| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 在线播放无遮挡| 激情 狠狠 欧美| 成人午夜精彩视频在线观看| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 国产成人freesex在线| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| freevideosex欧美| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 一级a做视频免费观看| 成人漫画全彩无遮挡| 国产精品久久久久久精品电影| 18禁在线无遮挡免费观看视频| 丝瓜视频免费看黄片| 欧美三级亚洲精品| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久久久久久| 成人国产麻豆网| 中文字幕制服av| 免费观看a级毛片全部| 极品教师在线视频| 亚洲国产av新网站| 一级爰片在线观看| 午夜激情久久久久久久| 可以在线观看毛片的网站| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 亚洲av一区综合| 国产伦精品一区二区三区四那| 国产精品日韩av在线免费观看| 少妇的逼水好多| 国产高清国产精品国产三级 | 国产色婷婷99| 国产精品三级大全| 国产伦理片在线播放av一区| 一个人免费在线观看电影| 国产一区二区三区综合在线观看 | 舔av片在线| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 国产亚洲一区二区精品| 美女主播在线视频| 九九爱精品视频在线观看| 久久久成人免费电影| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 亚洲图色成人| 日韩欧美三级三区| 男人狂女人下面高潮的视频| 成年女人看的毛片在线观看| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美成人精品一区二区| 国产av不卡久久| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| 色哟哟·www| 又爽又黄a免费视频| 国产亚洲5aaaaa淫片| 亚洲国产精品成人久久小说| 国产午夜精品论理片| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 偷拍熟女少妇极品色| 免费人成在线观看视频色| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频 | 五月天丁香电影| h日本视频在线播放| 久久精品国产自在天天线| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 久久这里有精品视频免费| 99热网站在线观看| 成年免费大片在线观看| 高清午夜精品一区二区三区| 一夜夜www| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 人人妻人人澡欧美一区二区| 中文字幕制服av| 亚洲av.av天堂| 国产探花在线观看一区二区| 舔av片在线| 岛国毛片在线播放| 国产亚洲精品久久久com| 欧美精品一区二区大全| 婷婷色av中文字幕| 日本wwww免费看| 国产色婷婷99| 青青草视频在线视频观看| 亚洲av二区三区四区| 亚洲最大成人手机在线| 男人舔奶头视频| 男人狂女人下面高潮的视频| 只有这里有精品99| 亚洲国产最新在线播放| 人妻一区二区av| 国产成人精品婷婷| 久久久a久久爽久久v久久| 日日撸夜夜添| 日韩欧美国产在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人一二三区av| 中文欧美无线码| 成人鲁丝片一二三区免费| 国产精品福利在线免费观看| 97精品久久久久久久久久精品| 久久热精品热| 亚洲成人久久爱视频| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 麻豆乱淫一区二区| 久久精品夜夜夜夜夜久久蜜豆| 一级爰片在线观看| 深爱激情五月婷婷| 国产精品1区2区在线观看.| 国产淫片久久久久久久久| 汤姆久久久久久久影院中文字幕 | 精品人妻一区二区三区麻豆| xxx大片免费视频| 久久亚洲国产成人精品v| 国产成人a∨麻豆精品| 麻豆久久精品国产亚洲av| 久久精品久久久久久久性| 成人国产麻豆网| 成人综合一区亚洲| 超碰av人人做人人爽久久| 在线a可以看的网站| 亚洲国产精品成人久久小说| 五月伊人婷婷丁香| 国产色婷婷99| 91在线精品国自产拍蜜月| 精品熟女少妇av免费看| 国产乱来视频区| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三卡| 日本爱情动作片www.在线观看| 在线天堂最新版资源| 国产麻豆成人av免费视频| 精华霜和精华液先用哪个| 一级爰片在线观看| 日韩成人av中文字幕在线观看| 高清午夜精品一区二区三区| 99热这里只有是精品在线观看| 亚洲伊人久久精品综合| 免费看不卡的av| 丝袜美腿在线中文| 国内少妇人妻偷人精品xxx网站| 男人狂女人下面高潮的视频| 日韩欧美三级三区| 欧美+日韩+精品| 午夜老司机福利剧场| 国产高清不卡午夜福利| 一级毛片我不卡| 国产成人一区二区在线| av天堂中文字幕网| 国产黄片视频在线免费观看| 高清视频免费观看一区二区 | 国产在线一区二区三区精| 国产国拍精品亚洲av在线观看| 久久久久久久久久成人| 最近手机中文字幕大全| 久久99精品国语久久久| 在线观看人妻少妇| 亚洲av一区综合| 日本-黄色视频高清免费观看| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 国产精品人妻久久久久久| 国模一区二区三区四区视频| 国产亚洲5aaaaa淫片| 国产大屁股一区二区在线视频| 综合色av麻豆| 国产男女超爽视频在线观看| 人妻系列 视频| 国产成人91sexporn| 国产成人a区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 搡老乐熟女国产| 日韩电影二区| 2018国产大陆天天弄谢| 精品久久久噜噜| 日韩欧美三级三区| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| 国产激情偷乱视频一区二区| 国产精品三级大全| 亚洲精品一二三| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 国产精品国产三级国产专区5o| 国产精品一及| 亚洲在久久综合| 成年人午夜在线观看视频 | 久久精品国产亚洲网站| 免费电影在线观看免费观看| 内射极品少妇av片p| 国产亚洲精品久久久com| 免费观看a级毛片全部| 亚洲丝袜综合中文字幕| 亚洲婷婷狠狠爱综合网| 国产黄频视频在线观看| 乱码一卡2卡4卡精品| 日本免费a在线| 国产女主播在线喷水免费视频网站 | 男的添女的下面高潮视频| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 国产有黄有色有爽视频| 欧美丝袜亚洲另类| av又黄又爽大尺度在线免费看| 不卡视频在线观看欧美| 国产成人aa在线观看| 久久久久久久久大av| 99re6热这里在线精品视频| av女优亚洲男人天堂| 国产不卡一卡二| 成人午夜精彩视频在线观看| 一区二区三区乱码不卡18| 国产 一区精品| 青春草视频在线免费观看| 亚洲高清免费不卡视频| 亚洲乱码一区二区免费版| 国产探花在线观看一区二区| 好男人视频免费观看在线| 国产精品福利在线免费观看| 亚洲三级黄色毛片| 18禁在线无遮挡免费观看视频| 亚洲欧美精品专区久久| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 国产三级在线视频| 国产淫语在线视频| 成人无遮挡网站| 亚洲自拍偷在线| 99久久精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲成人中文字幕在线播放| 国产淫语在线视频| 一级毛片我不卡| eeuss影院久久| 国产伦精品一区二区三区四那| 欧美日韩国产mv在线观看视频 | 午夜福利在线在线| 免费少妇av软件| 好男人视频免费观看在线| 国产真实伦视频高清在线观看| 天堂av国产一区二区熟女人妻| 婷婷色综合www| 日韩精品有码人妻一区| 97超碰精品成人国产|