• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Astrometric Reduction of Saturnian Satellites with Cassini-ISS Images Degraded by Trailed Stars

    2023-05-26 08:31:30QingFengZhangMengQiLiuYanLiLinPengWuZhiQiangWangLiShaZhuandZhanLi

    Qing-Feng Zhang, Meng-Qi Liu, Yan Li , Lin-Peng Wu, Zhi-Qiang Wang, Li-Sha Zhu, and Zhan Li

    1 Department of Computer Science, Jinan University, Guangzhou 510632, China; tyanei@jnu.edu.cn

    2 Sino-French Joint Laboratory for Astrometry, Dynamics and Space Science, Jinan University, Guangzhou 510632, China

    3 Department of Financial Technology, School of Management, Guangzhou Xinhua University, Guangzhou 510520, China

    Abstract The Imaging Science Subsystem(ISS)mounted on the Cassini spacecraft has taken a lot of images,which provides an important source of high-precision astrometry of some planets and satellites.However,some of these images are degraded by trailed stars.Previously, these degraded images cannot be used for astrometry.In this paper, a new method is proposed to detect and compute the centers of these trailed stars automatically.The method is then performed on the astrometry of ISS images with trailed stars.Finally, we provided 658 astrometric positions between 2004 and 2017 of several satellites that include Enceladus, Dione, Tethys, Mimas and Rhea.Compared with the JPL ephemeris SAT427,the mean residuals of these measurements are 0.11 km and 0.26 km in R.A.and decl., respectively.Their standard deviations are 1.08 km and 1.37 km, respectively.The results show that the proposed method performs astrometric measurements of Cassini ISS images with trailed stars effectively.

    Key words: astrometry – planets and satellites: individual (Enceladus, Dione, Mimas, Rhea and Tethys) –techniques: image processing – methods: data analysis

    1.Introduction

    The Imaging Science Subsystem (ISS) is a piece of optic equipment mounted on the Cassini spacecraft (Porco et al.2004).During the entire Cassini tour, it took more than 400,000 images.These images have provided a lot of astrometric data on the satellites of Saturn and Jupiter.For instance, Cooper et al.(2006) obtained the astrometric data of inner Jovian satellites from the early ISS images.Tajeddine et al.(2013, 2015) and Cooper et al.(2014) reduced a part of ISS images of several main Saturnian satellites.Zhang et al.(2018, 2021, 2022) measured some ISS images of several Saturnian satellites.These data have been used in the studies of the dynamics of planetary systems (Desmars et al.2013;Cooper et al.2015; Lainey et al.2017, 2020).All these researches demonstrate the importance of the astrometry of ISS images.

    In 2018, a standard and versatile tool for the astrometry of ISS images, Caviar, has been released to the community by Cooper et al.(2018).Caviar can reduce normal ISS images.However,it cannot cope with the degraded images with trailed stars because of the inability of detecting streaks and obtaining their centers.In astrometry, these streaks are expected to be used as reference stars to correct camera pointing.If they cannot be analyzed, the measurement of the image will fail.Otherwise, these degraded images will be valuable for astrometry and can provide more astrometric positions of celestial objects.Figure 1 shows four example images with streaks.They are the ISS images of Mimas, Enceladus, Rhea and Dione, respectively.The streaks were caused by long exposure time or improper tracking.

    In these days,detecting and centering streaks in astronomical images have been studied by various researchers.Laas-Bourez et al.(2009) proposed an algorithm based on mathematical morphology for detecting the trajectory of space debris and developed the software TAROT that can fully automated extracting source positions of objects in geostationary transfer orbit.It is dedicated to observations with two small TAROT telescopes.Sun et al.(2013) presented another mathematical morphology method to detect streaks of space debris and obtain its center.As a result,the astrometric precision of space debris is improved.However, the above two algorithms need predict the approximate direction or length of the object to define a structural element.It is not suitable for processing ISS images because the direction and length of streaks are unknown in ISS images.Virtanen et al.(2016) gave an automated streak detection and processing pipeline for the ESA-funded Streak-Det (streak detection and astrometric reduction) activity.Although its detection sensitivity for bright objects or objects longer than 100 pixels reaches 90%, the sensitivity for shorter ones is only 63%.Since the length of streaks in ISS images are mostly shorter than 100 pixels, the method is not suitable for ISS images.Sease et al.(2017) offered a method to automatically locate two endpoints of one streak according to corner metrics.However, the centering method of streak was not provided, and the endpoints locating method was tested only on the simulated images.In addition, there are some famous processing systems that contain the function of detecting and centering streaks.For example, Pan-STARRS Moving Object Processing System (MOPS) (Denneau et al.2013) and TRailed Image Photometry in Python (TRIPPy)(Fraser et al.2016).All these methods and pipelines are not suitable for the astrometry of ISS images because most of them are dedicated to some specific equipment, or to a specific project, or aiming at photometry.

    Figure 1.Some examples of ISS images in which all the stars are streaks.The images are enhanced by applying contrast stretching for visibility.(a) An image of Mimas (Image ID: N1743596513), (b) an image of Enceladus (Image ID: N1872048342), (c) an image of Rhea (Image ID: N1516373834), (d) an image of Dione(Image ID: N1880313867).

    Figure 2.The results of the three steps with a trailed star degraded image.(Left)Searched peak points.(Middle)Detected streaks.(Right)Streaks and their centers.

    In this paper, a method that can automatically detect and center all streaks in an ISS image is first proposed,the method is then applied to the astrometry of ISS images with trailed stars of several main Saturnian satellites.The remaining of this paper is organized as follows.An introduction to our streak centering method is presented in Section 2.Section 3 describes the astrometry of several moons of Saturn.Section 4 provides a discussion about our method and measurements.The conclusions are given in Section 5.

    2.Streak Centering

    In the astrometry of ISS images with trailed stars, the key problem is to determine the accurate centers of streaks.There are three main steps in our method to solve the problem,including searching peak points, finding streaks and centering streaks.Details are given below.

    2.1.Step 1: Searching Peak Points

    Stetson (1987)published a classical package of photometry,DAOPHOT,which includes a routine FIND.The FIND routine is very powerful in searching stars in an image.Its principle is to find stars as the points with local maxima in an image H that is generated by convolving an original image F with a truncated Gaussian function, and obtain the star centers by fitting a bivariate Gaussian function to the intensity distribution over their neighborhood in F.If the stars are point-like, the FIND routine can identify them and output their centers accurately.However, FIND cannot handle the trailed stars correctly.That is, a trailed star may not be found, or may be recognized as one or more stars.Even when the streak is recognized as one star, its center cannot be located correctly.

    In this step, the aim is to locate at least one peak point in each streak in image H.The peak points will be the input of the next step.Since the streaks of stars in the ISS images are longer than normal point sources, to detect peak points successively the FIND parameter settings should be optimized as follows.The ROUND parameter in FIND is set to ±2, such that stars with any long-width ratio will be accepted.In order to reduce the number of false detections, the Hmin parameter should be increased properly.Based on experimental experiences, we set Hmin to 25+background(H),which means that the H value of Peak points should be at least 25 higher than that of the background.Readers can refer to Stetson (1987) for detail of the parameters ROUND and Hmin.In one word, we use the DAOPHOT FIND routine with proper parameters to find peak points.

    Figure 2 shows the results of each step of our method.The left image illustrates the result of the step of searching peak points.It results from the FIND routine with optimized parameters.In the image, the purple boxes represent detected stars whose centers are at the center positions of these boxes.The content in the small red box is enlarged and shown at the right top of the image.It can be seen from the image that at least one peak point is recognized for each trailed star with optimized parameters.

    2.2.Step 2: Finding Streaks

    With at least one peak point in each streak, the region growing algorithm is used to obtain the streak regions.The algorithm can find all pixels in the connected neighbors of a seed pixel (i.e., the peak pixel).For the details of region growing, see also Gonzalez & Woods (2002).The whole process of finding the streak region consists of six secondary steps as follows.

    1.Set a threshold d and the size of a square local image n.d will be used to determine whether the region is a streak or not.n will define the size of the square local image of a peak point.

    2.Given a peak point P,find out a local image SubImg that is centered at P and has a size n×n.If P is near the boundary of the image, center SubImg as close to P as possible.

    3.For the local image SubImg, compute the mean (m) and standard deviation (σ) of all pixel intensities after applying 3σ clipping criteria.Set intensity threshold T=m+2σ.

    4.The region growing algorithm is performed to expand the region around point P and then obtain the expanded region R associated with P.In the region, all pixels are connected and their intensity is greater than T.The IDL function REGIONGROW is called to finish it.

    5.For each peak point Pi, repeat steps 2–4 to obtain its expanded region Ri.To avoid overlapping regions, we restrict a pixel to belonging to only one region.Generally,the restriction makes sure that one streak has only one expanded region even if it has several peak points.

    6.Determine which expanded regions are streaks.Compute the maximum length of the region Riin x , y directions that are denoted by Lxand Ly, respectively.If max (L x,Ly) >d, Riis a streak region and saved as SRi.Perform the same operation on every expanded region to get all streaks.

    Through the above six steps, streak regions are determined.The parameters d, n and T play important roles in the whole procedure of finding streak regions.d is used to determine whether the region is a streak or not.n defines the size of the square local image SubImg of a peak point, and indirectly determines the intensity threshold T that affects the growth of the region from one peak point.Based on the properties of ISS images, the parameters are set as d=6, n=128 and T=m+2σ.All these values work well for ISS images.In other applications, these parameters should be adjusted based on the properties of images used.

    The middle image in Figure 2 shows the streaks detected from the left image with our method.It is a binary image,white regions are detected streaks.Comparing with the left image, it can be seen that the number of false detected streaks reduced significantly.

    2.3.Step 3: Centering Streaks

    After finding out all streak regions, an improved modified moment method is used to compute the centers of all streaks.Similar to the method described by Zhang et al.(2021), we developed a modified moment method to locate the centers of streaks.It includes three secondary steps as follows.

    1.Obtain a complete streak region FRi.The complete region should contain both foreground and background areas of a streak.We assume that it is a rectangular area.Since in most cases SRi, which approximates the real foreground area, is an irregular area.To obtain the complete region,we first generate the bounding box of SRi, and then expand it outward by more k pixels.In our processing,the k is 4.

    2.Update the intensities of all pixels in FRi.In the approximate background area FRi-SRi, a 2σ clipping method is used to remove outliers to get all background pixels of a peak point.With the mean (m) and standard deviation (σ) of all background pixel intensities, another threshold B=m+2σ is obtained.All pixels with an intensity no greater than B in FRiwill be changed to zero.

    3.Compute the center of a streak.The modified moment formulation is applied to the region FRito get the streak center.

    The secondary steps 1–3 are repeated for each streak region to locate the centers.The right image in Figure 2 shows the results from centering streak of the left one.each purple box indicates one streak center.Although there are still false detected streaks,they will not affect the final result because they cannot be matched with catalog stars.

    The above three main steps comprise the proposed automatic detecting and centering method for streaks in ISS images.In Section 4 a discussion about the method will be given.

    3.Data Reduction

    We collected 710 ISS images with trailed stars of several moons of Saturn that include Enceladus, Dione, Mimas, Rhea and Tethys.Sifting and discarding the incomplete or contaminated images, a total of 658 ISS images remain.

    The Caviar software package(Cooper et al.2018)is used to perform the astrometry of these images.In order to enable Caviar to process images with streaks, we integrated our automatic streak centering method into it.The whole reduction involves two key operations: pointing correction and measurement of target centers.In point correction, the catalog stars were matched with image stars to correct the nominated pointing of ISS camera.The center positions of all image stars were determined by our streak centering method proposed in the paper, and corrected with the geometric distortion model given in (Owen 2003).The catalog stars are extracted from Gaia Early Data Release 3 (Gaia Collaboration et al.2016, 2021).In the measurement of the target’s center, the limb-fitting method (Tajeddine et al.2013) is used to get the center because targets are resolved in all ISS images.Finally,we reduced 658 ISS images, which includes 539 images of Enceladus from 2012 to 2017, 57 images of Dione, 22 images of Mimas, 14 images of Rhea and 26 images of Tethys.A sample of the results is given in Table 1.Each row shows one observation of a target.Column 1 is the ID of the reduced image.Column 2 is the observation time of the image,which is the middle time of the exposure of the image.Column 3 is the target name.Columns α, δ are the R.A.and decl.of target in ICRF (International Celestial Reference Frame) centered atCassini.Columns αc,δcand Twist are the camera’s pointing in ICRF centered at Cassini.The corresponding image coordinates are given in columns Sample and Line.The full Table 1 is available at CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via https://cdsarc.unistra.fr/viz-bin/cat/J/other/RAA.

    Table 1 A Sample of the Results

    Figure 3.The residuals of Enceladus relative to JPL ephemeris SAT427 in Sample and Line (in pixels), and inα*cosδand δ directions (in km).

    Figure 4.The residuals of Mimas, Dione, Rhea, and Tethys relative to JPL ephemeris SAT427 in Sample and Line directions (in pixels), and inα*cosδand δ directions (in km).

    4.Discussion

    To evaluate our measurement,we compared our results with the JPL ephemeris SAT427(for detail see also https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/sat427.cmt)to get the residuals of all these observations.The residuals of Enceladus in sample and line are displayed in the left panel in Figure 3, and R.A.(α) and decl.(δ) are displayed in the right panel in Figure 3.Figure 4 shows the same residuals of other Saturnian satellites, i.e., Mimas, Dione, Rhea and Tethys.

    The mean and standard deviations(SD)of these residuals are given in Table 2.It shows that the SD in sample and line of Enceladus are 0.16 pixels and 0.15 pixels, respectively.In terms of distance, the SD in R.A.and decl.are 0.69 km and 0.98 km, respectively.For the other four targets: Mimas,Dione, Tethys and Rhea, their counterparts are 0.24 pixels,0.27 pixels, 2.02 km and 2.36 km, respectively.

    Table 2 Mean Values and Standard Deviations of Residuals of Our Results Relative to the JPL Ephemeris SAT427

    Table 2 also shows that the result of Enceladus is more precise than that of the other satellites.There are two reasons.First, the exposure times for Enceladus are generally between 5.6 and 8.2 s while for other targets are between 10 and 46 s.The longer exposure time may increase image noise and thus reduce the accuracy of position measurements.Second, the observation conditions of other satellites are more variable than those of Enceladus, which decrease the precision of the measurement.

    The results show that our automatic streak centering method works well.As stated in Section 2, there are a few parameters affecting the method.On one hand, these parameters enhance the flexibility and application range of our method.On the other hand, these parameters should be set carefully because the improper parameter setting may cause the failure of the method.Our parameter setting fits the properties of our ISS images in which the reference stars are sparse, generally less than 20 in each image, and displayed as straight lines.It is because all these observations have a small field of view of~2′, a limited magnitude of ~15, and steadily track the observation target.These three factors result in the reference stars being sparse and appearing as straight lines.

    It should be pointed out that not all streak regions detected by our method are true.That is, there are some false streak detections in an ISS image.However, it does not influence the result because all true streaks will be matched with catalog stars while the false detections will be filtered out.

    The disadvantage of the method is that it cannot provide the accurate center position for a curved streak.In physical view,the modified moment method only works out the first-order moment center of an intensity distribution.For a non-straight streak, the geometric center is not what we desired.It requires further research on centering curved streaks.Fortunately,all trailed stars appear as straight streaks in all images of our targets.

    5.Conclusion

    In this paper, a method is proposed to automatically search streaks and determine their accurate centers.The method is applied to measure 658 ISS images of several main moons of Saturn with streaks,539 of these images are Enceladus,and the remaining images are Mimas, Dione, Tethys and Rhea.The final results show that the proposed method is efficient.Compared with the JPL ephemeris SAT427,mean residuals of all measurements of Enceladus are 0.02 pixels in sample and 0.04 pixels in line, with standard deviations of 0.16 and 0.15 pixels,respectively.In terms of distance,the mean residuals of Enceladus are 0.01 km inα× cos(δ)and 0.13 km in δ, with standard deviation smaller than 1 km.For the other four targets,the means and standard deviations of their residuals are worse than Enceladus because of the different observation conditions.Overall, in terms of residuals in linear units, the means in the R.A.and decl.are 0.11 and 0.26 km,respectively;The standard deviations are 1.08 and 1.37 km, respectively.

    Acknowledgments

    This work has been partly supported by the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences (No.U2031104), the National Natural Science Foundation of China (No.62071201) and the Natural Science Foundation of Guangdong Province (No.2023A1515011340).This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium(DPAC,https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

    ORCID iDs

    Yan Li https://orcid.org/0000-0001-7372-100X

    国产乱人偷精品视频| 国产 一区精品| 少妇丰满av| 精品久久久久久久久av| 好男人视频免费观看在线| 最近中文字幕高清免费大全6| 美女黄网站色视频| 亚洲精品乱码久久久久久按摩| 国产高清不卡午夜福利| 成人亚洲精品av一区二区| av女优亚洲男人天堂| 午夜福利在线观看吧| 精品免费久久久久久久清纯| 国产精品女同一区二区软件| 亚洲久久久久久中文字幕| 欧美另类亚洲清纯唯美| 国产久久久一区二区三区| 日本在线视频免费播放| 国产亚洲欧美98| 国产伦精品一区二区三区四那| 美女脱内裤让男人舔精品视频 | 国产精品,欧美在线| 日韩av在线大香蕉| 麻豆国产av国片精品| 国产大屁股一区二区在线视频| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 欧美一区二区国产精品久久精品| 精品无人区乱码1区二区| 亚洲在线观看片| av福利片在线观看| 久久这里只有精品中国| 一本久久精品| 亚洲人成网站高清观看| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 97热精品久久久久久| 内地一区二区视频在线| 夫妻性生交免费视频一级片| www.色视频.com| 亚洲欧美日韩卡通动漫| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 中文资源天堂在线| 91av网一区二区| 18禁在线播放成人免费| 午夜福利成人在线免费观看| 岛国毛片在线播放| 91麻豆精品激情在线观看国产| 少妇猛男粗大的猛烈进出视频 | 久久精品国产亚洲av香蕉五月| 少妇裸体淫交视频免费看高清| 99热全是精品| av在线亚洲专区| 国产精品久久久久久亚洲av鲁大| 天美传媒精品一区二区| 免费黄网站久久成人精品| 国产成人freesex在线| 人人妻人人澡人人爽人人夜夜 | 国产精品乱码一区二三区的特点| 蜜桃久久精品国产亚洲av| 欧美在线一区亚洲| 少妇裸体淫交视频免费看高清| 综合色丁香网| 搡老妇女老女人老熟妇| 成人午夜高清在线视频| 女人十人毛片免费观看3o分钟| 亚洲五月天丁香| 好男人在线观看高清免费视频| 亚洲国产精品成人久久小说 | 久久99精品国语久久久| 欧美日韩精品成人综合77777| 18禁黄网站禁片免费观看直播| eeuss影院久久| 久久久久久久久久黄片| 中文字幕熟女人妻在线| 亚洲四区av| 嘟嘟电影网在线观看| 联通29元200g的流量卡| 此物有八面人人有两片| 乱人视频在线观看| 日韩高清综合在线| 青春草视频在线免费观看| 悠悠久久av| 长腿黑丝高跟| 国产日本99.免费观看| 欧美高清成人免费视频www| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 中出人妻视频一区二区| 成年版毛片免费区| av又黄又爽大尺度在线免费看 | 国产69精品久久久久777片| 亚洲无线观看免费| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 又粗又爽又猛毛片免费看| 日韩三级伦理在线观看| 熟女人妻精品中文字幕| 国产免费男女视频| 亚洲美女视频黄频| 乱系列少妇在线播放| 欧美变态另类bdsm刘玥| 久久精品久久久久久噜噜老黄 | 欧美丝袜亚洲另类| 日本黄色片子视频| 欧美另类亚洲清纯唯美| 中文字幕免费在线视频6| 欧美另类亚洲清纯唯美| 国产视频内射| 亚洲人成网站在线播| 精品人妻一区二区三区麻豆| av黄色大香蕉| 日韩一区二区视频免费看| av专区在线播放| 亚洲最大成人中文| 日韩欧美 国产精品| 麻豆久久精品国产亚洲av| 婷婷六月久久综合丁香| 国产亚洲91精品色在线| 亚洲无线在线观看| 国产高清有码在线观看视频| 在线观看美女被高潮喷水网站| 男女视频在线观看网站免费| 在线免费观看不下载黄p国产| 国产69精品久久久久777片| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 免费一级毛片在线播放高清视频| 26uuu在线亚洲综合色| 欧美zozozo另类| 直男gayav资源| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 18+在线观看网站| 亚洲欧美精品专区久久| 欧美激情在线99| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| www.av在线官网国产| 国产成人91sexporn| 国产淫片久久久久久久久| 国产亚洲精品av在线| 五月伊人婷婷丁香| 国产淫片久久久久久久久| 亚洲av中文字字幕乱码综合| 最近视频中文字幕2019在线8| 变态另类成人亚洲欧美熟女| 在线观看一区二区三区| 床上黄色一级片| 舔av片在线| 国产单亲对白刺激| 精品久久久噜噜| 欧美不卡视频在线免费观看| 亚洲精品自拍成人| 久久这里只有精品中国| 超碰av人人做人人爽久久| 欧美日韩乱码在线| 色哟哟哟哟哟哟| 国产乱人视频| 亚洲美女视频黄频| 国产精品免费一区二区三区在线| 色吧在线观看| 国产黄色小视频在线观看| 亚洲欧美清纯卡通| 久久精品夜色国产| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 插逼视频在线观看| 五月伊人婷婷丁香| 嫩草影院精品99| 三级毛片av免费| 精品久久久久久久久久久久久| 日韩,欧美,国产一区二区三区 | 青春草国产在线视频 | 内地一区二区视频在线| 欧美3d第一页| 国产单亲对白刺激| 又粗又硬又长又爽又黄的视频 | 亚洲婷婷狠狠爱综合网| 在线播放无遮挡| 久久这里只有精品中国| 夜夜夜夜夜久久久久| .国产精品久久| 少妇的逼好多水| 99久国产av精品| 国产精品一区二区性色av| 超碰av人人做人人爽久久| 老师上课跳d突然被开到最大视频| 男的添女的下面高潮视频| 校园人妻丝袜中文字幕| 看片在线看免费视频| 婷婷色综合大香蕉| 精品无人区乱码1区二区| 波野结衣二区三区在线| 听说在线观看完整版免费高清| 中文字幕免费在线视频6| av.在线天堂| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 青青草视频在线视频观看| 成人av在线播放网站| 天堂影院成人在线观看| 日韩,欧美,国产一区二区三区 | av天堂中文字幕网| 久久欧美精品欧美久久欧美| 亚洲18禁久久av| 中文字幕熟女人妻在线| 美女cb高潮喷水在线观看| 免费看av在线观看网站| 国产欧美日韩精品一区二区| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 国产国拍精品亚洲av在线观看| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 深夜精品福利| 99久久精品国产国产毛片| 日本一本二区三区精品| 寂寞人妻少妇视频99o| 国产黄a三级三级三级人| 麻豆乱淫一区二区| 精品少妇黑人巨大在线播放 | 欧美激情久久久久久爽电影| 2022亚洲国产成人精品| 免费大片18禁| 晚上一个人看的免费电影| 久久久久国产网址| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 干丝袜人妻中文字幕| 免费观看精品视频网站| 亚洲精品自拍成人| 97超视频在线观看视频| 一个人观看的视频www高清免费观看| 精品欧美国产一区二区三| 十八禁国产超污无遮挡网站| 99国产极品粉嫩在线观看| 一区二区三区免费毛片| 精品一区二区三区视频在线| 日韩大尺度精品在线看网址| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 六月丁香七月| 中出人妻视频一区二区| 不卡视频在线观看欧美| 成人国产麻豆网| 国产黄色小视频在线观看| 国产精品久久久久久久久免| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 日韩三级伦理在线观看| 最近手机中文字幕大全| 国产成人精品一,二区 | 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 国产精品国产高清国产av| 国产不卡一卡二| 日韩欧美精品免费久久| 99久久九九国产精品国产免费| 综合色av麻豆| 99热精品在线国产| 波多野结衣高清作品| 亚洲美女搞黄在线观看| 免费无遮挡裸体视频| 欧美bdsm另类| 久久久色成人| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 国产精品一及| 一本一本综合久久| 一本精品99久久精品77| 白带黄色成豆腐渣| 黄片wwwwww| 嫩草影院精品99| 久久人人爽人人片av| 看黄色毛片网站| 久久精品人妻少妇| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 亚洲四区av| 夫妻性生交免费视频一级片| 男女视频在线观看网站免费| 国产毛片a区久久久久| 亚洲无线在线观看| 中文字幕av在线有码专区| 亚洲精品色激情综合| 别揉我奶头 嗯啊视频| 中文欧美无线码| 成人av在线播放网站| 日本黄色视频三级网站网址| 一本久久精品| 小说图片视频综合网站| 一级毛片我不卡| 婷婷亚洲欧美| 色播亚洲综合网| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 少妇的逼好多水| 男女那种视频在线观看| 亚州av有码| 级片在线观看| www日本黄色视频网| 午夜免费激情av| 激情 狠狠 欧美| 91在线精品国自产拍蜜月| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 久久久久久久久中文| 搡女人真爽免费视频火全软件| 亚洲精品久久国产高清桃花| 小蜜桃在线观看免费完整版高清| 成人国产麻豆网| 可以在线观看的亚洲视频| 免费看光身美女| 我的女老师完整版在线观看| 国产日本99.免费观看| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 欧美高清性xxxxhd video| 亚洲一区二区三区色噜噜| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 精品免费久久久久久久清纯| 午夜久久久久精精品| 亚洲av中文av极速乱| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 国产精品久久久久久精品电影| 秋霞在线观看毛片| 99久久精品国产国产毛片| 麻豆国产av国片精品| 亚洲国产精品合色在线| 变态另类丝袜制服| 国产精品久久久久久久久免| 两个人的视频大全免费| 69人妻影院| av专区在线播放| 日韩制服骚丝袜av| 一进一出抽搐动态| av福利片在线观看| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 国模一区二区三区四区视频| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 桃色一区二区三区在线观看| 一级黄色大片毛片| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 久久人人精品亚洲av| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 在线观看66精品国产| 成年女人永久免费观看视频| 日本在线视频免费播放| 2021天堂中文幕一二区在线观| 亚洲四区av| 老熟妇乱子伦视频在线观看| 成人特级av手机在线观看| 国产亚洲av片在线观看秒播厂 | 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 久久久午夜欧美精品| 禁无遮挡网站| 大香蕉久久网| 成人特级av手机在线观看| 最近最新中文字幕大全电影3| 国产极品天堂在线| 禁无遮挡网站| 伦理电影大哥的女人| 日韩强制内射视频| 成人美女网站在线观看视频| 一区福利在线观看| 少妇人妻精品综合一区二区 | 成人特级av手机在线观看| 老女人水多毛片| 免费观看a级毛片全部| 午夜激情欧美在线| 色哟哟哟哟哟哟| av卡一久久| 欧美高清成人免费视频www| 国产 一区精品| 热99re8久久精品国产| 久久久久久久久久久免费av| 狂野欧美激情性xxxx在线观看| 国产 一区 欧美 日韩| 久久99蜜桃精品久久| 日韩亚洲欧美综合| 国产精品一区二区在线观看99 | 搞女人的毛片| 国产精品日韩av在线免费观看| 亚洲天堂国产精品一区在线| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载 | 成人av在线播放网站| 亚洲成av人片在线播放无| 国产av不卡久久| 亚洲av电影不卡..在线观看| 国产 一区精品| 久久99热6这里只有精品| 波多野结衣高清无吗| 毛片女人毛片| 夫妻性生交免费视频一级片| 久久精品综合一区二区三区| 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说 | 精品久久久久久久久av| 久久草成人影院| 午夜福利高清视频| 插阴视频在线观看视频| 尾随美女入室| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 久久精品久久久久久噜噜老黄 | 99久久人妻综合| 免费观看a级毛片全部| 一级黄片播放器| 精品一区二区三区人妻视频| 国产成人a∨麻豆精品| 特级一级黄色大片| 色哟哟·www| 精品久久久噜噜| av免费在线看不卡| 亚洲不卡免费看| 免费观看a级毛片全部| 青春草国产在线视频 | 亚洲av一区综合| 在线国产一区二区在线| АⅤ资源中文在线天堂| 99久久成人亚洲精品观看| 久久中文看片网| 国产av麻豆久久久久久久| 深爱激情五月婷婷| 在线a可以看的网站| 国产淫片久久久久久久久| 亚洲真实伦在线观看| 99热这里只有精品一区| 国产成人精品婷婷| 国产精品不卡视频一区二区| 老司机影院成人| 人妻少妇偷人精品九色| 夜夜看夜夜爽夜夜摸| 亚洲五月天丁香| 亚洲欧美日韩东京热| 青春草亚洲视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 欧美+亚洲+日韩+国产| 日本欧美国产在线视频| 国产黄片美女视频| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 中国国产av一级| 赤兔流量卡办理| 床上黄色一级片| 成人一区二区视频在线观看| 99热网站在线观看| 日本三级黄在线观看| 深夜a级毛片| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 国产成人一区二区在线| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 婷婷亚洲欧美| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 亚洲国产欧美在线一区| 国产av一区在线观看免费| 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 日日啪夜夜撸| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| 插阴视频在线观看视频| 色哟哟哟哟哟哟| 又爽又黄无遮挡网站| 亚洲av.av天堂| 日韩欧美在线乱码| 中国美女看黄片| 男女啪啪激烈高潮av片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美人成| 国产精品国产高清国产av| 精品一区二区三区视频在线| 亚洲成人中文字幕在线播放| 日韩大尺度精品在线看网址| 国产高清有码在线观看视频| 精品久久久久久久久久久久久| 亚洲欧洲日产国产| 久久久久久久久久久免费av| 一进一出抽搐动态| 亚洲欧美成人综合另类久久久 | 天堂中文最新版在线下载 | 久久热精品热| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片电影观看 | 成人毛片a级毛片在线播放| 又爽又黄无遮挡网站| 日韩三级伦理在线观看| 国产免费男女视频| 一本一本综合久久| 亚洲精品成人久久久久久| 国产色婷婷99| 两个人视频免费观看高清| 成人毛片60女人毛片免费| 非洲黑人性xxxx精品又粗又长| 日韩制服骚丝袜av| 亚洲国产日韩欧美精品在线观看| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 尾随美女入室| 美女cb高潮喷水在线观看| 国产一区二区三区av在线 | av在线天堂中文字幕| 亚洲成人av在线免费| 99热这里只有是精品在线观看| 美女黄网站色视频| 内射极品少妇av片p| 1024手机看黄色片| 国产不卡一卡二| 精品久久久久久久人妻蜜臀av| 一夜夜www| 成人毛片60女人毛片免费| 国产91av在线免费观看| 久久久久久大精品| 国产黄片美女视频| 久久久久性生活片| 深夜精品福利| 岛国毛片在线播放| 午夜激情福利司机影院| 国产精品免费一区二区三区在线| 国产探花极品一区二区| 午夜爱爱视频在线播放| 久久婷婷人人爽人人干人人爱| 国产精品人妻久久久久久| 亚洲精品国产av成人精品| 日本色播在线视频| 青春草视频在线免费观看| 毛片一级片免费看久久久久| 国产三级中文精品| 国产又黄又爽又无遮挡在线| 搡老妇女老女人老熟妇| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久丰满| 成人漫画全彩无遮挡| av.在线天堂| 午夜福利成人在线免费观看| 九九热线精品视视频播放| 亚洲中文字幕日韩| 晚上一个人看的免费电影| 久久久久久久午夜电影| 高清午夜精品一区二区三区 | 久久久久久久久久黄片| 久久久久国产网址| 中文字幕精品亚洲无线码一区| 免费av毛片视频| 熟妇人妻久久中文字幕3abv| 国产精品一区www在线观看| 日韩欧美一区二区三区在线观看| 欧美+日韩+精品| 久99久视频精品免费| 久久精品国产清高在天天线| 免费av观看视频| 男人和女人高潮做爰伦理| 搡女人真爽免费视频火全软件| 亚洲无线观看免费| 亚洲国产精品成人久久小说 | 亚洲人成网站在线观看播放| 男插女下体视频免费在线播放| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 男人和女人高潮做爰伦理| 久久婷婷人人爽人人干人人爱| 熟妇人妻久久中文字幕3abv| 国产美女午夜福利|