• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limiting Magnitudes of the Wide Field Survey Telescope (WFST)

    2023-05-26 08:31:58LeiLei雷磊QingFengZhu朱青峰XuKong孔旭TingGuiWang王挺貴XianZhongZheng鄭憲忠DongDongShi師冬冬LuLuFan范璐璐andWeiLiu劉偉
    關(guān)鍵詞:青峰劉偉

    Lei Lei(雷磊) ,Qing-Feng Zhu(朱青峰),Xu Kong(孔旭),Ting-Gui Wang(王挺貴),Xian-Zhong Zheng(鄭憲忠),Dong-Dong Shi (師冬冬), Lu-Lu Fan (范璐璐), and Wei Liu (劉偉)

    1 School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China; zhuqf@ustc.edu.cn

    2 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China

    3 Deep Space Exploration Laboratory / Department of Astronomy, University of Science and Technology of China, Hefei 230026, China

    Abstract Expected to be of the highest survey power telescope in the northern hemisphere,the Wide Field Survey Telescope(WFST) will begin its routine observations of the northern sky since 2023.WFST will produce a lot of scientific data to support the researches of time-domain astronomy, asteroids and the solar system, galaxy formation and cosmology and so on.We estimated that the 5σ limiting magnitudes of WFST with 30 s exposure are u=22.31 mag, g=23.42 mag, r=22.95 mag, i=22.43 mag, z=21.50 mag, w=23.61 mag.The above values are calculated for the conditions of airmass=1.2,seeing=0 75,precipitable water vapor=2.5 mm and Moon-object separation=45° at the darkest New Moon night of the Lenghu site (V=22.30 mag, Moon phase θ=0°).The limiting magnitudes in different Moon phase conditions are also calculated.The calculations are based on the empirical transmittance data of WFST optics, the vendor provided CCD quantum efficiency, the atmospherical model transmittance and spectrum of the site.In the absence of measurement data such as sky transmittance and spectrum, we use model data.

    Key words: surveys – telescopes – techniques: photometric

    1.Introduction

    In recent years, many large ground-based optical survey telescopes have been built or planned all over the world.SDSS(Kent 1994; Fukugita et al.1996), Pan-STARRS (Jedicke &Pan-STARRS 2007; Chambers & Team 2016), SkyMapper(Schmidt et al.2005; Rakich et al.2006), ZTF (Bellm 2014;Bellm et al.2019; Graham et al.2019) and other built telescopes have produced a large amount of observation data,which has greatly promoted astronomical researches and solved many scientific problems.Soon new,survey telescopes such as LSST (Hlozek et al.2019), Mephisto (Liu 2019; Lei et al.2021; Yuan et al.2020) and WFST will join their peers and conduct deeper multi-band surveys to provide crucial data to astrophysical researches.Combined with China Space Station Telescope(CSST;Zhao et al.2016;Yuan et al.2021)and other space telescopes, WFST will greatly improve human understanding of the universe and promote more important scientific discoveries.

    The parameters of a survey telescope,such as the diameter of the primary mirror,quantum efficiency(QE)of CCD,and band transmittance, determine the throughput of the telescope.The site conditions of an astronomical observatory, such as atmospheric transmittance,altitude,seeing and sky background brightness, affect the depth of a survey program.The limiting magnitude of a survey telescope is an important guide for planning research objectives and project scopes.It is also the key for designing exposure time plans and survey strategies.Therefore, an accurate estimation of the limiting magnitudes are needed for the successful commission of a new telescope.

    In this work, we introduce the estimation of the limiting magnitudes of WFST.In Section 2 we describe the method that we adopt.In Section 3 we show our results of limiting magnitudes of the WFST.

    Figure 1.The atmospheric transmittance curves of Paranal Observatory(2400 m),La Silla Observatory(2600 m)and the Extremely Large Telescope site(3060 m),and the scaled transmittance curve of the WFST site(4200 m).We assume the WFST site has the same geographic features(i.e.,high altitude Mountain and dry air)as the three ESO sites.

    2.Limiting Magnitudes

    2.1.Throughput of WFST

    The throughput of an astronomical observation (Ttot) is limited by the atmospheric transmittance (Tatmo), the transmittance of optics(Topt),the transmittance of the filters Tband)and the quantum efficiency of CCD (QECCD).

    The optical system of WFST consists of a 2.5 m diameter primary mirror with a 760 mm diameter central hole, five corrector lenses, an ADC made with two glass wedges and ugrizw six switchable filters (Lou et al.2016).Among five correcting lenses,only one is made of the N-BK7HT glass.The others and ADCs are made of the fused quartz.Since the transmittance of a fused quartz blank can be neglected, we simulate the total transmittance of the five-lens corrector and the ADC with the product of the transmittance of a 35 mm thick N-BK7 glass blank and the transmittance of 14 layers of anti-reflection (AR) coatings.The transmittance of the N-BK7 glass is obtained from SCHOTT4https://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTTand the transmittance of the AR coating is from Institute of Optics and Electronics(IOE)'s measurements.Because of the oversized Primary Focus Assembly (PFA), the actual aperture obscuration is 1 m diameter.

    Because we do not have atmospheric transmittance and spectrum measurements at the site,we adopt SkyCalc5https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC(Version 2.0.9) to obtain model curves.SkyCalc is developed by astronomers in ESO based on the Cerro Paranal Advanced Sky Model(Noll et al.2012;Jones et al.2013;Moehler et al.2014).The atmospheric transmittance is affected by altitude,humidity,dust, and precipitable water vapor (PWV), among which the altitude is the most important factor.SkyCalc only provides the atmospheric transmittance at three astronomical sites:Paranal(2400 m),La Silla(2600 m)and the Extremely Large Telescope (ELT) site (3060 m).Figure 1 shows the three transmittance curves of the sites.We can see that three curves have same features that they are scaled according to different altitudes of three sites.This is reasonable because the geographic features of the three sites are very similar.The Paranal Observatory is on the Cerro Paranal mountain, which is in the Atacama Desert of northern Chile.The La Silla Observatory is located on the outskirts of the Chilean Atacama Desert.The 40 m-class ELT is on the Cerro Armazones mountain in the central part of the Atacama Desert.WFST is on the Saishiteng mountain in the Gobi desert area on the Tibetan Plateau.We consider that the geographic features of the area are more similar to those of sites in the high-altitude Atacama desert than those of oceanic mountain areas, such as Mauna Kea in Hawaii.It is a reasonable choice to obtain the atmospheric transmittance of the WFST site by using the spectra from SkyCalc.So we get the atmospheric transmittance curve of the WFST site at an altitude of 4200 m by scaling the atmospheric transmittance curves of paranal, lasilla and ELT sites.In our simulations, we assume that airmass=1.0 and precipitable water vapor (PWV)=2.5 mm.Figure 1 also shows the result of scaling.

    20. Who by this time had married a widow: Most versions of the traditional tale explain that the father has returned to sanity84 and/or remarried himself. He occasionally attends his daughter s wedding. No red hot shoes await him at his daughter s wedding as await the stepmother in Snow White and the Seven Dwarfs85.

    Figure 2.(a) The transmittance curves of the atmosphere (blue dotted–dashed line), the optics including lenses and the ADC (green line), the reflectivity of the primary mirror(yellow line)and the quantum efficiency of the CCDs(cyan dotted–dashed line).The combined efficiency of the atmosphere,the optics and the CCDs is in purple.The red line shows the total efficiency of Shi et al.(2018).(b)The transmittance of each filter and the total efficiency in each WFST filter transmittance.

    As shown in Figure 2(a), combined system throughput,individual transmittance curves of the atmosphere and the corrector,the reflectivity of the primary mirror and the quantum efficiency of the CCD are plotted respectively.We also plot the original estimate of the system throughput for WFST by Shi et al.(2018).We can see that the updated system throughput is higher than the early expectation in most wavelengths(Shi et al.2018).The major reason is that the transmittances of the ADC and optical lenses are higher than the early estimate.In order to obtain high efficiency in short wavelengths, WFST selects e2v standard Si back-illuminated CCD detectors with the astro multi-2 coating.The QE of the CCDs is also increased.

    Figure 2(b) shows the transmittance of the filters and the total throughput of WFST in six bands, which is calculated by using Equation (1).

    2.2.Noise of WFST

    Noise in astronomical CCD images mainly consists of the contributions from the artificial light on the ground, astrophysical sources,sky background,CCD dark current,and CCD readout noise.The site of WFST is on the Saishiteng mountain on the Tibetan Plateau, where the nearest residential area is Lenghu Town which is ~50 km from the observatory site and has a population of 200.There is no industrial activity and the ground light pollution.The Haixi Mongolian and Tibetan Autonomous Prefecture of Qinghai Province has announced the 17 800 square kilometres area of Lenghu as a dark night protecting region in the local law.It protects the good observational conditions of the Lenghu astronomical site.Deng et al.(2021) studied long-term astronomical conditions of the Lenghu site and pointed out that the sky background of a New Moon night can reach 22.3mag arcsec-2in the V band and the average night-sky brightness is around 22.0mag arcsec-2 when the Moon is below the horizon.We adopt the AB magnitude system in this work.

    The sky background spectrum of the Lenghu site is also calculated by the software SkyCalc (Noll et al.2012; Jones et al.2013; Moehler et al.2014).The monthly averaged solar radio flux is equal to 130.00 sfu,that is the solar 10.7 cm radio flux in the Sun median active level (Sparavigna 2008; Petrova et al.2021).Because the solar activities will affect the sky background brightness, it is necessary to take the solar activities into account when we estimate the sky background.We adopt the median values obtained from long-term solar monitoring programs as the baseline solar brightness.The spectral flux of one sky region is related to the Moon-Target separation and the Moon phase.We designate the Moon phase with the Moon phase angle(θ)0°(New Moon),45°(Waxing),90° (Half Moon Waxing), 135° (Waxing), 180° (Full Moon)respectively.We assume that the separation of the Moon and a target is always 45° in our calculation.So the spectral flux of one region is only dependent on the altitude and the Moon phase.We get the sky background spectra toward the Zenith under different Moon phase conditions at the Lenghu Observatory site by scaling the spectra of three ESO sites provided by SkyCalc.Figure 3(a) shows the sky background spectrum at the altitude of 4200 m(θ=180°,here we just plot the spectra at a Full Moon night because it is easier to see their difference.), and the spectra of the three ESO sites at a Full Moon night.Figure 3(b) shows the sky spectra at Lenghu site under six different Moon phase conditions.As shown in the detail part of Figure 3(b), the sky background spectrum at a New Moon night(θ=0°)and the sky spectrum at a dark night have almost the same flux.

    We can get the magnitude mVby integrating the sky background spectrum multiplied by the V band filter transmission curve:

    Figure 3.(a)The sky background spectrum(purple)at Zenith at the altitude of 4200 m in the Full Moon condition,and the spectra of three ESO sites when the Moon phase is θ=180°.(b)The Zenith sky spectra of the 4200 m site in different Moon phase conditions.The sky background spectrum of Moon phase θ=180°and the spectrum of a dark night (when the Moon is under the horizon) have almost the same flux.

    where fλis sky background spectral flux,Tbandis the Johnson V band transmission curve(Bessell 1990),and ZP=-21.1 is the zero-point (Bessell & Murphy 2012).The modeled sky emission radiance flux from SkyCalc is in units of photon s m2micron arcsec2.The Johnson V band sky background magnitude of a New Moon night with the SkyCalc model spectrum at an altitude of 4200 m is 21.74mag arcsec -2.We scale the 4200 m sky background spectrum so that the resulting spectrum has a V-band magnitude of 22.3 or 22.0mag arcsec-2,corresponding to the best and the average sky brightness conditions at the Lenghu site.As shown in Figure 3(b), there are differences among the sky spectra under different Moon phase conditions.We scale these sky spectra at different Moon phases use the the same scaling factor in the New Moon case, where we scale the spectrum from Vθ=0°=21.74 to 22.30mag arcsec-2, so that differences among spectra at different Moon phases are not changed.The estimated V band Zenith sky background magnitudes at the Lenghu site with different Moon phases are: Vθ=0°, Vθ=45°,Vθ=90°, Vθ=135°, Vθ=180°=22.30, 22.10, 21.29, 20.28,18.90mag arcsec-2.

    The Lenghu sky background spectrum is calculated for airmass=1.0.It can be scaled to another airmass by multiplying a factor a (Krisciunas & Schaefer 1991).

    when airmass=1.2, X is

    Based on the sky background spectrum of the Lenghu site,we estimate the magnitudes of the sky background in each band mABband:

    Table 1 The Sky Background Brightness mAB of WFST Six Bands in Units of mag arcsec -2

    where

    where fluxAB=3631Jy for all frequencies, and Tband,λis the transmittance curve of a particular band.

    where fλis sky background spectral flux.Table 1 shows the sky background magnitudes mABin WFST six bands.

    2.3.Limiting Magnitudes of WFST

    Assuming the signal to noise ratio of WFST in all bands for a point source is S/N, we can write the formula of the S/N as:

    Table 2 5σ Limiting Magnitudes of WFST When Airmass=1.2, Seeing=0.75 Arcsec, Precipitable Water Vapour (PWV)=2.5 mm and Moon-object Separation is 45°

    With the seeing=0 75 measured by Deng et al.(2021)at 500 nm (Tokovinin et al.2003), we estimated the seeing values in different bands and airmass conditions.

    The sky signal actually lands on the detector is:

    where Toptis the throughput of the optics (including the primary mirror, ADC and the five corrector lenses), QECCDis the quantum efficiency of the CCD.

    We can solve Equation (8) to obtain the signal of an astronomical object required at the detection limit of S/N=5 and find the corresponding limiting magnitude mlim:

    A factor 0.61 is used because according to the description of ITC, the 1.18 FWHM sized aperture will contain 61% energy of a point source.The ZPlimis the system zero-point flux:

    Table 2 lists the calculated limiting magnitudes of ugrizw six bands.We calculated the limiting magnitudes of WFST at different Moon phases when the sky background brightness is V=22.0 mag and 22.3 mag, respectively.The results of a single exposure of 30 s and of coadded 100 frames with a total integration time of 100×30 s are listed.It shows that WFST can reach 23.42 (25.95) mag in the g band with a 30 s(100×30 s) exposure under the conditions with the sky background brightness V=22.3 mag, seeing=0 75,airmass=1.2 and PWV=2.5 mm.If the sky background is V=22.0 mag,the above values are 23.32(25.85)mag for 30 s(100×30 s).

    Figure 4.(a)The red line shows the sky background spectrum of the Lenghu site at New Moon night(Moon phase θ=0°),mV=22.3 mag,airmass=1.2.The black dashed line shows the Hawaii sky background spectrum scaled into mV=22.3 mag and airmass=1.2 in Shi et al.(2018).(b) The red line shows the atmospheric transmittance curve of the Lenghu site estimated by SkyCalc in this work.The black dashed line shows the atmospheric transmittance curve of Shiquanhe astronomical site at an altitude of 5130 m at the Ali Area on the Tibetan Plateau estimated by the software MODTRAN.

    3.Discussion and Conclusions

    In the current work, by considering the observational conditions of WFST, including throughput, quantum efficiency, the noise, the area of the primary mirror and the sky background brightness,we compute the limiting magnitudes of WFST.We get the sky background magnitudes in the AB magnitude system in the Lenghu site at the New Moon night when airmass=1.2: u, g, r, i, z, w=23.27, 22.82, 21.80,20.99, 20.05, 21.78mag arcsec -2.For the Lenghu darkest night condition (V=22.3mag arcsec-2) and a exposure time of 30 s, the 5σ limiting magnitudes of WFST are:ulim,glim,rlim,ilim,zlim,wlim= 22.31, 23.42, 22.95, 22.43,21.50,23.61 mag.The current estimates of limiting magnitudes are deeper than those in Shi et al.(2018).This is because the current total throughput of WFST is higher than the previous value,especially the throughput increases by ~50%from ~0.4 to ~0.6 in gri bands (see Figure 2(a)), and the current Dark night sky background is lower than the previous estimation.Figure 4 compares the sky spectrum of New Moon night of the Lenghu site and the atmospheric transmittance curve between this work and Shi et al.(2018).We used SkyCalc to estimate the sky background spectrum and atmospheric transmittance,while Shi et al.(2018) used the software MODTRAN7http://modtran.spectral.com/for estimating the atmospheric transmittance at the 5130 m Ali area and used a Hawaii sky background spectrum as a sky background spectral template.The Hawaii sky brightness in ugz bands is brighter than the current model when we scaled both of them into the same conditions of mV=22.3 mag arcsec-2and airmass=1.2 (see Figure 4 (a)), Shi et al.(2018) assumed the V band sky brightness ismV=21.50 mag arcsec-2.There is little difference between the current atmospheric transmittance model and the spectrum in Shi et al.(2018) (see Figure 4(b)).Our scaled atmospheric transmittance is close to the model of MODTRAN.

    We also obtain the limiting magnitudes of WFST under various conditions (Figure 5).In Figure 5, panel (a) shows the WFST limiting magnitudes of different signal-to-noise ratio when the exposure time equals to 30 s and 100×30 s respectively, panel (b) shows the limiting magnitudes of different seeing conditions when signal-to-noise ratio=5 and the exposure time=30 s,100×30 s respectively,and panel(c)shows the 5σ limiting magnitudes of different exposure times.These results are calculated with the sky spectrum scaled into airmass=1.2 condition at a New Moon night (Moon phase θ=0°).

    The WFST survey data will cover the entire northern sky.Its stacked scientific image data can be used to study asteroids,solar system, galaxies and cosmology.Its light curves can be used to discover variable objects.The estimated WFST limiting redshift of Type Ia supernovae (SNe Ia) can reach z ~0.64(luminosity distance ~6.3×103Mpc) and z ~1.67(~1.2×104Mpc) when the exposure time is 30 s and 100×30 s.SNe Ia can be used to constrain the dark energy in the universe (Riess et al.1998) and directly measure the Hubble constant(Riess et al.2022).By simulating observations of the SNe Ia with the WFST at the Lenghu site, Hu et al.(2022) estimate that above 104pre-maximum SNe Ia will be discovered in one-year during the wide or deep observations,which suggests that WFST will be a powerful facility in revealing the physics of SNe Ia.Lin et al.(2022)computed the prospects of finding Tidal Disruption Events (TDEs) with the WFST.Their mock observations on 440 deg2field(CosmoDC2 catalog) show that ~30 TDEs can be found per year in this field if observed at ugri bands with 30 s exposures every 10 days.According to Gao et al.(2022), the event rate for galaxy-lensed orphan afterglows of γ-ray bursts (GRBs) is to be less than 0.7 yr-1for the whole sky survey of the WFST.Yu et al.(2021)estimated the multi-messenger detection rate of Binary Neutron Star Mergers is about 300–3500 yr-1with a GECAM-like detector for γ-ray emissions and an LSST/WFST detector for optical afterglows.Zhu et al.(2021)and Zhu et al.(2022) showed that the optimal detection rates of the KNdominated and AG-dominated GRB afterglows events are~0.2/0.5/0.8/20 yr-1and ~500/300/600/3000 yr-1for ZTF/Mephisto/WFST/LSST, respectively.There are also some studies looking forward to detecting active galactic nucleus (AGN) and researching AGN physics using WFST survey data (X.-F.Hu et al.2023, in preparation, Su et al.2023, in preparation).

    Figure 5.(a) The limiting magnitudes of different S/N values when the exposure time is 30 s (dotted–dashed line) and 100×30 s (solid line); (b) The 5σ limiting magnitudes of different seeing conditions when the exposure time is 30 s(dotted–dashed line)and 100×30 s(solid line);(c)The 5σ limiting magnitudes of different exposure times when the seeing is 0 75.The conditions for a New Moon night(θ=0°)and airmass=1.2.Note:The limiting magnitude curves of the g band(blue)and the w band (red) are so close that we cannot distinguish the two curves easily.

    There are large sky survey telescopes that have been built around the world,and a number of large sky survey telescopes are being built.These projects have produced or will generate a large amount survey data and have an important impact in all fields of astronomy.Among them,the WFST will be completed in 2023.In the future,WFST(Lin et al.2022;Shi et al.2018),together with Mephisto (Lei et al.2021; Lei et al.2022;B.-Q.Chen et al.2023,in preparation),Pan-STARRS(Jedicke& Pan-STARRS 2007; Chambers & Team 2016), SkyMapper(Schmidt et al.2005; Rakich et al.2006), ZTF (Bellm et al.2019; Graham et al.2019) and other telescopes will be able to carry out relay observations of the entire sky with large percentage time coverage, which will greatly enhance the development of the time-domain astronomy.

    Acknowledgments

    This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant Nos.XDB 41000000 and XDB 41010105), the National Science Foundation of China (NSFC, grant Nos.12233008, 12173037 and 11973038),the China Manned Space Project(No.CMS-CSST-2021-A07) and the Cyrus Chun Ying Tang Foundations.We thank Fredrik T Rantakyr? and Rodolfo Angeloni from Gemini Observatory for their patient elaboration on the Hawaii sky spectrum model and sky brightness measurements.

    ORCID iDs

    Lei Lei (雷磊) https://orcid.org/0000-0003-4631-1915

    猜你喜歡
    青峰劉偉
    相親相愛
    幼兒100(2023年9期)2023-03-24 07:24:48
    怪臉夾子
    幼兒100(2022年37期)2022-10-24 01:52:50
    長腿鳥
    幼兒100(2022年21期)2022-06-10 01:34:50
    神奇的平衡
    幼兒100(2021年16期)2021-06-22 00:41:14
    巧用函數(shù)最值法,妙證不等式
    For the fish
    劉偉誤交損友
    當(dāng) 我 們 一 起 走 過
    青年歌聲(2019年6期)2019-06-26 09:11:46
    無盡佛緣一青峰
    藝品(2017年2期)2017-07-21 14:24:58
    劉偉(劉冠儒)
    国产熟女xx| 久久久久久久午夜电影 | 欧美日韩瑟瑟在线播放| 欧美精品一区二区免费开放| 久久久久久久午夜电影 | 亚洲专区中文字幕在线| 久久久久久久久久久久大奶| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美日韩在线播放| 黄色视频,在线免费观看| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 亚洲精华国产精华精| 久久亚洲真实| av网站免费在线观看视频| 满18在线观看网站| 久久中文字幕人妻熟女| 露出奶头的视频| 视频区欧美日本亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 一区在线观看完整版| 精品国产国语对白av| 老汉色av国产亚洲站长工具| 正在播放国产对白刺激| 久久狼人影院| 久久久国产成人精品二区 | 日本a在线网址| 黑人操中国人逼视频| 国产午夜精品久久久久久| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 女人被狂操c到高潮| 亚洲 国产 在线| 欧美乱妇无乱码| 一级黄色大片毛片| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 天堂√8在线中文| 久久人妻av系列| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 操美女的视频在线观看| 大型黄色视频在线免费观看| av福利片在线| 成人av一区二区三区在线看| 91国产中文字幕| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 国产精品日韩av在线免费观看 | 大码成人一级视频| 精品一区二区三区视频在线观看免费 | 乱人伦中国视频| 久久久久久大精品| cao死你这个sao货| 99香蕉大伊视频| 欧美另类亚洲清纯唯美| 黄色怎么调成土黄色| 亚洲一区二区三区不卡视频| 精品熟女少妇八av免费久了| 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 日韩人妻精品一区2区三区| 国产精品98久久久久久宅男小说| 操美女的视频在线观看| 中国美女看黄片| 日韩免费av在线播放| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影 | 国产精品 欧美亚洲| 久久精品国产清高在天天线| 精品国产乱子伦一区二区三区| 五月开心婷婷网| 高清欧美精品videossex| www.www免费av| 热99re8久久精品国产| 高清在线国产一区| 久久精品国产综合久久久| 日本黄色视频三级网站网址| 99re在线观看精品视频| 亚洲av成人av| 免费人成视频x8x8入口观看| 久久久久久久久久久久大奶| 人人妻人人澡人人看| 黑人猛操日本美女一级片| 黑人操中国人逼视频| 久久精品91蜜桃| 男女下面进入的视频免费午夜 | 成人国语在线视频| 天堂影院成人在线观看| 好看av亚洲va欧美ⅴa在| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区三区在线| 亚洲美女黄片视频| 精品国产美女av久久久久小说| 亚洲精品国产精品久久久不卡| 久久精品人人爽人人爽视色| 国产精品久久久久久人妻精品电影| 99精品久久久久人妻精品| √禁漫天堂资源中文www| 亚洲国产欧美网| 热99国产精品久久久久久7| 亚洲专区中文字幕在线| 91成人精品电影| 亚洲激情在线av| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 狂野欧美激情性xxxx| 国产亚洲精品久久久久5区| 午夜免费观看网址| 99国产精品99久久久久| 免费在线观看日本一区| 淫妇啪啪啪对白视频| 午夜福利,免费看| 色播在线永久视频| 中文字幕av电影在线播放| 五月开心婷婷网| 亚洲精品一区av在线观看| 男女床上黄色一级片免费看| 午夜福利在线免费观看网站| 丝袜人妻中文字幕| 女人被狂操c到高潮| 亚洲成人精品中文字幕电影 | av有码第一页| av视频免费观看在线观看| 欧美日本亚洲视频在线播放| 纯流量卡能插随身wifi吗| 999久久久精品免费观看国产| 亚洲欧美激情在线| 黑人操中国人逼视频| 精品高清国产在线一区| 丁香六月欧美| 中文字幕av电影在线播放| 啦啦啦在线免费观看视频4| 黄片播放在线免费| 精品久久久久久成人av| 色尼玛亚洲综合影院| 高清av免费在线| 夜夜夜夜夜久久久久| 日韩有码中文字幕| 欧美精品一区二区免费开放| 久久久久久大精品| 19禁男女啪啪无遮挡网站| 人人澡人人妻人| 两个人看的免费小视频| 99国产精品99久久久久| 国产亚洲精品久久久久5区| 欧美日本中文国产一区发布| 国产av精品麻豆| 国产伦人伦偷精品视频| 在线观看免费视频网站a站| 亚洲第一av免费看| 1024香蕉在线观看| 亚洲午夜理论影院| 成人18禁高潮啪啪吃奶动态图| 日韩欧美在线二视频| 脱女人内裤的视频| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品合色在线| 国产无遮挡羞羞视频在线观看| 午夜免费成人在线视频| 日韩人妻精品一区2区三区| 欧美黑人欧美精品刺激| 亚洲精品一二三| 19禁男女啪啪无遮挡网站| 天堂中文最新版在线下载| 中亚洲国语对白在线视频| 国产欧美日韩一区二区精品| 精品欧美一区二区三区在线| 人妻丰满熟妇av一区二区三区| 好看av亚洲va欧美ⅴa在| 国产精品一区二区精品视频观看| 丝袜在线中文字幕| 久久狼人影院| 国产一区二区激情短视频| 免费人成视频x8x8入口观看| 亚洲人成电影免费在线| 美女扒开内裤让男人捅视频| 一区二区三区国产精品乱码| 一边摸一边抽搐一进一出视频| 国产成人欧美| 99re在线观看精品视频| 99国产精品免费福利视频| videosex国产| 一级片免费观看大全| 欧美精品一区二区免费开放| 操美女的视频在线观看| 91大片在线观看| 真人做人爱边吃奶动态| 又黄又爽又免费观看的视频| 精品电影一区二区在线| 国产精品香港三级国产av潘金莲| 亚洲精品美女久久久久99蜜臀| 欧美日韩乱码在线| 两性夫妻黄色片| 成人国语在线视频| 人人澡人人妻人| 国产免费男女视频| 欧美日韩黄片免| 亚洲第一av免费看| 久久精品人人爽人人爽视色| 久久亚洲真实| 很黄的视频免费| 在线播放国产精品三级| 色播在线永久视频| 亚洲人成网站在线播放欧美日韩| 亚洲伊人色综图| 久久精品国产清高在天天线| 嫩草影院精品99| 男人的好看免费观看在线视频 | 色综合婷婷激情| 午夜激情av网站| 亚洲精品在线观看二区| 亚洲成av片中文字幕在线观看| 在线看a的网站| 一级作爱视频免费观看| 欧美中文综合在线视频| 久久青草综合色| 欧美不卡视频在线免费观看 | 一边摸一边做爽爽视频免费| 日本免费一区二区三区高清不卡 | 亚洲自拍偷在线| 99在线人妻在线中文字幕| 日韩大码丰满熟妇| 中文字幕色久视频| 亚洲国产欧美网| 不卡一级毛片| av视频免费观看在线观看| 亚洲性夜色夜夜综合| 99riav亚洲国产免费| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 97人妻天天添夜夜摸| 亚洲自拍偷在线| 午夜福利免费观看在线| 中文欧美无线码| svipshipincom国产片| 中文字幕精品免费在线观看视频| 12—13女人毛片做爰片一| 国产精品久久久人人做人人爽| 大陆偷拍与自拍| 成年人黄色毛片网站| 久久久国产一区二区| netflix在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 搡老乐熟女国产| 制服人妻中文乱码| 淫妇啪啪啪对白视频| 9热在线视频观看99| 一级毛片女人18水好多| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 久久久国产欧美日韩av| 啦啦啦免费观看视频1| 黄色视频不卡| 久久久久九九精品影院| 亚洲国产中文字幕在线视频| 国产成+人综合+亚洲专区| 12—13女人毛片做爰片一| 深夜精品福利| 大香蕉久久成人网| 欧美丝袜亚洲另类 | 免费观看人在逋| 人成视频在线观看免费观看| a在线观看视频网站| 精品久久久久久成人av| 亚洲男人的天堂狠狠| 黄色视频不卡| 亚洲精华国产精华精| 美女 人体艺术 gogo| 国产人伦9x9x在线观看| 成年人黄色毛片网站| 少妇裸体淫交视频免费看高清 | 亚洲avbb在线观看| 亚洲精品中文字幕一二三四区| 久久香蕉激情| 黑人猛操日本美女一级片| 在线播放国产精品三级| 看黄色毛片网站| 人人妻人人爽人人添夜夜欢视频| 亚洲狠狠婷婷综合久久图片| 欧美人与性动交α欧美精品济南到| 午夜成年电影在线免费观看| 一边摸一边抽搐一进一出视频| 日本免费a在线| 久久久精品国产亚洲av高清涩受| 成人精品一区二区免费| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 伦理电影免费视频| 亚洲色图av天堂| 村上凉子中文字幕在线| 中文字幕人妻丝袜制服| 可以在线观看毛片的网站| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 国产乱人伦免费视频| 国产主播在线观看一区二区| 高清毛片免费观看视频网站 | cao死你这个sao货| 精品久久蜜臀av无| 热99国产精品久久久久久7| 国产三级在线视频| 在线永久观看黄色视频| 咕卡用的链子| 高清在线国产一区| 亚洲自偷自拍图片 自拍| 女人高潮潮喷娇喘18禁视频| 亚洲五月色婷婷综合| 国产成人啪精品午夜网站| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩无卡精品| 日韩视频一区二区在线观看| 日本免费一区二区三区高清不卡 | 成人亚洲精品av一区二区 | 国产又色又爽无遮挡免费看| 精品久久久久久久毛片微露脸| 亚洲黑人精品在线| 日本黄色视频三级网站网址| 身体一侧抽搐| 女人被狂操c到高潮| 亚洲色图综合在线观看| 变态另类成人亚洲欧美熟女 | 99国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品合色在线| 久久国产乱子伦精品免费另类| 一夜夜www| 首页视频小说图片口味搜索| 一本大道久久a久久精品| 美女大奶头视频| 最近最新中文字幕大全免费视频| 狂野欧美激情性xxxx| 曰老女人黄片| 久久狼人影院| 最近最新免费中文字幕在线| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 日本 av在线| 亚洲精华国产精华精| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区精品视频观看| av欧美777| 午夜亚洲福利在线播放| 大香蕉久久成人网| 窝窝影院91人妻| 女人高潮潮喷娇喘18禁视频| 欧美激情高清一区二区三区| 精品日产1卡2卡| 九色亚洲精品在线播放| 国产又爽黄色视频| 麻豆av在线久日| xxx96com| 女人被躁到高潮嗷嗷叫费观| 啦啦啦 在线观看视频| 久久这里只有精品19| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 久久精品国产清高在天天线| 久久精品亚洲av国产电影网| 国产精品野战在线观看 | av有码第一页| 国产麻豆69| www日本在线高清视频| 国产精品久久久人人做人人爽| 中文字幕人妻熟女乱码| 熟女少妇亚洲综合色aaa.| 午夜视频精品福利| 日韩av在线大香蕉| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色 | 国产精品久久久久成人av| 欧美黑人精品巨大| 如日韩欧美国产精品一区二区三区| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 九色亚洲精品在线播放| 国产成人精品在线电影| 精品第一国产精品| 99re在线观看精品视频| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 一进一出抽搐gif免费好疼 | 欧美性长视频在线观看| 免费高清视频大片| 美女扒开内裤让男人捅视频| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 淫妇啪啪啪对白视频| 午夜免费成人在线视频| 亚洲黑人精品在线| 亚洲av成人一区二区三| 亚洲国产看品久久| 操美女的视频在线观看| 欧美日韩瑟瑟在线播放| 久久久久久久午夜电影 | 国产在线观看jvid| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 国产精品一区二区在线不卡| 日本欧美视频一区| 久久九九热精品免费| 老司机在亚洲福利影院| 亚洲九九香蕉| 91精品国产国语对白视频| 国产精品免费一区二区三区在线| 成年女人毛片免费观看观看9| 亚洲精品国产区一区二| a级毛片在线看网站| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 久久热在线av| 日韩视频一区二区在线观看| 在线播放国产精品三级| 亚洲美女黄片视频| 大香蕉久久成人网| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区 | xxxhd国产人妻xxx| 在线观看一区二区三区| 日本wwww免费看| 超碰97精品在线观看| 一个人观看的视频www高清免费观看 | 午夜久久久在线观看| 色婷婷av一区二区三区视频| netflix在线观看网站| 男女下面进入的视频免费午夜 | 50天的宝宝边吃奶边哭怎么回事| 一区福利在线观看| 亚洲成国产人片在线观看| 老汉色∧v一级毛片| 久久久久国内视频| 热99国产精品久久久久久7| 欧美 亚洲 国产 日韩一| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 搡老乐熟女国产| 亚洲少妇的诱惑av| 黄色片一级片一级黄色片| 亚洲一区二区三区色噜噜 | 久久午夜亚洲精品久久| 久久精品亚洲熟妇少妇任你| 国产亚洲欧美在线一区二区| 99riav亚洲国产免费| 成人国语在线视频| 亚洲精品在线美女| 久久久久久久精品吃奶| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 极品教师在线免费播放| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| a级毛片在线看网站| 9191精品国产免费久久| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站| 纯流量卡能插随身wifi吗| 麻豆av在线久日| 免费日韩欧美在线观看| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| avwww免费| 亚洲第一欧美日韩一区二区三区| 三上悠亚av全集在线观看| 亚洲五月天丁香| 亚洲专区字幕在线| 黄色视频不卡| 国产片内射在线| 在线观看一区二区三区激情| 男人操女人黄网站| 国产亚洲av高清不卡| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 亚洲成人国产一区在线观看| 欧美中文综合在线视频| 色在线成人网| 美女 人体艺术 gogo| 亚洲成人免费电影在线观看| 满18在线观看网站| 精品久久久精品久久久| 国产欧美日韩精品亚洲av| 伦理电影免费视频| 日本欧美视频一区| 97超级碰碰碰精品色视频在线观看| 999久久久精品免费观看国产| 久久精品91无色码中文字幕| 国产免费男女视频| 亚洲精品美女久久av网站| 午夜成年电影在线免费观看| 国产av在哪里看| 真人一进一出gif抽搐免费| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 脱女人内裤的视频| av视频免费观看在线观看| 性欧美人与动物交配| 波多野结衣高清无吗| 欧美色视频一区免费| 午夜两性在线视频| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 香蕉丝袜av| 久久久久久久久中文| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 女警被强在线播放| 老司机靠b影院| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 99精品欧美一区二区三区四区| 伦理电影免费视频| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 国产精品影院久久| 国产成人av教育| 一进一出抽搐gif免费好疼 | 怎么达到女性高潮| 欧美激情 高清一区二区三区| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 国产97色在线日韩免费| 日韩免费av在线播放| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 757午夜福利合集在线观看| 91av网站免费观看| netflix在线观看网站| 国产成人精品在线电影| 99国产精品99久久久久| 天堂√8在线中文| 久久青草综合色| 欧美日本中文国产一区发布| 夜夜躁狠狠躁天天躁| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 久久天堂一区二区三区四区| 久久草成人影院| 国产精品影院久久| 亚洲人成伊人成综合网2020| 日本五十路高清| 国产区一区二久久| 无遮挡黄片免费观看| 国产精品成人在线| 最新在线观看一区二区三区| 麻豆久久精品国产亚洲av | 99久久99久久久精品蜜桃| 午夜福利在线免费观看网站| 美国免费a级毛片| 中文字幕人妻丝袜制服| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 丰满迷人的少妇在线观看| 日本精品一区二区三区蜜桃| 人人妻人人添人人爽欧美一区卜| 国产一区二区激情短视频| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 看黄色毛片网站| 久久久国产精品麻豆| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 精品福利观看| 丝袜人妻中文字幕| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| 亚洲三区欧美一区| 国产av又大| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 露出奶头的视频| 日韩免费高清中文字幕av| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 一夜夜www| 9热在线视频观看99| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 亚洲国产精品999在线| 法律面前人人平等表现在哪些方面| 久久中文看片网| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 一个人观看的视频www高清免费观看 | 精品国产国语对白av| 性色av乱码一区二区三区2|