• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Better Reconciliation of Hubble Tension in the Dark Energy Scalar Field

    2023-05-26 08:30:52LeFuLiChenMaoyouYangJunmeiWangandMingJianZhang

    Le Fu, Li Chen, Maoyou Yang, Junmei Wang, and Ming-Jian Zhang

    1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

    2 International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China zhangmj@mail.bnu.edu.cn

    Abstract Hubble tension between the local measurement and global observation has been a key problem in cosmology.In this paper, we consider the quintessence scalar field, phantom field and quintom field as the dark energy to reconcile this problem.Different from most previous work,we start from the dimensionless equation of state(w)of dark energy,not a parameterization of potential.The combined analysis shows that observational data sets favor Hubble constant, which can reconcile Hubble tension within 1.20σ.We also perform a Bayes factor analysis using the MCEvidence code, and confirm that the phantom scalar field is still the most effective.To investigate the reason of Hubble tension,we analyze the density parameter.The comparison shows that the scalar fields provide a slightly larger Ωbh2 and smaller Ωch2 than the standard ΛCDM model.We finally analyze a possible reason of Hubble tension from the kinematic acceleration a¨.We find an interesting physical phenomenon.The acceleration a¨ in these scalar fields are similar as the ΛCDM model at about redshift z >0.5.However,they increase and deviate from each other at low redshift,especially in the near future.Only the a¨ in phantom scalar field will decrease in the future.

    Key words: (cosmology:) dark energy – (cosmology:) cosmological parameters – cosmology: theory

    1.Introduction

    The secular ΛCDM model in explaining the cosmic acceleration, favors well against the large spans of cosmological data.With the improvement of volume and accuracy of observational data,however,discrepancies of some cosmological parameters in this model become increasingly serious.Especially, tension of Hubble constant H0between the global and local measurement presents a statistical significance.In the latest local measurement(Riess et al.2021), SH0ES Team issued H0=73.2±1.3 km s-1Mpc-1at 68% CL with 1.8% uncertainty (hereafter R20) using the Cepheids observations.However, global temperature spectrum of cosmic microwave background (CMB) for Planck2018 (Aghanim et al.2020) present H0=67.27±0.60 km s-1Mpc-1at 68%CL in the flat ΛCDM scenario.Their differences have increased to be a 4.2σ.This problem is commonly called “Hubble tension.”

    Hubble constant is important to our cosmological research.It does not only play a vital influence on determination of cosmic age, but dominate the physical process such as comic nucleosynthesis and growth of cosmic structure.We also have affirmed that Hubble constant inevitably affects dark energy reconstruction (Zhang & Li 2018).Even, Freedman (2017)believed that Hubble tension may indicate a new physics.The Hubble constant,therefore,is an important observational target for a long time.

    The observation of Hubble constant is technically difficult.Primarily, it was estimated from the Hubble law v=H0d, a linear relationship between recession velocity of galaxies and distance.The first Hubble constant H0is about 500 km s-1Mpc-1(Hubble & Humason 1931).This large value is due to the confusion of two generations of pulsating stars in calculation of distance standards.Sandage demonstrated this mistake and revised H0down to 75 km s-1Mpc-1.Accurate distance measurement has always been a problem in the Hubble constant program.In 1921,Leavitt&Pickering(1912)found that the period of brightness fluctuation of Cepheid variables is highly regular, i.e., period–luminosity relation.Cepheids thereafter is used as the standard candles.Hubble constant from the SH0ES Team is just based on this method.Till now, a number of other tools are available,such as the Tip of Red Giant Branch,Surface Brightness Fluctuation,Maser in galaxy NGC 4258,gravitational lens time delays, and fashionable gravitational wave (GW).However, there are also differences between them.For example,the updated Tip of Red Giant Branch obtains H0=69.8±0.6(stat)±1.6(sys)km s-1Mpc-1(Freedman 2021).Meanwhile,the GW observations support a larger value.

    In the present paper, we would like to return the Hubble tension in the scalar field dark energy.We consider the quintessence field, phantom field and quintom field.For the scalar field study, an inevitable problem is the modeling of potential V(φ) over scalar field φ.Generally, potential V was understood via parameterization, such as power-law potential V(φ)∝φp, exponential potential V(φ)∝e-λφ.However, we note that parameter H0is usually hidden in potential V(φ),which greatly increases the difficulty of numerical calculations.In this paper, we rebuild the potential V from the equation of state (EoS w) of late dark energy, a dimensionless parameter,which can break above difficulties.For the quintessence field φ(t) and phantom field σ(t), we construct a simplified version basing on the Cai et al.(2007a).Our constraints show that one model can reconcile the Hubble tension at a better level.

    This article is organized as follows: In Section 2, we introduce the scalar field.In Section 3 we describe the relevant data we use.We present the reconstruction result, and explore the reason in Section 4.Finally, in Section 5 conclusion and discussion are drawn.

    2.Scalar Field Theory

    In coming section, we will introduce the construction of scalar field, namely, quintessence field, phantom field and quintom field.

    We take into account a spatially flat Friedmann–Robertson–Walker universe with matter and scalar field.The dynamical Friedmann equation can be expressed as follows

    The EoS parameter for quintessence scalar field is

    Combining with Equation (2), we can obtain the potential

    Finally, we have the Hubble parameter

    For the phantom scalar field σ, its energy density and pressure are

    Different from the quintessence field, the minus sign—is in derivative2˙σ.Following the above operation, we obtain the Hubble parameter

    Similarly to quintessence scalar field, the Hubble parameter can be solved logically, as long as the scale fields σ and w are available.However, we should notice that EoS is w <-1 in this scalar field.

    For the quintom field, it is a combination of quintessence field and phantom field.With the cosmic evolution, the quintessence field can transfer into phantom field, or the phantom field transfers into quintessence field.A number of theoretical works were investigated(Zhao et al.2005;Cai et al.2007b, 2010).Similarly, the Hubble parameter can be expressed as

    With regard to the reconstruction of scalar field φ(t)and σ(t),Cai et al.(2007a)put forward a solution and studied the cosmic duality in quintom universe.According to Cai et al.(2007a),we draw a simplified version for the scalar field.For the quintessence field, it is given by

    3.Observational Data

    3.1.Type Ia Supernovae

    The latest Type Ia supernova data we use are Pantheon sample from Scolnic et al.(2018), which consists 1048 data points.For these samples, their redshifts have a wide span of 0.01 <z <2.3.For each SN Ia,the observed distance modulus is given by

    Here matrix Dstatis the diagonal part of the statistical uncertainty.The Csysis the systematic covariance matrix between peak magnitude.They are available in the catalogs of Pan-STARRS.3https://archive.stsci.edu/prepds/ps1cosmo/index.html

    The theoretical distance modulus is usually estimated as

    where Δμ=μobs-μth.

    3.2.Baryon Acoustic Oscillations

    The BAO data we use here are 15 latest transversal BAO measurements (Nunes et al.2020), θBAO(z).They are obtained through the BAO signal position in the 2PACF, a modelindependent approach(Jassal et al.2005;Blake et al.2011).There is not a fiducial cosmological model assumption,comparing with the traditional BAO measurement.Their inclusion can break the degeneracy of dark energy model parameters, and improve the constraints significantly (Hernández-Almada et al.2021; Motta et al.2021).The theoretical angular scale is evaluated by

    where σiis the error of traditional BAO data.

    Figure 1.Posterior distributions of the cosmological parameters in quintessence field for fractional form w = w0 + w1 (left) and logarithmic form w = w0 + w1 model (right) using all the data sets.

    3.3.Cosmic Microwave Background

    The CMB has become one of the most powerful ways to study the cosmology and the physics of early universe.According to the Planck 2018 (Aghanim et al.2020), we use the full temperature and polarization angular power-spectrum data from Planck 2018.Specifically, they are respectively Plik likelihood,a combination of Planck TT,TE,EE spectra at? >29, temperature-only Commander likelihood named Planck_lowl_TT at low multipole 2 ≤? ≤29, and low multipole 2 ≤? ≤29 EE likelihood named Planck_lowl_EE from SimAll.

    3.4.Observational Hubble Parameter

    H(z) is a direct measurement of the cosmic expansion rate,which can be obtained via the differential ages of passively evolving galaxies (Simon et al.2005; Jimenez & Loeb 2008;Stern et al.2010)

    This method is also called cosmic chronometer.In our recent work (Zhang & Xia 2016), we used 30 cosmic chronometer data and studied the dark energy,finding a powerful constraint.Cosmological parameters can be constrained by the observational Hubble parameter data via

    4.Observational Constraints and Analysis

    4.1.Constraints from all Samples

    We obtain cosmological parameter constraints using the Einstein–Boltzmann code CLASS-PT (Chudaykin et al.2020)interfaced with the Montepython Monte Carlo sampler(Audren et al.2013; Brinckmann & Lesgourgues 2019).We use the Python module basing on the Markov chain Monte Carlo approach, to perform the corresponding χ2statistics.

    Table 1 Constraints of Cosmological Parameters at 68% C.L.for Different Models Using all the Observational Data Sets

    For the quintomA and quintomB scalar field,we respectively consider transformation between quintessence field and phantom field, as shown in Figures 3 and 4.For the matter density, parameter Ωm0still can be obtained with a high precision.For the equation of state, parameters w0and w1deviate from the cosmological constant significantly, which is different from the results in quintessence field and phantom field.For the Hubble constant, they present a better constraint than the quintessence field.However,the tension still locates at 1.52σ-1.69σ.

    In short, we find that Hubble tension in the phantom scalar field is the smallest.Moreover, it is little affected by the dark energy parameterization.

    4.2.Bayesian Evidence

    In this section, we would seek which model is more effective,compared with the standard ΛCDM cosmology.This statistical comparison can be realized through the Bayesian evidence.Here we use the publicly available code MCEvidence(Heavens et al.2017a,2017b)to compute the evidence of the model.It is very convenient because of its only usage of MCMC chains.

    According to the Bayes’theorem, we can describe the probability that cosmological model M is true as:

    Figure 2.The same as Figure 1 but for phantom field.

    Figure 3.The same as Figure 1 but for quintomA field.

    4.3.A Reason for the Hubble Tension

    To test the reason for the Hubble tension, we perform a comparison on the probability density of Ωbh2,Ωch2and Ωm0h2for different dark energy models,as shown in Figure 5.We also analyze a possible physical phenomenon of the low tension from the kinematics, which expect to provide a new understanding of the Hubble tension.

    Figure 4.The same as Figure 1 but for quintomB field.

    Table 2 Bayes Factor in the Revised Jeffreys’Scale

    The matter density has an important effect on the CMB spectra.It affects the amount of lensing in the CMB spectra and the amplitude of the CMB-lensing reconstruction spectrum.From the Planck 2018 release, it is obtained Ωm0h2=0.1432±0.0013 (Aghanim et al.2020).As shown in Figure 24 of this reference, the Planck Collaboration investigated the TT power spectrum residuals over the value of Ωm0h2.They found that a less lensing is allowed by a lower Ωm0h2.Hence a larger oscillatory residual can be given.In Figure 5,we compare the parameters Ωbh2,Ωch2and Ωm0h2for different dark energy models.First, we find that density parameter Ωbh2in these scalar fields are larger than the value in standard ΛCDM model.Especially, density Ωbh2in the quintessence scalar field is farthest from the standard ΛCDM model.Moreover, we find that the phantom field closest to the standard ΛCDM model.Second, in the middle panel of Figure 5, we find that quintessence scalar field still deviates from the standard value farthest.For parameter Ωch2, the phantom field slightly deviates from the standard ΛCDM model.Finally, we find that density parameter Ωm0h2in the phantom field is still closest to the standard ΛCDM model.Therefore, we are in a dilemma.That is, the phantom scalar field can better solve the Hubble tension,but the corresponding density parameters are closest to the standard ΛCDM model.This similarity makes it difficult to distinguish them.

    As pointed out in previous work (Linares Cede?o et al.2021), the Hubble tension can be reconciled is because a dark energy model with phantom-like EoS can generate extra acceleration of the universe, when compared with the fiducial ΛCDM model.Their result is consistent with our work.In order to further reveal the reason why Hubble tension can be reconciled in this scenario, we investigate the kinematica¨ in Figure 6.First,we find that accelerationa¨ in these scalar fields is similar at about redshift z >0.5.Moreover, they are much similar as the ΛCDM model.However, for low redshift, we should notice that thea¨ deviates from each other,especially in the near future.More importantly, we note that thea¨ for the phantom scalar field decreases in the future,while for the other field,thea¨ increases in the future.In our knowledge,this is the first time discovering this interesting physical phenomenon.

    5.Conclusion and Discussion

    Hubble tension has become a key problem in cosmology.It even implies a possibility of new physics or the failure of immortal ΛCDM model.In this paper, we consider three scalar fields as the dark energy to reconcile the Hubble tension.The scalar fields we consider are quintessence field,phantom field and quintom field.The observational data sets,SN Ia from Pantheon samples, transversal BAO measurement, CMB power spectra and H(z) data.The constraints indicate that phantom field can reconcile the Hubble tension to 1.20σ.We also perform a model comparison using the Bayes factor from the public code MCEvidence.The comparison shows that phantom scalar field is still the most effective in these models.

    Figure 5.Probability density of Ωbh2, Ωch2 and Ωm0h2 for different models.

    Figure 6.Comparison of the kinematics a¨ for different models.

    To investigate the reason of the Hubble tension,we perform a series of analysis.From the probability density in Figure 5,we find that the scalar fields provide a bigger Ωbh2and a lower Ωch2, when compared with the standard ΛCDM model.Moreover,the phantom field has a Ωbh2closest to the standard ΛCDM model.It can affect the CMB-lensing spectrum(Aghanim et al.2020) and provide an energy transformation between dark matter and dark energy(Di Valentino et al.2020;Yang et al.2020).

    A numerous of previous works (Di Valentino et al.2016, 2021b; Yang et al.2019; Alestas et al.2020;Vagnozzi 2020) find that a phantom-like dark energy can reconcile the Hubble tension.To further reveal the reason, we investigate the kinematica¨ in Figure 6.We find that accelerationa¨ in these scalar fields is similar to the standard ΛCDM model at redshift z >0.5.However, for low redshift,we should notice that thea¨ deviates from each other,especially in the near future.For the phantom scalar field,we note that thea¨decreases in the future.While for the other field, thea¨increases in the future.This interesting physical phenomenon was discovered for the first time.

    Acknowledgments

    We thank the anonymous referee whose suggestions greatly helped us improve this paper.M.-J.Zhang thanks Jing-Zhao Qi for the valuable discussion.Ming-Jian Zhang is supported by the Natural Science Foundation of Shandong Province (Grant No.ZR2021MA075).Li Chen is supported by the Natural Science Foundation of Shandong Province (Grant No.ZR2019MA033).

    欧美xxⅹ黑人| 国内少妇人妻偷人精品xxx网站| 日韩成人伦理影院| 人妻 亚洲 视频| 国产一级毛片在线| 麻豆成人午夜福利视频| 综合色丁香网| 97超视频在线观看视频| 亚洲av国产av综合av卡| 日韩人妻高清精品专区| 久久99一区二区三区| 亚洲成人av在线免费| 精品视频人人做人人爽| 高清毛片免费看| 久久精品国产亚洲av天美| 纯流量卡能插随身wifi吗| 2021少妇久久久久久久久久久| 午夜免费鲁丝| 亚洲色图综合在线观看| 十分钟在线观看高清视频www | 免费黄网站久久成人精品| 最近手机中文字幕大全| 精品少妇久久久久久888优播| 9色porny在线观看| 99久久中文字幕三级久久日本| 亚洲国产av新网站| 精品人妻熟女毛片av久久网站| 亚洲性久久影院| 内射极品少妇av片p| 一级av片app| 亚洲人与动物交配视频| 人妻少妇偷人精品九色| a 毛片基地| 亚洲精品久久午夜乱码| 欧美性感艳星| 久久久久视频综合| 美女主播在线视频| 亚州av有码| 国产极品粉嫩免费观看在线 | 亚洲精品国产色婷婷电影| 视频区图区小说| 国产欧美日韩综合在线一区二区 | 国产黄频视频在线观看| 亚洲成色77777| 午夜精品国产一区二区电影| 秋霞在线观看毛片| 免费在线观看成人毛片| 在线观看美女被高潮喷水网站| 亚洲伊人久久精品综合| 99热国产这里只有精品6| 天天操日日干夜夜撸| 中国美白少妇内射xxxbb| 男女无遮挡免费网站观看| 一级毛片aaaaaa免费看小| 一级av片app| 在线观看www视频免费| 天堂俺去俺来也www色官网| 日日爽夜夜爽网站| 十分钟在线观看高清视频www | 成人黄色视频免费在线看| 国产成人午夜福利电影在线观看| 久久99热6这里只有精品| av卡一久久| av免费在线看不卡| 国产黄色免费在线视频| 99精国产麻豆久久婷婷| 男人添女人高潮全过程视频| 少妇人妻精品综合一区二区| 欧美日韩视频高清一区二区三区二| 国产真实伦视频高清在线观看| 国产精品.久久久| 夜夜爽夜夜爽视频| 自线自在国产av| 国产精品99久久99久久久不卡 | 国产精品久久久久久精品古装| 啦啦啦中文免费视频观看日本| 国产精品免费大片| 亚洲精品国产成人久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩国产mv在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一区二区三区不卡| 在线天堂最新版资源| 精品人妻熟女毛片av久久网站| 一级毛片aaaaaa免费看小| 久久久久久久久久成人| 极品少妇高潮喷水抽搐| 久久久久久久国产电影| 九九爱精品视频在线观看| 99久久人妻综合| 亚洲精品国产av蜜桃| 亚洲不卡免费看| 国产精品国产av在线观看| 精品人妻熟女毛片av久久网站| 久久久久久久久久久免费av| 久久久久久久久久久免费av| 亚洲欧美一区二区三区黑人 | 男人舔奶头视频| 两个人的视频大全免费| 国产亚洲5aaaaa淫片| 五月伊人婷婷丁香| 久久久久视频综合| 男女边吃奶边做爰视频| 美女xxoo啪啪120秒动态图| 啦啦啦中文免费视频观看日本| 成人18禁高潮啪啪吃奶动态图 | 欧美3d第一页| 一级黄片播放器| 国产亚洲一区二区精品| 中文字幕亚洲精品专区| 99热这里只有是精品在线观看| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 人人妻人人看人人澡| 久久久久久久久久成人| 内射极品少妇av片p| 看免费成人av毛片| 夫妻性生交免费视频一级片| 黑丝袜美女国产一区| 九九在线视频观看精品| 天天操日日干夜夜撸| 久久99精品国语久久久| 国产成人91sexporn| 欧美另类一区| 日本av手机在线免费观看| 一二三四中文在线观看免费高清| 欧美日韩国产mv在线观看视频| 亚洲精品国产av成人精品| 午夜91福利影院| 日韩一区二区三区影片| 另类精品久久| 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 超碰97精品在线观看| 特大巨黑吊av在线直播| 久久精品久久久久久久性| 国产精品伦人一区二区| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 午夜影院在线不卡| 精品一品国产午夜福利视频| 国产又色又爽无遮挡免| 国产在线视频一区二区| 精品酒店卫生间| 亚洲国产日韩一区二区| 国产在线男女| 免费少妇av软件| 中文字幕人妻熟人妻熟丝袜美| 如何舔出高潮| 美女视频免费永久观看网站| 高清在线视频一区二区三区| 亚洲av在线观看美女高潮| 精品久久久噜噜| 少妇高潮的动态图| 我的老师免费观看完整版| 我的女老师完整版在线观看| 精品卡一卡二卡四卡免费| 美女视频免费永久观看网站| 国产高清三级在线| 免费看光身美女| 最近中文字幕2019免费版| 亚洲av中文av极速乱| 精品国产一区二区久久| 久久影院123| 美女福利国产在线| 午夜福利视频精品| 亚洲va在线va天堂va国产| 一本一本综合久久| 性色avwww在线观看| 国产精品熟女久久久久浪| 美女内射精品一级片tv| 国产高清国产精品国产三级| 亚洲av.av天堂| 少妇人妻 视频| 久久精品国产自在天天线| 欧美三级亚洲精品| 国产成人精品久久久久久| 成年人免费黄色播放视频 | h日本视频在线播放| av天堂中文字幕网| 国产成人精品久久久久久| 久久久久精品久久久久真实原创| 免费播放大片免费观看视频在线观看| 五月玫瑰六月丁香| 青青草视频在线视频观看| 久久精品久久精品一区二区三区| 久久韩国三级中文字幕| 好男人视频免费观看在线| 午夜福利影视在线免费观看| 夜夜骑夜夜射夜夜干| 免费在线观看成人毛片| 晚上一个人看的免费电影| 18禁动态无遮挡网站| 亚洲国产成人一精品久久久| 精品亚洲成国产av| 建设人人有责人人尽责人人享有的| 99热6这里只有精品| 色视频www国产| 如何舔出高潮| 老熟女久久久| 成人综合一区亚洲| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡 | 久久精品国产自在天天线| 久久久久精品久久久久真实原创| 极品人妻少妇av视频| 久久久久视频综合| 色婷婷av一区二区三区视频| 久久久久视频综合| 99九九线精品视频在线观看视频| 日韩免费高清中文字幕av| 观看免费一级毛片| 99re6热这里在线精品视频| 熟女电影av网| 国产免费一级a男人的天堂| 久久免费观看电影| 日本与韩国留学比较| 色吧在线观看| 国产黄片视频在线免费观看| 91精品国产国语对白视频| av女优亚洲男人天堂| 99热这里只有是精品50| 欧美+日韩+精品| 午夜日本视频在线| 久久影院123| 欧美3d第一页| 久久久精品免费免费高清| 在线天堂最新版资源| 国产一区二区在线观看av| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 国产精品不卡视频一区二区| 国产成人精品无人区| 亚洲综合色惰| 男男h啪啪无遮挡| 亚洲国产精品国产精品| 女性生殖器流出的白浆| 欧美bdsm另类| 9色porny在线观看| 丰满饥渴人妻一区二区三| 老女人水多毛片| 国产欧美日韩精品一区二区| 看免费成人av毛片| 在线看a的网站| 五月伊人婷婷丁香| 国产国拍精品亚洲av在线观看| 国精品久久久久久国模美| 国产精品久久久久久精品电影小说| 国产精品伦人一区二区| 久久狼人影院| 女人久久www免费人成看片| 日韩欧美 国产精品| 国产一区二区在线观看av| 久久人人爽av亚洲精品天堂| 黄色视频在线播放观看不卡| 国产欧美日韩一区二区三区在线 | 狂野欧美白嫩少妇大欣赏| 久久国产精品男人的天堂亚洲 | 久久久精品94久久精品| 99久久综合免费| 久久精品国产亚洲网站| 午夜影院在线不卡| 国产一区二区三区综合在线观看 | 大香蕉97超碰在线| 免费看日本二区| 大又大粗又爽又黄少妇毛片口| 亚洲经典国产精华液单| 这个男人来自地球电影免费观看 | 欧美人与善性xxx| 日韩欧美 国产精品| 丰满人妻一区二区三区视频av| 黄色怎么调成土黄色| 简卡轻食公司| 亚洲国产精品国产精品| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 精华霜和精华液先用哪个| √禁漫天堂资源中文www| 99久久综合免费| 日本黄色片子视频| 精品一品国产午夜福利视频| 免费av不卡在线播放| 亚洲国产精品专区欧美| 天堂8中文在线网| 麻豆成人午夜福利视频| 亚洲精品456在线播放app| 成年女人在线观看亚洲视频| 欧美最新免费一区二区三区| 如日韩欧美国产精品一区二区三区 | 99热6这里只有精品| 丝袜喷水一区| 亚洲久久久国产精品| 国产女主播在线喷水免费视频网站| www.色视频.com| 国产高清有码在线观看视频| 国产精品伦人一区二区| 99久久精品一区二区三区| 亚洲成人av在线免费| 亚洲精品日韩av片在线观看| 成人影院久久| 国产精品久久久久久精品电影小说| 中文在线观看免费www的网站| 欧美激情极品国产一区二区三区 | 久久久久国产精品人妻一区二区| 亚洲国产精品国产精品| 99国产精品免费福利视频| 只有这里有精品99| 色哟哟·www| 一本久久精品| 午夜精品国产一区二区电影| 尾随美女入室| 蜜臀久久99精品久久宅男| 国产亚洲午夜精品一区二区久久| 久久国内精品自在自线图片| av线在线观看网站| 岛国毛片在线播放| 日韩三级伦理在线观看| 亚洲国产最新在线播放| 自线自在国产av| 亚洲在久久综合| 日日啪夜夜撸| 国国产精品蜜臀av免费| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 久久久久久久久久久免费av| 亚洲精品日韩av片在线观看| 久久ye,这里只有精品| 三级国产精品片| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 欧美成人精品欧美一级黄| 亚洲精品一二三| 国产黄色免费在线视频| 91久久精品国产一区二区三区| 国产精品一区www在线观看| 国产一区有黄有色的免费视频| 最近中文字幕2019免费版| 中国三级夫妇交换| 婷婷色综合www| 精品亚洲成国产av| 亚州av有码| 亚洲综合精品二区| 又黄又爽又刺激的免费视频.| 久久久久久久久久久免费av| 人人妻人人澡人人看| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 久久99一区二区三区| 在线观看国产h片| 精品亚洲成a人片在线观看| 成人毛片60女人毛片免费| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| kizo精华| 日韩人妻高清精品专区| 欧美少妇被猛烈插入视频| 国产成人aa在线观看| 91精品一卡2卡3卡4卡| 汤姆久久久久久久影院中文字幕| 伦理电影免费视频| 亚洲精品第二区| 国产精品不卡视频一区二区| 蜜臀久久99精品久久宅男| 亚洲情色 制服丝袜| 秋霞在线观看毛片| 国产成人一区二区在线| 美女主播在线视频| 卡戴珊不雅视频在线播放| 国产91av在线免费观看| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| av不卡在线播放| 男人添女人高潮全过程视频| 两个人的视频大全免费| 少妇的逼好多水| a 毛片基地| 亚洲无线观看免费| 如日韩欧美国产精品一区二区三区 | 99久久人妻综合| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 下体分泌物呈黄色| 欧美高清成人免费视频www| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| tube8黄色片| 亚洲精品乱码久久久久久按摩| 亚洲国产精品一区三区| 成年av动漫网址| 成人毛片60女人毛片免费| 成人特级av手机在线观看| 国产精品一二三区在线看| 亚洲欧洲日产国产| 乱系列少妇在线播放| 免费看不卡的av| 国产精品无大码| 校园人妻丝袜中文字幕| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 国产精品一二三区在线看| 色94色欧美一区二区| 男女国产视频网站| 香蕉精品网在线| 久久久久国产网址| 亚州av有码| 亚洲精品成人av观看孕妇| 欧美激情国产日韩精品一区| 草草在线视频免费看| 中文乱码字字幕精品一区二区三区| 亚洲精华国产精华液的使用体验| 精华霜和精华液先用哪个| 亚洲国产最新在线播放| 日本欧美视频一区| 国产精品国产三级专区第一集| 久久97久久精品| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 午夜免费鲁丝| 国产91av在线免费观看| 久久久久久久久久人人人人人人| 最近最新中文字幕免费大全7| 一级黄片播放器| 久久久久久久久久久免费av| 国产男人的电影天堂91| 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜| 亚洲一级一片aⅴ在线观看| 在线 av 中文字幕| 蜜桃在线观看..| 国产一区二区在线观看日韩| 91久久精品国产一区二区成人| 久久久久国产精品人妻一区二区| 免费看光身美女| 2022亚洲国产成人精品| 午夜免费鲁丝| 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 视频中文字幕在线观看| 久久精品国产a三级三级三级| 男女啪啪激烈高潮av片| 最近中文字幕高清免费大全6| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 纵有疾风起免费观看全集完整版| 国产无遮挡羞羞视频在线观看| 熟女av电影| 少妇人妻 视频| 亚洲欧美中文字幕日韩二区| 人妻一区二区av| 少妇人妻久久综合中文| 国产淫片久久久久久久久| 久久久久国产网址| 国产一区亚洲一区在线观看| 一级黄片播放器| 三级经典国产精品| av又黄又爽大尺度在线免费看| 乱系列少妇在线播放| 亚洲成色77777| 一级毛片电影观看| 高清在线视频一区二区三区| 亚洲精品久久久久久婷婷小说| 中文字幕av电影在线播放| 精品久久久噜噜| 看非洲黑人一级黄片| 大香蕉97超碰在线| 大香蕉久久网| 免费av中文字幕在线| 亚洲图色成人| 免费高清在线观看视频在线观看| 一本久久精品| 国产伦理片在线播放av一区| 日韩中文字幕视频在线看片| 18禁动态无遮挡网站| 亚洲一区二区三区欧美精品| 午夜老司机福利剧场| 午夜福利,免费看| 午夜激情久久久久久久| 久久精品国产鲁丝片午夜精品| 国产亚洲5aaaaa淫片| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 久久人人爽人人爽人人片va| av黄色大香蕉| 欧美日韩精品成人综合77777| 香蕉精品网在线| 日本色播在线视频| 超碰97精品在线观看| 五月伊人婷婷丁香| 久久久久久人妻| 日韩伦理黄色片| 国产爽快片一区二区三区| 这个男人来自地球电影免费观看 | 黑丝袜美女国产一区| 色视频在线一区二区三区| 99久久精品一区二区三区| 黑人高潮一二区| 三上悠亚av全集在线观看 | 成年人午夜在线观看视频| 亚洲成色77777| 免费大片18禁| 午夜免费男女啪啪视频观看| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 下体分泌物呈黄色| 高清午夜精品一区二区三区| 国产高清有码在线观看视频| 午夜视频国产福利| 搡老乐熟女国产| 国产精品99久久久久久久久| 在线观看三级黄色| 亚洲av在线观看美女高潮| 亚洲精品日韩av片在线观看| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 另类亚洲欧美激情| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 在线 av 中文字幕| 九九在线视频观看精品| 欧美日韩国产mv在线观看视频| 九九在线视频观看精品| 性色avwww在线观看| 天堂中文最新版在线下载| 午夜福利影视在线免费观看| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 美女大奶头黄色视频| 曰老女人黄片| av.在线天堂| 美女内射精品一级片tv| 国产探花极品一区二区| 国产高清国产精品国产三级| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 乱人伦中国视频| 欧美bdsm另类| 成人二区视频| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 熟女电影av网| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| av国产精品久久久久影院| 欧美人与善性xxx| 美女xxoo啪啪120秒动态图| 少妇被粗大的猛进出69影院 | 五月天丁香电影| av.在线天堂| 人妻人人澡人人爽人人| .国产精品久久| 国产成人免费无遮挡视频| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 多毛熟女@视频| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片| av线在线观看网站| 3wmmmm亚洲av在线观看| 性色av一级| av在线观看视频网站免费| 狂野欧美激情性bbbbbb| 久久99一区二区三区| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 久久av网站| 久久久久人妻精品一区果冻| 黄色欧美视频在线观看| 亚州av有码| 欧美一级a爱片免费观看看| 亚洲国产欧美在线一区| 成人美女网站在线观看视频| 日日撸夜夜添| 新久久久久国产一级毛片| 亚洲综合色惰| 青春草国产在线视频| 99视频精品全部免费 在线| 亚洲精品国产av成人精品| 国产白丝娇喘喷水9色精品| 久久97久久精品| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦在线观看免费高清www| 亚洲av不卡在线观看| 日本黄大片高清| 高清欧美精品videossex| 日本免费在线观看一区| 婷婷色综合www| 欧美xxⅹ黑人| 在线 av 中文字幕| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 91久久精品电影网| 欧美精品亚洲一区二区| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 在线观看免费日韩欧美大片 | 99久久精品国产国产毛片| av福利片在线观看| 欧美日韩国产mv在线观看视频| 插逼视频在线观看| 一本大道久久a久久精品|