• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    2018-01-24 06:23:14MohsenYarmohammadiandKavoosMirabbaszadeh
    Communications in Theoretical Physics 2017年5期

    Mohsen Yarmohammadiand Kavoos Mirabbaszadeh

    Department of Energy Engineering and Physics,Amirkabir University of Technology,Tehran,Iran

    1 Introduction

    The properties of graphene,the one-atom-thick sheet of carbon atoms with thesp2hybridization,were first discussed in the literature more than sixty years ago.[1]Since then,graphene has been intensively investigated with focus on its physical and chemical properties.[2]Because of its unique symmetry,electron and hole bands of graphene show linear band crossing at the Fermi level,[3]resulting in a massless Dirac fermion like behavior of charge carriers.It has found several two-dimensional(2D)materials like group-IV graphene-like structures,hexagonal boron-nitride(h-BN)and MoS2,which present null gaps in both flat or buckled con figurations.Although these materials have a honeycomb lattice,but their properties are different.[4?8]The band gap is a measurement of the threshold voltage and on-off ratio of the field effect transistors.[9?10]In recent years,elemental sheets of silicon and germanium(silicene and germanene respectively)have been emerging as strong contenders in the realm of 2D materials.[11?12]There have been several theoretical studies assessing their fundamental properties while experimental analyses are just in their infancy,as practical synthesis methods are being explored to establish well defined fabrication techniques and parameters.Studies predict that such elemental sheets may also possess Dirac fermions similar to graphene and much simpler techniques may become available for their band gap engineering.Although semi-metallic,the main hurdle experienced in realizing silicene and germanene is that unlike graphene,they do not form a van der Waals layered structures in their bulk phase.Hence,they do not exist as freestanding sheets but synthesized as adlayer structures on ordered substrates.[13]Despite this fact,the exceptional findings through theoretical and preliminary experimental analyses,along with its compatibility to the current silicon based electronics,continues to inspire the exploration of 2D silicene and other group-IV elemental materials(germanene,stanene).However,a lot remains to be explored before these materials can be established as viable alternatives for the next generation of electronic applications.[14?15]

    Successful realization of single crystal silicon monolayer structures[16?17]through chemical exfoliation shows that 2D silicon monolayers with their low resistivity and extremely thin structures can be quite promising for nanoelectronics. Unlike graphene,silicene has a hexagonal atomic arrangement with a buckled con figuration because of its large ionic radius of silicon atoms,[18?21]as presented in Fig.1.From this point,its sublattices(AandB)sit in two parallel planes with a vertical distance of 0.46 ?A.[22?23]The low-energy dynamics of fermions in pristine graphene describes by Dirac Hamiltonian but in silicene,germanene and stanene due to the strong spinorbit coupling(SOC),carriers are massive with an energy gap.[24?25]This gap can be modulated via an applied perpendicular EF to its layer,which leads to the many attractive properties.[26?33]Unlike electronic properties,thermal properties of group-IV are still not well studied.Many works show that the thermal conductivity of silicene is predicted around(20–65)W/mK.[34?38]Electronic heat capacity(EHC)of a semiconductor system is defined as the ratio of the heat used by the carriers(here,Diracfermions)to the rise in temperature of the system.[39]On the other hand,magnetic susceptibility(MS)is the degree of magnetization of a material in response to an external applied magnetic field.Furthermore,our system is considered as a ferromagnetic with an exchange field.Electrons in a system scatter from dilute charged impurities with a scattering rate.This induces a characteristic energy scale at Dirac points.For this reason,impurities have a strong effect on physical properties of materials such as electronic and thermal properties for their applications in electronic devices.Motivated by the recent experimental developments and theoretical investigations on 2D monolayer honeycomb structures,in this paper we carry out a systematic study of three similar structures of group-IV elements based on the Green’s function method.

    In this work,we have investigated the temperature dependence of EHC and MS in ferromagnetic silicene,germanene and stanene in the presence of dilute charged impurity at Dirac points.Also,at a given impurity concentration(IC)and impurity scattering strength(ISS),EHC and MS have been studied with EF.Green’s function approach is carried out with the Kane-Mele Hamiltonian to study the dynamics of carriers in the system.In this work,impurities are randomly doped on sheets.The organization of this paper is as follows:In Sec.2,the methods together with parameters used in our calculations are outlined.The thermodynamic properties of these structures are investigated in Sec.3.In Sec.4,we present our results regarding the calculations.In Sec.5,our conclusions are presented.

    2 Methods

    Here is considered a monolayer system on thexy-plane,exposed to the perpendicular EFEz,as illustrated in Fig.1.The system is described by following model in order to study the dynamics of carriers[25,40]

    in which the first term denotes the nearest-neighbor hopping with energy oft0and the sum runs over all neighboring pairscreates(annihilates)an electron with spinσ=↑,↓ at sitei.The first two terms illustrate the Kane–Mele Hamiltonian describing the SOC with ΔSO,being→σ=(σx,σy,σz)the Pauli matrices.Also is defined

    with→diand→djbeing the two typical vectors,which connect the next nearest neighbors,and sum over all such pairs indicated by 〈i,j〉.[41?42]The third term is the staggered sublattice potential term as mentioned before in Sec.1 with?i=+1(?1)forA(B)sites.The final term is related to the induced exchange magnetic field by the magnetic insulator substrate.The low-energy limit of the above Hamiltonian in a ferromagnetic system in presence of a perpendicular uniform EF is described as:[25,43]

    whereinvFis the Fermi velocity of carriers for the inplane momentum k=(kx,ky)of the first Brillouin zone.ais the equilibrium lattice constant of structures andτi(i=x,y,z)are the Pauli matrices in the sublattice space.The first term in Eq.(1)is the pristine graphene Hamiltonian(Dirac Hamiltonian)at Dirac cone approximation forK(K′)points indexed byη=+1(?1).This term refers to the intra-layer hopping fromAatoms toBatoms and vice versa.The second term is the Kane–Mele Hamiltonian for the intrinsic SOC.[44]If systems rest onto the surface of a magnetic insulator substrate,an exchange magnetization can be induced asM= ΔSO/2.[45?46]σ=+1(?1)are used for spin-up and spin-down subbands.The Green’s function matrix of the unperturbed system can be readily obtained by following equation

    Having substituted Eq.(2)into Eq.(3),the explicit form of the Green’s function matrix is found but has not been written here because it is quite lengthy.The lattice constantsa,SOC and Fermi velocity at the Dirac pointKare given as((3.86,4.02 and 4.70)?A),((5.42,5.24 and 4.70)×105m/s)and((1.55,23.9 and 73.5)meV)for(silicene,germanene and stanene),respectively.[25]According to the Born approximation in the scattering theory[47]and usingTmatrix,[47]the electronic self-energy matrix of disordered system in the presence of finite but small density of impurity atoms,ni=Ni/N,could be obtained as

    whereNis the number of unit cell atoms andνidenotes the electronic on-site energy,which shows the strength of scattering potential.The local propagator of unperturbed system is given by

    In order to include some contributions from multiple site scattering,we replace the local bare Green’s functionby local full one,in the expression of the self-energy matrix in Eq.(4),leading to full self-consistent Born approximation.Under neglecting interstice correlations,the self-consistent problem requires the solution of equation

    The electronic self-energy should be found from a selfconsistent solution of Eq.(6).The pertubative expansion for the Green’s function of disordered system is obtained via the Dyson equation[47]as

    In the next section,EHC and MS are calculated.

    Fig.1 The(a)side view and(b)top view schematic illustration of group-IV graphene-like nanosheets.The A and B sites separated by a distance 2d within the electric field(EF)Ez.The black dashed lines illustrate the Bravais unit cell including two atoms.→diand→djare two typical vectors connecting the next nearest neighbors.

    3 Electronic Heat Capacity and Magnetic Susceptibility

    Density of states(DOS)can be calculated by trace of the imaginary part of the Green’s function matrix,D(ε)= ?? TrG(ε)/π.[48]Taking trace over the quantum numbers,which label the Hamiltonian,engaging Eqs.(1)and(3)along with setting iωn→ε+i0+as an analytical continuation(being 0+a very small real number),the total DOS would be eventuated

    whereμdescribes a sub-site andNcis the number of unit cells.The EHC could be introduced by following expression[39]

    in whichD(ε)calculated by Eq.(8)andf(ε) =1/[eε/kBT+1](kBis the Boltzmann constant)represents the Fermi–Dirac distribution function.By using Eqs.(8)and(9),the EHC would be obtained as

    and MS could be introduced by following expression[39]

    in whichf(E)=1/[eε/kBT+1](beingkBthe Boltzmann constant)stands for the Fermi–Dirac distribution function.Calling Eqs.(8)and(11),the MS would be obtained by

    4 Numerical Results

    In this section,taking into account Eqs.(2),(7),(10),and(12),we obtain the entire low-energy EHC and MS curves around the DiracKpoint and spin-up because of the much number of results besides theK′point and spindown.Because of the unique structure of aforementioned nanosheets and also a symmetry behavior between DiracK(K′)point with spin-up(down)andK′(K)point with spin-down(up),as verified in Refs.[26–27,30,32],we have focused on theKpoint and spin-up cases for reduction of the same results and curves.Also,we have completed our numerical calculations based on the reported parameters in Ref.[25].

    It is well-known that EHC of semiconductors at low temperatures is given byC(T)∝ e?Δ/kBT.[39,49]We see that all curves for EHC exhibit the same behavior with respect to the temperature.Remarkable in every curve is an anomalous peak,so-called the Schottky anomaly,which appears over a small range of temperatures when thermal energy reaches to the energy gap between the subbands.[50?51]The Schottky anomaly as an interesting effect can be explained in terms of the changing in the entropy of the system.As we know,at zero temperature only the lowest energy level is occupied and the entropy is equal to zero.In this regard,there is a very little probability of transition to a higher energy level.As soon as the temperature increases,the entropy increases too monotonausly and therefore the probability of the transition goes up.As soon as the temperature closes to the difference between the energy levels in the system,a broad peak appears,which is corresponding to a large change in the entropy for a small change in temperature.At high temperatures,all of levels are occupied,so there is again a little change in the entropy for small changes in temperature and thus a lower heat capacity.[52?53]Here Δ is the combined EF and impurity scattering potentials.Interaction between conducting electrons and dilute charged impurities affects the scattering rate of electrons.

    Fig.2 Electronic heat capacity in terms of temperature at different electric field strengths for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz= ΔSO.

    Fig.3 As Fig.2 but for magnetic susceptibility.

    Fig.4 Temperature-dependent electronic heat capacity for various impurity concentrations for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz= ΔSO,νi=0.4ΔSOand ni=0.1.

    Fig.5 Similar to Fig.4 but for magnetic susceptibility.

    Fig.6 Temperature behavior of electronic heat capacity for various impurity scattering strengths for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz=(3/2)ΔSO,νi=0.4ΔSOand ni=0.1.

    Fig.7 Like Fig.6 but for magnetic susceptibility.

    The evaluation of EHC with EF has been presented in Fig.2.For silicene,spin-up band gap decreases at Δz≤ ΔSOwhile increases at Δz>ΔSO,which is in agreement with derived findings in Ref.[32].It means that the Schottky anomaly appears atkBT<ΔSO(kBT>ΔSO)for Δz<ΔSO(Δz>ΔSO).For germanene and stanene structures,the spin-up band gaps remain constant because of their large SOC,which does not allow the quantum states to change with EF.In fact,change of Δzin comparison with these large SOCs is negligible.For these nanosheets,there is a critical EF,Δz=(1/2)ΔSO,where EHC is maximum.At low EF strengths,scattering rate is normal and systems see EF as a perturbation that affects their electron transports,but at Δz= ΔSO,systems back to their initial states because of the uniform EF with a smaller transport.For Δz>ΔSO,systems encounter with a unusual scattering rate and EHC increases.These are invalid for germanene and stanene because of their large SOC.For Δz>ΔSO,we have minimum EHC for germanene and stanene structures.In Fig.2(d),silicene(stanene)has the maximum(minimum)EHC at Δz=ΔSO.

    Figure 3 show the temperature-dependent magnetic susceptibility like Fig.2.Each curve bears a crossover,which originates from degenerated energy levels in the electronic minibands and parts the susceptibility into two temperature regions with a sharp positive slope before the apex and a relatively less negative slope after that.[52]According to the concept of magnetic susceptibility,which is a famous topic in every magnetic books and literatures,we have three magnetic orders based on the MS curves for spins including antiferromagnetic,ferromagnetic and paramagnetic.Susceptibility appears as response of the system to the interaction between magnetic field and spin of carriers,which changes the net magnetization of the system.To investigate the temperature behavior of susceptibility,the competition between thermal energy and mentioned interaction plays a key role in the system,leading to the change of magnetization.It is shown that at low temperatures,spin ordering of antiferromagntic systems changes interestingly with magnetic field and MS increases with temperature(albeit in small ranges).When thermal energy reaches to the band gap size of the system,MSmaxoccurs and after that MS decreases,i.e.,system does not answer to magnetic field at high temperatures.Generally,at low temperatures,magnetic field is dominant and MS increases while at high temperatures,temperature is dominant and MS decreases but with a critical temperature,known as Neel temperature.In fact,magnetic field at low temperatures flips the spins and the number of spins with the same directions increases,which leads to the increase of MS but at high temperatures,magnetic field cannot flip the spins and MS decreases because of the high scattering rate of carriers at high temperatures,as shown in the following figure.In ferromagnetic state,all spins have the same directions and at low temperatures,MS decreases with a severe slope up to the Curie temperature.Finally,paramagnetic materials have the random spin directions and MS decreases slightly with temperature because of the weak coupling between spins and external magnetic field.At first,spin-up have the ferromagnetic con figuration while for Δz<ΔSOand Δz>ΔSO,silicene show antiferromagnetic phase and transitions to paramagnetic at Δz= ΔSO.These changes are not valid for germanene and stanene structures and only at Δz<ΔSO,systems show the antiferromagnetic phase.

    Presented in Fig.4 are temperature-dependent EHC for various ICs at Δz= ΔSOandνi/ΔSO=0.4.One can see that EHC increases withniand the band gap size does not change for silicene.Interestingly,EHC decreases withnifor germanene and stanene,which it can be understood by their large intrinsic SOC.Also,it is necessary to say that these changes are at 1<kBT/ΔSO<2 and 1<kBT/ΔSO<3/2 for germanene and stanene,respectively.Figure 4(d)presents silicene(stanene)has the EHCmax(EHCmin).Figure 5 shows that impurity transited the magnetic order of the spins-up from paramagnetic to ferromagnetic phase by flipping.Germanene and stanene do not have phase transition withni.Silicene(stanene)responses to the external magnetic field as maximum(minimum)behavior as shown in Fig.5(d).

    Finally,we have investigated the temperature behavior of EHC and MS of these systems for various ICCs in Figs.6 and 7.Generally,EHC decreases withνi/ΔSOin silicene.Also,the band gap decreases withνi/ΔSObecause the crossover moves towards the lower temperatures.In germanene and stanene,EHC decreases slightly withνi/ΔSOup toνi<ΔSOwhile increases forνi>ΔSO.For MS results,according to the previous descriptions on magnetic order,silicene’s phase is antiferromagnetic while germanene and stanene are at ferromagnetic phase and all structures have MSmaxatνi>ΔSO.

    5 Summary

    In summary,based on symmetry aspects and the massive Dirac theory combined with the Green’s function method,we derived the temperature behavior electronic heat capacity and magnetic susceptibility of silicene,germanene and stanene with electric field,impurity concentration and impurity scattering strength.Spin-up band gap changes with the mentioned above quantities because of the change of the scattering rate of carriers.We have found that the impurity-dependent magnetic susceptibility curves lead to a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases.

    [1]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,and A.K.Geim,Rev.Mod.Phys.81(2009)109.

    [2]A.K.Geim,Science 324(2009)1530.

    [3]P.R.Wallace,Phys.Rev.71(1947)622.

    [4]K.F.Mak,C.Lee,J.Hone,J.Shan,and T.F.Heinz,Phys.Rev.Lett.105(2010)136805.

    [5]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,and A.K.Geim,Rev.Mod.Phys.81(2009)109.

    [6]N.M.R.Peres,Rev.Mod.Phys.82(2010)2673.

    [7]D.Pacile,J.C.Meyer,C.O.Girit,and A.Zettl,Appl.Phys.Lett.92(2008)133107.

    [8]K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov,and A.K.Geim,Proc.Natl.Acad.Sci.USA 102(2005)10451.

    [9]Y.Lin,K.A.Jenkins,A.Valdes-Garcia,J.P.Small,D.B.Farmer,and P.Avouris,Nano Lett.9(2009)422.

    [10]J.Kedzierski,P.Hsu,P.Healey,P.W.Wyatt,C.L.Keast,M.Sprinkle,C.Berger,and W.A.de Heer,IEEE Trans.Electron Devices.55(2008)2078.

    [11]Q.Tang and Z.Zhou,Prog.Mater.Sci.58(2013)1244.

    [12]L.C.L.Yan Voon and G.G.Guzmn-Verri,MRS Bull.39(2014)366.

    [13]P.Vogt,P.De Padova,C.Quaresima,J.Avila,E.Frantzeskakis,M.C.Asensio,A.Resta,B.Ealet,and G.Le Lay,Phys.Rev.Lett.108(2012)155501.

    [14]L.Li,Y.Yu,G.J.Ye,Q.Ge,X.Ou,H.Wu,D.Feng,X.H.Chen,and Y.Zhang,Nat.Nanotechnol.9(2014)372.

    [15]H.Liu,A.T.Neal,Z.Zhu,Z.Luo,X.Xu,D.Tomnek,and P.D.Ye,ACS Nano 8(2014)4033.

    [16]H.Nakano,T.Mitsuoka,M.Harada,K.Horibuchi,H.Nozaki,N.Takahashi,T.Nonaka,Y.Seno,and H.Nakamura,Angew Chem.118(2006)6451.

    [17]R.Krishnan,Q.Xie,J.Kulik,X.D.Wang,S.Lu,M.Molinari,Y.Gao,T.D.Krauss,and P.M.Fauchet,J.Appl.Phys.96(2004)1.

    [18]B.Lalmi,H.Oughaddou,H.Enriquez,A.Kara,S.Vizzini,B.Ealet,and B.Aufray,Appl.Phys.Lett.97(2010)223109.

    [19]P.E.Padova,C.Quaresima,C.Ottaviani,et al.,Appl.Phys.Lett.96(2010)261905.

    [20]B.Aufray,A.Vizzini,H.Oughaddou,C.Lndri,B.Ealet,and G.L.Lay,Appl.Phys.Lett.96(2010)183102.

    [21]P.Vogt,P.De Padova,C.Quaresima,et al.,

    [22]Z.Ni,Q.Liu,K.Tang,et al.,Nano Lett.12(2012)113.

    [23]N.D.Drummond,V.Z’olyomi,and V.I.Fal’ko,Phys.Rev.B 85(2012)075423.

    [24]C.C.Liu,W.Feng,and Y.Yao,Phys.Rev.Lett.107(2011)076802.

    [25]C.C.Liu,H.Jiang,and Y.Yao,Phys.Rev.B 84(2011)195430.

    [26]M.Ezawa,New J.Phys.14(2012)033003.

    [27]M.Ezawa,Phys.Rev.Lett.109(2012)055502.

    [28]X.T.An,Y.Y.Zhang,J.J.Liu,and S.S.Li,New J.Phys.14(2012)083039.

    [29]M.Tahir and U.Schwingenschlogl,Sci.Rep.3(2013)1075.

    [30]M.Ezawa,Phys.Rev.Lett.110(2013)026603.

    [31]W.F.Tsai,C.Y.Huang,T.R.Chang,H.Lin,H.T.Jeng,and A.Bansil,Nat.Commun.4(2013)1500.

    [32]C.J.Tabert and E.J.Nicol,Phys.Rev.Lett.110(2013)197402.

    [33]H.Pan,Z.Li,C.C.Liu,G.Zhu,Z.Qiao,and Y.Yao,Phys.Rev.Lett.112(2014)106802.

    [34]E.Scalise,M.Houssa,G.Pourtois,B.Broek,V.Afanasev,and A.Stesmans,Nano Res.6(2013)19.

    [35]H.P.Li and R.Q.Zhang,Eur.Phys.Lett.99(2012)36001.

    [36]M.Hu,X.Zhang,and D.Poulikakos,Phys.Rev.B 87(2013)195417.

    [37]Q.X.Pei,Y.W.Zhang,Z.D.Sha,and V.B.Shenoy,J.Appl.Phys.114(2013)033526.

    [38]T.Y.Ng,J.Yeo,and Z.Liu,Int.J.Mech.Mater.Des.9(2013)105.

    [39]C.Kittle,Introduction to Solid State Physicseighth ed.Wiley,New York(2004).

    [40]B.Aufray,A.Vizzini,H.Oughaddou,C.Lndri,B.Ealet,and G.L.Lay,Appl.Phys.Lett.96(2010)183102.

    [41]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)146802.

    [42]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)226801.

    [43]T.Yokoyama,Phys.Rev.B 87(2013)241409(R).

    [44]L.Chen,B.J.Feng,and K.H.Wu,Appl.Phys.Lett.102(2013)081602.

    [45]H.Haugen,D.Huertas-Hernando,and A.Brataas,Phys.Rev.B 77(2008)115406.

    [46]Z.Qiao,S.A.Yang,W.Feng,et al.,Phys.Rev.B 82(2010)161414.

    [47]W.Nolthing and A.Ramakanth,Quantum Theory of Magnetism,Springer,New York(2009).

    [48]E.N.Economou,Green’s Functions in Quantum Physics,3rd ed.Springer-Verlag,Berlin,Heidelberg(2006).

    [49]R.K.Pathria,Statistical Mechanics,Oxford Press,London(1997).

    [50]B.Velicky,Phys.Rev.184(1969)614.

    [51]M.Yarmohammadi,Solid State Commun.250(2017)84.

    [52]A.Tari,The Specific Heat of Matter at Low Temperatures,Imperial College Press,London(2003)p.250.

    [53]X.Xu,J.Chen,and B.Li,J.Phys.Condens.Matter.28(2016)483001.

    精品久久久久久久久久久久久| 欧美人与善性xxx| 日日摸夜夜添夜夜添av毛片| 蜜桃亚洲精品一区二区三区| 国产成人freesex在线 | 国产精品女同一区二区软件| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲国产成人精品v| 久久久久久九九精品二区国产| 久久中文看片网| av卡一久久| 免费看日本二区| av专区在线播放| 亚洲电影在线观看av| 国产女主播在线喷水免费视频网站 | 日韩欧美免费精品| 久久九九热精品免费| 免费在线观看成人毛片| 中国美白少妇内射xxxbb| 大型黄色视频在线免费观看| 久久久久久国产a免费观看| 深爱激情五月婷婷| 成人二区视频| 大香蕉久久网| 亚洲精品日韩av片在线观看| 欧美激情在线99| 国产精品久久久久久久久免| 亚洲色图av天堂| 黄片wwwwww| 男女之事视频高清在线观看| 干丝袜人妻中文字幕| 在线播放无遮挡| 大型黄色视频在线免费观看| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 一本精品99久久精品77| 国产老妇女一区| 成人国产麻豆网| 69av精品久久久久久| 国产v大片淫在线免费观看| 成人永久免费在线观看视频| 色噜噜av男人的天堂激情| а√天堂www在线а√下载| 干丝袜人妻中文字幕| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 丝袜美腿在线中文| 老女人水多毛片| 三级男女做爰猛烈吃奶摸视频| 成人国产麻豆网| 嫩草影院入口| 亚洲国产精品国产精品| av福利片在线观看| 国产精品人妻久久久影院| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 午夜福利视频1000在线观看| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| 综合色av麻豆| 99久国产av精品| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 亚洲图色成人| 女同久久另类99精品国产91| 哪里可以看免费的av片| 色视频www国产| 色5月婷婷丁香| 日韩欧美精品v在线| 欧美一区二区亚洲| 99热这里只有精品一区| 久久精品91蜜桃| 国产男人的电影天堂91| 99热全是精品| 久久久久国产精品人妻aⅴ院| 午夜a级毛片| 嫩草影院入口| 国产在线精品亚洲第一网站| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 午夜精品国产一区二区电影 | 寂寞人妻少妇视频99o| 亚洲18禁久久av| 久久久国产成人免费| 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区 | 秋霞在线观看毛片| 国产成人freesex在线 | 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| 国产av不卡久久| 乱系列少妇在线播放| 成人精品一区二区免费| 精品久久久久久久久亚洲| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 在线观看av片永久免费下载| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 少妇猛男粗大的猛烈进出视频 | 国产精品1区2区在线观看.| 国产精品久久久久久精品电影| 日韩欧美精品免费久久| 国产欧美日韩精品一区二区| 搡老岳熟女国产| 99久久无色码亚洲精品果冻| 老女人水多毛片| 12—13女人毛片做爰片一| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 精品福利观看| 精品久久国产蜜桃| 成年女人毛片免费观看观看9| 白带黄色成豆腐渣| 国产av不卡久久| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 久久久久久国产a免费观看| 成年免费大片在线观看| 插逼视频在线观看| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 国产黄片美女视频| 国产一区二区在线av高清观看| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 亚洲精品粉嫩美女一区| 亚洲美女搞黄在线观看 | 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | av中文乱码字幕在线| 亚洲七黄色美女视频| 天堂影院成人在线观看| 亚洲精品一区av在线观看| 色播亚洲综合网| 国产高清三级在线| 日日啪夜夜撸| 少妇猛男粗大的猛烈进出视频 | 国产免费一级a男人的天堂| 亚洲最大成人av| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 偷拍熟女少妇极品色| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 成年女人永久免费观看视频| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 97在线视频观看| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 成人漫画全彩无遮挡| 日本三级黄在线观看| 两个人的视频大全免费| 亚洲av第一区精品v没综合| 国产又黄又爽又无遮挡在线| 国产av在哪里看| 嫩草影院入口| 午夜日韩欧美国产| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 看免费成人av毛片| 长腿黑丝高跟| 国产91av在线免费观看| 欧美又色又爽又黄视频| 免费观看的影片在线观看| 18+在线观看网站| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 国产精品一区二区三区四区免费观看 | 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在 | 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 日韩制服骚丝袜av| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久大av| 一进一出抽搐动态| 夜夜看夜夜爽夜夜摸| 我要看日韩黄色一级片| av在线老鸭窝| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 日本成人三级电影网站| 男女之事视频高清在线观看| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 少妇熟女欧美另类| 精品熟女少妇av免费看| 久久6这里有精品| 亚洲三级黄色毛片| 日韩制服骚丝袜av| 蜜桃亚洲精品一区二区三区| 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 精品久久久噜噜| 精品人妻视频免费看| 亚洲va在线va天堂va国产| 亚洲欧美成人精品一区二区| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 亚洲一区二区三区色噜噜| 国产黄色小视频在线观看| 男女那种视频在线观看| 国产精品福利在线免费观看| 1024手机看黄色片| 国产老妇女一区| 我要搜黄色片| 天堂av国产一区二区熟女人妻| 欧美bdsm另类| 日本黄色片子视频| 国产精品综合久久久久久久免费| 日韩欧美精品免费久久| 色综合色国产| 一夜夜www| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久久电影| 夜夜爽天天搞| 久久鲁丝午夜福利片| 国产欧美日韩精品亚洲av| 精品99又大又爽又粗少妇毛片| 日韩av不卡免费在线播放| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 亚洲av.av天堂| 亚洲一区高清亚洲精品| 97碰自拍视频| 亚洲最大成人手机在线| 日本成人三级电影网站| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 我要看日韩黄色一级片| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 婷婷精品国产亚洲av| 欧美一区二区亚洲| 97超碰精品成人国产| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 三级毛片av免费| 高清午夜精品一区二区三区 | 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 久久久色成人| 日本黄色视频三级网站网址| av卡一久久| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 十八禁国产超污无遮挡网站| 一区福利在线观看| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕 | 青春草视频在线免费观看| 亚洲美女视频黄频| 色av中文字幕| 丰满的人妻完整版| 中出人妻视频一区二区| 最好的美女福利视频网| 久久久久性生活片| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 两个人的视频大全免费| 久久久色成人| 日本黄大片高清| 欧美日韩乱码在线| 日韩成人伦理影院| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 国产精品,欧美在线| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 一进一出抽搐动态| 国产精品一区二区性色av| 色播亚洲综合网| 国产精品亚洲美女久久久| 麻豆国产97在线/欧美| 丝袜喷水一区| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 亚洲av中文av极速乱| 国产亚洲av嫩草精品影院| 成年版毛片免费区| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 91久久精品国产一区二区成人| 伦精品一区二区三区| 一级毛片电影观看 | 99在线视频只有这里精品首页| 人人妻人人澡人人爽人人夜夜 | 免费av观看视频| 国产黄a三级三级三级人| 国产精品一区二区免费欧美| 久久中文看片网| 国产精品永久免费网站| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 久久人人爽人人片av| 国产爱豆传媒在线观看| 99在线视频只有这里精品首页| 高清午夜精品一区二区三区 | 美女高潮的动态| 在线a可以看的网站| 十八禁网站免费在线| 中国国产av一级| 欧美日韩综合久久久久久| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 久久午夜福利片| 伊人久久精品亚洲午夜| 国产精品日韩av在线免费观看| 亚洲不卡免费看| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| 九九爱精品视频在线观看| 最好的美女福利视频网| 日本一二三区视频观看| 伦理电影大哥的女人| 一级毛片久久久久久久久女| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 国产美女午夜福利| 国产精品久久久久久久电影| 舔av片在线| 天堂网av新在线| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 在线a可以看的网站| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 免费观看在线日韩| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| eeuss影院久久| 精品人妻熟女av久视频| 中文亚洲av片在线观看爽| 中国美女看黄片| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 网址你懂的国产日韩在线| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 日本黄大片高清| 国产片特级美女逼逼视频| 麻豆久久精品国产亚洲av| 国产真实乱freesex| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 少妇熟女aⅴ在线视频| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 久久精品人妻少妇| 99热这里只有是精品在线观看| 亚洲精品一区av在线观看| 日本黄色片子视频| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 淫妇啪啪啪对白视频| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 有码 亚洲区| 看片在线看免费视频| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 毛片一级片免费看久久久久| 中文亚洲av片在线观看爽| 亚洲四区av| 色哟哟哟哟哟哟| 简卡轻食公司| 亚洲乱码一区二区免费版| 国产精品久久久久久久久免| 精品一区二区免费观看| 亚洲人成网站高清观看| 色综合站精品国产| 久久精品国产亚洲av涩爱 | 亚洲四区av| 悠悠久久av| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 久久久国产成人精品二区| 欧美bdsm另类| 丝袜喷水一区| 久久精品综合一区二区三区| 熟妇人妻久久中文字幕3abv| 18禁在线无遮挡免费观看视频 | 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 成人二区视频| 国产精品久久久久久精品电影| av在线老鸭窝| 九九热线精品视视频播放| av在线亚洲专区| 两个人视频免费观看高清| 亚洲精品一卡2卡三卡4卡5卡| 春色校园在线视频观看| 久久精品人妻少妇| 国产精品伦人一区二区| 免费av毛片视频| 久久精品国产鲁丝片午夜精品| 九九久久精品国产亚洲av麻豆| 日本在线视频免费播放| 免费电影在线观看免费观看| 国产色爽女视频免费观看| 亚洲国产欧洲综合997久久,| 亚洲丝袜综合中文字幕| a级毛片a级免费在线| 18+在线观看网站| 舔av片在线| 91狼人影院| 少妇裸体淫交视频免费看高清| 特级一级黄色大片| 69av精品久久久久久| 国产黄片美女视频| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 国产成人aa在线观看| 大型黄色视频在线免费观看| 国产单亲对白刺激| 99视频精品全部免费 在线| 天美传媒精品一区二区| 天堂网av新在线| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看| 麻豆成人午夜福利视频| av在线蜜桃| 日韩亚洲欧美综合| 国产成人精品久久久久久| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 中国美女看黄片| .国产精品久久| 男女视频在线观看网站免费| 亚洲国产精品合色在线| а√天堂www在线а√下载| 日韩,欧美,国产一区二区三区 | 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 永久网站在线| 久久久色成人| 久久久午夜欧美精品| 欧美另类亚洲清纯唯美| 亚洲av美国av| 中国美白少妇内射xxxbb| 国产成人a∨麻豆精品| 人妻夜夜爽99麻豆av| 麻豆av噜噜一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美最黄视频在线播放免费| 天堂√8在线中文| 免费观看精品视频网站| 免费人成在线观看视频色| 91av网一区二区| 成人鲁丝片一二三区免费| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 男女视频在线观看网站免费| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看 | 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 欧美成人免费av一区二区三区| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| 无遮挡黄片免费观看| 成人鲁丝片一二三区免费| 又爽又黄无遮挡网站| 免费黄网站久久成人精品| 人人妻人人澡欧美一区二区| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 老司机影院成人| 亚洲国产高清在线一区二区三| 欧美成人一区二区免费高清观看| 亚洲专区国产一区二区| 男女视频在线观看网站免费| h日本视频在线播放| 久久天躁狠狠躁夜夜2o2o| 国产高清不卡午夜福利| 18禁裸乳无遮挡免费网站照片| 久久精品91蜜桃| 麻豆国产av国片精品| 久久热精品热| 麻豆精品久久久久久蜜桃| 色在线成人网| 特大巨黑吊av在线直播| 一区福利在线观看| 亚洲图色成人| 久久精品国产清高在天天线| 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 免费无遮挡裸体视频| 精品人妻熟女av久视频| 草草在线视频免费看| 午夜日韩欧美国产| 午夜老司机福利剧场| av在线观看视频网站免费| 国产大屁股一区二区在线视频| 欧美性感艳星| 亚洲第一区二区三区不卡| 免费看日本二区| 亚洲av成人av| 日韩精品中文字幕看吧| 最近2019中文字幕mv第一页| 色综合亚洲欧美另类图片| 亚洲欧美成人精品一区二区| 春色校园在线视频观看| 日本色播在线视频| 99热精品在线国产| 毛片一级片免费看久久久久| 久久欧美精品欧美久久欧美| 观看免费一级毛片| 在线观看美女被高潮喷水网站| 国产一级毛片七仙女欲春2| 麻豆精品久久久久久蜜桃| 99热只有精品国产| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 亚洲欧美成人综合另类久久久 | 免费看日本二区| 少妇的逼好多水| 国产白丝娇喘喷水9色精品| 国产中年淑女户外野战色| 一进一出好大好爽视频| 久久久久免费精品人妻一区二区| 亚洲四区av| 少妇丰满av| 18+在线观看网站| 美女cb高潮喷水在线观看| 18禁黄网站禁片免费观看直播| 欧美潮喷喷水| 欧美xxxx黑人xx丫x性爽| 午夜影院日韩av| 亚洲三级黄色毛片| 男女视频在线观看网站免费| av在线观看视频网站免费| 亚洲av成人精品一区久久| 欧美激情在线99| 亚洲av中文av极速乱| av在线老鸭窝| 99国产精品一区二区蜜桃av| 国产精品久久久久久亚洲av鲁大| 观看免费一级毛片| 成人午夜高清在线视频| 永久网站在线| 久久久久性生活片| 一区二区三区高清视频在线| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 亚洲精品成人久久久久久| 国产单亲对白刺激| 欧美日韩在线观看h| 精品久久久久久成人av| 香蕉av资源在线| 免费观看精品视频网站| 黄色视频,在线免费观看| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 白带黄色成豆腐渣| 亚洲欧美日韩高清专用| 精品人妻视频免费看| 精品一区二区三区av网在线观看| 久久综合国产亚洲精品| 你懂的网址亚洲精品在线观看 | 免费电影在线观看免费观看| 国产av麻豆久久久久久久| 成人漫画全彩无遮挡| 九九在线视频观看精品| 欧美色欧美亚洲另类二区|