劉碩,徐銘,劉家成,章秋平,馬小雪,劉寧,張玉萍,張玉君,趙海娟,劉威生
世界李育種概況
遼寧省果樹科學(xué)研究所,遼寧營(yíng)口 115009
李是全球分布和栽培最廣泛的果樹之一,主要分為歐洲李()和中國(guó)李()兩種。中國(guó)李起源于中國(guó),具有較高的遺傳異質(zhì)性和果實(shí)性狀遺傳變異的豐富性。據(jù)推測(cè),中國(guó)的長(zhǎng)江流域地區(qū)仍有野生中國(guó)李的分布。在我國(guó)古代,許多書籍中都有李的栽培和品種記載,如秦漢、晉代、北宋和明代。國(guó)外也有許多書面記載李的起源和品種,如希臘、法國(guó)、芬蘭、捷克和俄羅斯。自羅馬時(shí)代以來(lái),李已逐步傳播到歐洲大陸。為了改善李果實(shí)品質(zhì)、提高商品性以滿足市場(chǎng)需求,一直在不斷地培育新的李品種。世界上最早關(guān)于歐洲李品種的記載中選育出成熟期最早的品種,如‘Reine Claude’‘Early Rivers’‘Early Transparent Gage’‘Czar’‘Monarch’和‘Tresident’,目前仍廣泛栽培。在中國(guó),已經(jīng)自主育成并經(jīng)過(guò)品種審定且正式發(fā)表的李品種有88個(gè)。盡管世界各地的種植者、水果市場(chǎng)和消費(fèi)者對(duì)李品種的改良需求各不相同,但育種性狀包括果實(shí)大小、果皮顏色、多酚類物質(zhì)、可溶性固形物、果實(shí)成熟期、抗寒性和抗病性能力等,受到共同關(guān)注。李育種方式從傳統(tǒng)的育種手段,到分子輔助育種、組織培養(yǎng)和轉(zhuǎn)基因育種不斷演變。通過(guò)育種手段的不斷改進(jìn),育出許多鮮食品質(zhì)好、耐貯藏、貨架期長(zhǎng)和適應(yīng)性好的優(yōu)良品種,推動(dòng)了世界李產(chǎn)業(yè)的發(fā)展。中國(guó)是全球最大的李生產(chǎn)國(guó),李的產(chǎn)量占全球總產(chǎn)量的54.94%,栽培面積占全球總面積的74.75%。我國(guó)擁有豐富的李種質(zhì)資源,這為李的育種創(chuàng)新提供了物質(zhì)基礎(chǔ)。而廣泛的地理分布和栽培利用則為李新品種的應(yīng)用提供了廣闊的市場(chǎng)潛力。為了進(jìn)一步發(fā)揮我國(guó)李種質(zhì)資源的優(yōu)勢(shì),提高我國(guó)李育種的核心競(jìng)爭(zhēng)力,本文將梳理世界李的起源、傳播、早期栽培利用、育種研究進(jìn)展以及主要性狀的遺傳規(guī)律,并提出現(xiàn)代李育種策略。
李;育種;品種;策略
李是世界上重要的核果類果樹之一,屬薔薇科(Rosaceae)李屬()。李兼鮮食和加工用途,其果實(shí)富含蛋白質(zhì)、脂肪和碳水化合物,及眾多的礦物質(zhì)、維生素;加工品包括紅干、烏干、去皮李干、糖水罐頭、李蜜餞、李脯、李醬、話李、果汁和釀酒等[1]。李是世界上分布范圍最廣泛的果樹之一,全球李種類約有19—40種(圖1),超過(guò)6 000個(gè)品種,主要分布于歐亞大陸及美洲溫帶地區(qū)[2]。
李是我國(guó)重要的落葉果樹之一,野生分布和栽植面積十分廣泛。除青藏高原的高海拔地區(qū)外,幾乎各省份均有分布,從最南部的海南至最北部的黑龍江,從東南沿海至西部的新疆,均有栽培或野生資源,尤其在邊遠(yuǎn)山區(qū)、民族地區(qū)分布較多,垂直分布最高處可達(dá)海拔4 000 m[1]。據(jù)FAO(2020)[3]統(tǒng)計(jì)資料,世界李栽培面積259.9萬(wàn)hm2,總產(chǎn)量1 210.5萬(wàn) t;中國(guó)是世界上最大的李生產(chǎn)國(guó),種植面積占世界總面積的74.75%(194.3萬(wàn)hm2),產(chǎn)量占世界總產(chǎn)量的54.94%(665.1萬(wàn)t)。李在我國(guó)栽培面積略少于蘋果(207.16萬(wàn)hm2),高于桃(79.17萬(wàn)hm2)、梨(96.72萬(wàn)hm2)和葡萄(74.48萬(wàn)hm2)[3]。
長(zhǎng)久以來(lái),人們?yōu)榱藵M足市場(chǎng)對(duì)李優(yōu)質(zhì)果品的需求,不斷地開展李新品種培育,通過(guò)提高果實(shí)品質(zhì)、增強(qiáng)商品性促進(jìn)全球李果品產(chǎn)業(yè)發(fā)展。為此,本文回顧國(guó)內(nèi)外李育種改良?xì)v程,包括世界李的起源傳播、早期栽培歷程和國(guó)內(nèi)外李育種研究主要目標(biāo)性狀,并提出現(xiàn)代李育種策略,為我國(guó)李優(yōu)異基因資源發(fā)掘和育種利用提供借鑒,提高我國(guó)李育種效率,實(shí)現(xiàn)李育種科技自強(qiáng)自立。
目前,世界李栽培的種類主要為歐洲李()和中國(guó)李()。歐洲李被認(rèn)為起源于黑海和里海之間的高加索南部地區(qū),包括格魯吉亞、亞美尼亞、阿塞拜疆和伊朗北部高原[2]。Vavilov[4]曾推測(cè)該區(qū)域六倍體歐洲李與二倍體櫻桃李(L.)和四倍體黑刺李(L.)的分布重疊。然而,人為歸化后的長(zhǎng)期自然生長(zhǎng)、天然林分布群落的缺乏以及栽培或野生類型頻繁的跨大陸引種和交流等原因使得對(duì)歐洲李起源的追溯十分困難,至今它的原始祖先仍存在疑問(wèn)[5]。19世紀(jì)30年代,人們根據(jù)形態(tài)特征認(rèn)為高加索地區(qū)存在野生歐洲李,隨后細(xì)胞遺傳學(xué)分析否定了此假設(shè)[6]。20世紀(jì)80年代,我國(guó)新疆伊犁河谷地區(qū)(Ili River)發(fā)現(xiàn)野生六倍體李(當(dāng)?shù)胤Q為‘酸梅’),被認(rèn)為可能是歐洲李的祖先[7-8]。但是,人們發(fā)現(xiàn)新疆‘野生歐洲李’群體的分子遺傳多樣性水平較低,與野生的遺傳多樣性較栽培群體高的一般客觀規(guī)律不相符,推測(cè)可能是由于逃逸或歸化而形成的野生類型[9]。最新的簡(jiǎn)化基因組研究表明,歐洲李起源于二倍體櫻桃李和四倍體黑刺李的種間雜種,此黑刺李是櫻桃李和未知的歐亞李種的種間雜種,可能是早期歐亞種間雜交和人工選擇的產(chǎn)物[5]。
中國(guó)李起源于中國(guó),曾推測(cè)來(lái)自我國(guó)的長(zhǎng)江流域,在湖北、云南等地區(qū)至今仍有野生的中國(guó)李分布,甚至有上百年生的古樹[10]。中國(guó)李(Chinese plum)約在200—400年前傳入日本開始栽培,稱作日本李(Japanese plum)[11]。中國(guó)李較高的遺傳異質(zhì)性使育種雜交后代的果實(shí)性狀遺傳變異十分豐富,包括果皮、果肉顏色、果實(shí)大小、果實(shí)形狀等,這使中國(guó)李及其衍生材料已成為揭示多年生木本果樹遺傳規(guī)律的經(jīng)典模式植物。
早期的李馴化主要發(fā)生在亞洲、歐洲和北美大陸,史前人類曾用李作為食物[12]。公元前11世紀(jì)至公元前6世紀(jì),古代中國(guó)人在《詩(shī)經(jīng)》的《王風(fēng)·秋中有麻》記載有“丘中有李,彼留之子”,可見(jiàn)當(dāng)時(shí)人們對(duì)李的生態(tài)習(xí)性和栽培已有了一定的認(rèn)識(shí)。1949年之后,我國(guó)考古發(fā)掘出新石器時(shí)代或戰(zhàn)國(guó)時(shí)代的李核遺物,證明遠(yuǎn)在5 000年前,中國(guó)人的祖先已采食李果,其栽培歷史至少3 000年以上[10]。公元前2世紀(jì),秦漢間的字書《爾雅》中記載了3個(gè)李品種:‘無(wú)實(shí)李’‘接慮李’和‘赤李’;漢代修上林苑搜羅到李的品種達(dá)14個(gè);晉代郭義恭《廣志》記錄了15個(gè)李品種;北宋年間《洛陽(yáng)花木記》記載河南洛陽(yáng)栽培的李品種達(dá)27個(gè);明代《本草綱目》記載栽培的李品種近百個(gè),各品種間的果實(shí)大小、果皮色澤等方面均差異很大[10]。我國(guó)有些古老的栽培李品種世世代代得到保留,例如浙江嘉興地區(qū)的‘槜李’和中國(guó)李變種‘?’,前者在古籍《槜李譜》(1857年)提到:“顆以圓整而略帶微扁者為上…以指爪破其皮,漿液可一口吸盡…核上有金絲縷縷,粘而不脫”;后者在弘治二年《八閩通志·福州府》(1489年)提及:“奈似林檎差小而長(zhǎng),淡青色,《莆陽(yáng)志》云即青李也?!盵10]。
外國(guó)考古人員在瑞士湖畔旁居民住處挖掘到黑刺李和烏荊子李()的果核化石,在高加索山脈和里海地區(qū)也發(fā)現(xiàn)古代人類曾食用過(guò)李。關(guān)于李的書面記載,希臘最早始于公元前680—645年,法國(guó)于742—814年,芬蘭在15—16世紀(jì),捷克在1579年,俄羅斯則在1654年。舊時(shí)戰(zhàn)爭(zhēng)遷移和商品貿(mào)易加速了李的傳播,古代的羅馬人在公元前65年征服了敘利亞的大馬士革之后,將李帶回國(guó)。羅馬博物學(xué)家和自然哲學(xué)家蓋烏斯?普林尼?塞孔都斯(Gaius Plinius Secundus)在著作《Naturalis Historia》中談到了李的起源,并對(duì)14個(gè)品種進(jìn)行了描述。從古羅馬人時(shí)代開始,李逐漸分布于歐洲大陸,隨后傳播到巴爾干半島西部,特別是前南斯拉夫的一些地區(qū)。后來(lái)的波斯尼亞(‘波黑’)成為了歐洲李的生產(chǎn)大國(guó)[13-14]。
世界最早關(guān)于歐洲李品種的記載是在1597年的《The Herball or General Historie of Plantes》一書中:“位于英國(guó)特威克納姆(Twickenham)的Vincent Pointer育苗圃收集多種多樣的品種”,這表明育種整理工作已經(jīng)逐步開展。當(dāng)時(shí),英國(guó)托馬斯?安德魯(Thomas Andrew)選育的成熟期最早的歐洲李品種‘Reine Claude’‘Early Rivers’‘Early Transparent Gage’‘Czar’‘Monarch’和‘Tresident’,這些品種目前仍被廣泛栽培[15]。
路德?布爾班克(Luther Burbank)是世界著名李育種先驅(qū)者之一,是世界級(jí)的植物育種大師,培育了近800個(gè)品種。他改良了法國(guó)的‘Agen’歐洲李品種,選育的‘Miracle’(1903年)品種是×的雜交品種,幾乎沒(méi)有種子,被廣泛種植作為珍奇品種。經(jīng)過(guò)幾代的雜交后,培育出了‘Conquest’(1916年)品種,其殘余種子更小。由此,布爾班克的無(wú)核李成為了世界經(jīng)典[16-19]。此外,他還培育了‘Giant’‘Sugar’和‘Standard’等著名的商業(yè)化栽培歐洲李品種[20]。除歐洲李外,他于1884年從日本引進(jìn)了12個(gè)中國(guó)李品種(210株幼苗)并種植在加利福尼亞[12],并從中選育出‘Burbank’和‘Satsuma’品種;他將中國(guó)李與美國(guó)當(dāng)?shù)胤N類,包括櫻桃李、杏李()、美洲李()、和等進(jìn)行雜交并得到數(shù)十萬(wàn)株幼苗,培育出許多優(yōu)良品種[21-22]。其中,他選育的‘Santa Rosa’李至今仍是加利福尼亞州第四大生產(chǎn)李品種。美國(guó)加利福尼亞州十個(gè)優(yōu)良栽培品種中,有8個(gè)品種由他選育[23]。
歐洲李育種者在制定育種計(jì)劃前常常會(huì)預(yù)估消費(fèi)者的需求[24](表1)。從1900年開始,歐洲李新品種選育在13個(gè)歐洲國(guó)家開展,不同國(guó)家育種目標(biāo)各有不同,摩爾多瓦育種目標(biāo)為晚花和抗凍性,拉脫維亞育種目標(biāo)為抗寒能力和自花結(jié)實(shí)率,瑞典育種目標(biāo)是培育生長(zhǎng)期短的品種,挪威育種目標(biāo)是耐貯藏性,保加利亞育種目標(biāo)是延長(zhǎng)果實(shí)成熟期,羅馬尼亞也關(guān)注延長(zhǎng)果實(shí)成熟期和自花結(jié)實(shí)能力[25-28]。歐洲國(guó)家采用不同育種方法,包括雜交育種、誘變育種和實(shí)生選種,獲得了大約250 000個(gè)雜種子代并產(chǎn)生170多個(gè)新品種[29]。用于育種改良的親本材料包括‘Anna Spath’‘Hall’‘Italian Prune’‘Ruth Gerstetter’‘Pozegaca’‘Stanley’‘Mont Royal’‘Pacific’‘Jojo’‘Cacanskalepotica’‘President’‘Cacanskanajbolja’‘d’Ente’‘R. C. Verte’‘Ortenauer’‘Valor’‘French Improved’‘Angeleno’‘Black Star’‘Jubileum’‘Opal’‘Jefferson’‘d’Agen’‘Renclod Althan’‘Tuleu gras’‘Early Rivers’‘Wilhelmina Spath’‘Kirke’和‘Hackman’[26-27,30]。北美早期定居者將歐洲李帶入美洲大陸,這些歐洲李只能種植在北部冬季較寒冷地區(qū),導(dǎo)致早期北美地區(qū)歐洲李育種進(jìn)程比較緩慢。
美國(guó)農(nóng)業(yè)部(USDA)及私人育種公司(Sun World、Zaiger Genetics和Bradford Farms等)在美國(guó)加利福尼亞州地區(qū)開展大果、果實(shí)硬度高的優(yōu)良李品種選育工作,包括‘Friar’‘Black-amber’‘Queen Rosa’‘Fortune’‘Red Beauty’和‘Angeleno’等許多品種在世界范圍內(nèi)廣泛種植。美國(guó)水果市場(chǎng)中的李品種在20世紀(jì)80年代之前主要以紅色果皮為主,之后則以紫黑色且早熟的‘Friar’‘Black-amber’和晚熟‘Angeleno’為主。佛羅里達(dá)州的李育種計(jì)劃以選育適合亞熱帶氣候的短低溫需冷量商業(yè)化李品種為主要目標(biāo)[31]。佛羅里達(dá)大學(xué)選育的‘Gulf’系列李品種(例如,早熟的‘Gulf beauty’,果實(shí)發(fā)育期75 d的‘Gulfblaze’和‘Gulfrose’等)對(duì)葉緣焦枯?。ǎ┖图?xì)菌性斑點(diǎn)病()具有抗性[32]。
亞洲東部的日本李品種約80%是由私人育種者或種植者選育而成。例如,福島縣的Oishi Roshio選育的‘Oishiwasesumomo’‘Oishinakate’和‘Gekkou’(Masami Yamaguchi pers. comm.)。筑波國(guó)立果樹科學(xué)研究所以延長(zhǎng)采收季和提高果實(shí)品質(zhì)為目標(biāo),在1970年后選育出‘Honey Rosa’[33]和‘Honey Heart’[34]。韓國(guó)國(guó)家園藝研究所以提高果品大小、形狀、顏色、可溶性固形物和酸度為目標(biāo),選育出低酸(<0.5 g?L-1)性狀突出的‘Honey Red’[35]。
在世界其他地區(qū),南非斯泰倫博斯農(nóng)業(yè)研究委員會(huì)(ARC Infruitec-Nietvoorbij)滿足出口歐洲市場(chǎng)的需要,于20世紀(jì)50年代開始選育紅色、黃色和黑色果皮,成熟期在11月至次年3月的李品種,包括‘Harry Pickstone’‘Reubennel’‘Laetitia’‘Golden Kiss’和‘Sun Breeze’。南美洲巴西圣卡塔琳娜州農(nóng)業(yè)研究所[36]以低需冷量、抗葉緣焦枯病和細(xì)菌性葉斑病為育種目標(biāo),選育出‘Camila’和‘Piuna’[37]品種。澳大利亞李育種計(jì)劃則由昆士蘭重要產(chǎn)業(yè)部與西澳大利亞農(nóng)業(yè)部Bruce Topp教授負(fù)責(zé),選育出抗細(xì)菌病、早熟、抗寒且適合出口東南亞的品種[38-40]。新西蘭李育種計(jì)劃旨在選育大果、風(fēng)味佳、耐貯藏、樹體矮化、成熟期不同、抗病的國(guó)際化商業(yè)品種[30]。
中國(guó)李在我國(guó)約有800多個(gè)品種或類型且分布極廣,從云南地區(qū)至黑龍江沿岸、臺(tái)灣島、東部沿海至青藏高原與天山山脈。我國(guó)多種多樣的生態(tài)、氣候、地理使中國(guó)李育種具有地域特征,東北李品種群多表現(xiàn)樹冠較小、耐寒性強(qiáng),例如,吉林省農(nóng)業(yè)科學(xué)院選育的‘福祿’[41]、‘公主紅’[42]等;華北李品種群具勢(shì)壯、耐寒、果實(shí)大特點(diǎn),代表品種有‘蘋果李’‘晚紅李’‘帥李’‘伏李’等;華南李品種群長(zhǎng)勢(shì)旺、耐高溫多濕,代表品種有‘興華李’[43]和‘云開1號(hào)’[44]等;西南李品種群樹體較小、不耐寒且果實(shí)小,大多為脆肉類型,代表品種有‘蜂糖李’‘酥李’‘宛青’[45]、‘晚霜脆李’[46]和‘巫溪晚脆李’[47]等。
表1 歐洲地區(qū)開展李育種主要機(jī)構(gòu)、育種者及育種目標(biāo)[14,24]
續(xù)表1 Continued table 1
我國(guó)最早育成的李品種為‘躍進(jìn)李’(也稱六號(hào)李)[48],篩選自1956年地方品種‘紅干核’實(shí)生后代單株。20世紀(jì)60—70年代,我國(guó)東北地區(qū)率先開展了針對(duì)寒冷氣候的寒地李新品種遺傳育種研究,相繼培育出‘北方一號(hào)’(也稱‘綏棱紅’)[49]、‘綏李三號(hào)’[49]、‘長(zhǎng)李7號(hào)’[50]、‘17號(hào)’[51]等品種,適宜寒地栽培的品種‘長(zhǎng)李15號(hào)’[52]和‘龍園秋李’[53]等品種在我國(guó)李產(chǎn)業(yè)發(fā)展上發(fā)揮了巨大的作用,為我國(guó)深入開展李遺傳育種研究奠定了堅(jiān)實(shí)的基礎(chǔ)。截至2021年不完全統(tǒng)計(jì),我國(guó)自主育成通過(guò)品種審定并正式發(fā)表的李品種有88個(gè),東北三省科研單位育成品種40個(gè),占總數(shù)的45.45%,是我國(guó)李育種的主要力量,其次是新疆、山西、陜西、福建、重慶等省的科研院所[54]。此外,觀賞李新品種也受到園林綠化的重視,包括‘岳寒紅葉李’[55]、‘長(zhǎng)春彩葉李’[56]、‘北國(guó)紅’[57]和‘一品丹楓’[58]。
世界范圍內(nèi)種植者、水果市場(chǎng)和消費(fèi)者對(duì)李品種的改良需求各有不同,但共同關(guān)注的育種性狀包括果實(shí)大小、果皮顏色、多酚類物質(zhì)、可溶性固形物、果實(shí)成熟期、抗寒性、抗病性等。
(1)果實(shí)大?。豪罟麑?shí)大小是影響產(chǎn)量和商品價(jià)值的重要農(nóng)藝性狀。在中國(guó)李遺傳群體中呈現(xiàn)明顯的衰退趨勢(shì),雜交后代果實(shí)總體偏小。以單果質(zhì)量為34.6 g的‘綏棱紅’與單果質(zhì)量為31.8 g的‘六號(hào)李’為親本,在正、反交的兩個(gè)群體中,絕大多數(shù)后代果實(shí)較雙親偏小[59]。中國(guó)李自然雜交后代的果實(shí)大小平均值小于親中值,呈小果變異的趨勢(shì);而后代果實(shí)大小平均值受母本影響較大,具有母性遺傳的傾向。選育大果實(shí)的雜種,往往依賴于親本的大果實(shí)特征[60]。控制中國(guó)李果實(shí)大小的QTL位于染色體第七連鎖群(LG3)16—20 cM處[61]。
(2)果皮顏色:眾多水果中,李的果皮顏色遺傳多樣性最為豐富,包括綠色、黃色、粉色、紅色、紫色、藍(lán)紫色和紫黑色等各種顏色[62]。我國(guó)學(xué)者研究發(fā)現(xiàn)紫紅色果皮的‘六號(hào)李’后代193株中,紫色與紅色果實(shí)占74.09%,黃色與綠色占25.9%,有彩色與無(wú)彩色比為2.86﹕13;同樣,紫紅色果皮的‘綏棱紅’后代271株中,紫色與紅色果實(shí)占74.07%,黃色與綠色占25.46%,有彩色與無(wú)彩色比2.93﹕1,認(rèn)為果皮有色/無(wú)色的分離比例符合3﹕1遺傳[63]。另外,果皮紅色×黃色的雜交組合出現(xiàn)黃色果皮的占8.01%,果皮黃色×黃色雜交的組合中81.2%的后代果皮為黃色;親本果皮均為紅色的群體后代中紅果皮占96.5%。因此,認(rèn)為李果皮顏色應(yīng)主要受1對(duì)基因控制,且有色對(duì)無(wú)色為顯性性狀[64]。同時(shí),國(guó)外學(xué)者[61]認(rèn)為歐洲李和中國(guó)李果皮顏色由等位基因系列決定,黃色等位基因?qū)λ{(lán)色、紅色或紫色等位基因呈隱性遺傳。QTL研究表明,控制中國(guó)李果皮顏色的基因位于染色體第三連鎖群(LG3)52—61 cM處,在第四連鎖群(LG4)位點(diǎn)與成熟期性狀相鄰[61]。
(3)果實(shí)多酚類物質(zhì):李果實(shí)富含抗氧化多酚類化合物——花青素。它是有效的天然自由基清除劑,具有抗氧化、改善肝功能、預(yù)防心血管疾病、抗癌、抗炎和保護(hù)視力等作用。研究表明,李雜交群體QTL基因座中,花青素-3-葡萄糖苷和花青素-3-蕓香苷均位于LG4,總黃酮和原花青素分別位于LG5和LG8,少量花青素化合物定位在LG3和LG4[65]。
(4)可溶性固形物:主要由可溶性糖和有機(jī)酸組成,任何與糖和有機(jī)酸代謝途徑有關(guān)的突變都影響其最終結(jié)果。對(duì)4個(gè)李雜交組合的可溶性固形物含量研究發(fā)現(xiàn),在不同組合后代中可溶性固形物含量分離廣泛,但不同組合中會(huì)出現(xiàn)少量超低親或超高親后代[66]。研究表明,控制中國(guó)李可溶性固形物的QTL位于染色體第一連鎖群54—76 cM處、染色體第六連鎖群55—57 cM處[61]。
(5)李果實(shí)成熟期:李從開花到果實(shí)成熟僅3—4個(gè)月。通過(guò)遺傳育種手段延長(zhǎng)或縮短成熟期,培育極早和極晚熟李,可提早或延長(zhǎng)李果品貨架期。研究發(fā)現(xiàn),中熟與晚熟品種雜交后代群體的成熟期均表現(xiàn)為延后[63];中晚和極晚熟品種雜交F1代的平均果實(shí)成熟期比親中值延后,并且母本對(duì)后代成熟期的影響大于父本[59]。中國(guó)李成熟期為數(shù)量遺傳性狀,早熟基因位于第4號(hào)染色體連鎖群6—12 Mb[61]。
(6)抗寒性:李是極少數(shù)可在高寒地區(qū)生長(zhǎng)的核果類果樹之一。我國(guó)李育種始于20世紀(jì)60—70年代,高寒地區(qū)的黑龍江、吉林和遼寧率先開展了適宜寒冷氣候環(huán)境的李新品種選育。多年來(lái),東北地區(qū)選育的抗寒李品種約占全國(guó)審定并正式發(fā)表的57.81%[54]。觀察高抗寒‘六號(hào)李’與低抗寒‘綏棱紅’雜交后代的抗寒表現(xiàn),發(fā)現(xiàn)部分后代在抗寒性方面表現(xiàn)出超親遺傳的現(xiàn)象,因此推測(cè)李樹抗寒性為多基因控制的數(shù)量性狀遺傳[59]。調(diào)查6個(gè)雜交組合的抗寒性發(fā)現(xiàn),351個(gè)雜交后代抗寒等級(jí)與母本相同的株系在各雜交組合中所占比例最大,后代株系的抗寒力大多低于母本,而強(qiáng)于父本,且后代株系的抗寒力平均值高于親中值[64]。
(7)抗李痘病毒(Sharka):李痘病毒病是被認(rèn)為果樹中最具破壞性的檢疫性病毒之一(表2)。病原體PPV(plum pox virus)可感染李屬的桃、油桃、扁桃、杏、李、櫻桃以及少數(shù)非李屬物種[67]。李痘病毒最早的報(bào)道可追溯到20世紀(jì)初,當(dāng)時(shí)Atanassov[68]將李痘狀的病癥描述為一種新的病毒病,之后,李痘病毒病逐漸蔓延到大多數(shù)歐洲地區(qū)、地中海盆地周圍、近東和中東、南美洲、北美洲以及亞洲地區(qū)[69]。在過(guò)去的幾十年中,李痘病毒病對(duì)產(chǎn)業(yè)產(chǎn)生了重大影響,并造成了超過(guò)100億歐元的經(jīng)濟(jì)損失[70]。李痘病毒病原體PPV分離株根據(jù)特定的癥狀宿主基因組序列和昆蟲載體傳播性被劃分為若干個(gè)組[71]。其中,PPV-M(Markus)、PPV-D(Dideron)和PPV-Rec(Recombinant)菌株被認(rèn)為是最常見(jiàn)的。近期的國(guó)際項(xiàng)目(Sharka Containment,首字母縮寫詞SharCo)框架內(nèi),系統(tǒng)收集了來(lái)自世界各地的PPV分離株的序列數(shù)據(jù)(http://www.sharco.eu/)。
表2 李痘病PPV病毒主要分離株及特征
歐洲李品種‘JoJo’具有針對(duì)病毒的超敏反應(yīng),可阻止病毒在細(xì)胞間傳播,在歐洲李常規(guī)育種中使用較多[72]。德國(guó)李科學(xué)家Hartmann和Neumülle[13]詳細(xì)回顧了李痘病抗性育種的進(jìn)展,表示至今尚未發(fā)現(xiàn)中國(guó)李的天然抗源材料。但是,人們對(duì)李的近源種——杏()的李痘病毒易感性/抗性的基因研究較多。研究表明,杏對(duì)PPV的抗性是一個(gè)復(fù)雜的過(guò)程,涉及基因[73]。Zuriaga等[74]使用定位克隆方法證實(shí)了參與了抗性機(jī)制,這個(gè)過(guò)程也可能與其他基因共同參與,這一結(jié)果也得到全基因組關(guān)聯(lián)(GWAS)研究證實(shí)[75]。Decroocq等[76]基于假定基因ppb0022195中存在的5 bp缺失,開發(fā)了名為的單長(zhǎng)度多態(tài)性(SSLP)標(biāo)記,該基因編碼MATH-TRAF樣蛋白,定位在桃基因組(version 1.0)位置8 157 652處。最近,Passaro等[77]利用高分辨率熔解(HRM)實(shí)時(shí)PCR分析方法檢測(cè)上述ppb0022195基因的5-bp缺失,該方法的廣泛應(yīng)用可以促進(jìn)標(biāo)記輔助選擇(marker assisted selection,MAS),將不同抗性品種的抗性等位基因滲入新的商業(yè)品種。目前,抗PPV轉(zhuǎn)基因策略已在各種核果類果樹中開展和實(shí)施,從傳統(tǒng)的基于外殼蛋白(CP)的方法到使用替代靶基因的方法[78-79],當(dāng)下最多采用的是RNA silencing技術(shù)[80-81]。
標(biāo)記輔助選擇(MAS)是用于提高選定基因型效率的重要分子育種工具[59]。李育種研究中較為成熟的是利用DNA分子標(biāo)記鑒定李高水平多態(tài)性的自交不親和等位基因(-locus)。Yamane等[82]首先在日本李中克隆了-RNase等位基因。隨后,通過(guò)PCR在不同品種中鑒定了14個(gè)等位基因,并將其命名為a—n[83-85]。Sapir等[86]克隆了另外5個(gè)等位基因(1、3—6)。Beppu等[87]發(fā)現(xiàn)e等位基因與中國(guó)李的自交不親和相關(guān),將由e開發(fā)的分子標(biāo)記用于雜交后代預(yù)選,篩選具有自交性的幼苗[88]。歐洲李具有類似的自交不親和系統(tǒng),但由于該物種的六倍體性質(zhì),對(duì)等位基因的分析更為復(fù)雜。對(duì)19個(gè)栽培歐洲李品種的研究發(fā)現(xiàn),每個(gè)基因型有2—6個(gè)等位基因[89-90]。
分子遺傳圖譜是數(shù)量性狀位點(diǎn)(quantitative trait locus,QTL)定位和MAS育種的基礎(chǔ)。目前,只有少數(shù)中國(guó)李遺傳連鎖圖報(bào)道。Vieira等[91]使用擴(kuò)增片段長(zhǎng)度多態(tài)性(AFLP)標(biāo)記的標(biāo)記構(gòu)建的親本‘Chatard’‘Santa Rosa’遺傳連鎖圖僅分別包含56和84個(gè)標(biāo)記,總長(zhǎng)度分別為905 cM和1 349.6 cM。Salazar等[61]使用SNP標(biāo)記通過(guò)測(cè)序進(jìn)行基因分型,開發(fā)了‘98-99’(479個(gè)SNP)和‘Angeleno’(502個(gè)SNP)的兩個(gè)遺傳圖譜,分別覆蓋了688.8 cM和647.03 cM的遺傳距離。另一張圖譜是由Carrasco等[92]報(bào)道的‘Angeleno’בAurora’,使用732個(gè)SNP構(gòu)建,跨度為617 cM,相鄰標(biāo)記之間的平均距離為0.96 cM。近期,Zhang等[93]利用SLAF對(duì)來(lái)自‘09-16’בFortune’雜交的114株F1代幼苗進(jìn)行基因分型,構(gòu)建了含3 341個(gè)高質(zhì)量SLAF和720個(gè)基因座的遺傳連鎖圖譜,分為8個(gè)遺傳連鎖群,總長(zhǎng)度為869.9 cM,平均距離為1.21 cM。
現(xiàn)代基因組學(xué)已成為開展優(yōu)質(zhì)高產(chǎn)、高效利用等育種研究的重要手段。近年來(lái),李基因組測(cè)序發(fā)展十分迅速。Callahan等[94]采用基因編輯抗李痘病(Sharka)的歐洲李‘HoneySweet’[95]為試驗(yàn)材料,使用二代(210x)和三代(55x)測(cè)序策略獲得了首個(gè)包含27 870個(gè)scaffolds的基因組,歐洲李基因組草圖總長(zhǎng)度為1 399.3 Mb。該基因組雖未能滿足期望染色體數(shù)量要求,但為未來(lái)實(shí)現(xiàn)多倍體李基因組高質(zhì)量測(cè)序研究提供了重要基礎(chǔ)和經(jīng)驗(yàn)。中國(guó)李基因組測(cè)序已發(fā)布2個(gè)基因組版本,均來(lái)自我國(guó)南方地方品種‘三月李’[96-97]。該品種栽培歷史較久,具有早熟、高產(chǎn)、低需冷量等特質(zhì)。Liu等[97]使用三代測(cè)序和Hi-C技術(shù)組裝的‘三月李’基因組達(dá)到8條染色體水平,總長(zhǎng)度為284.2 Mb,含有75個(gè)scaffolds;Fang等[96]通過(guò)三代測(cè)序技術(shù)組裝的‘三月李’基因組總長(zhǎng)度為308.06 Mb,并針對(duì)早花性狀開展轉(zhuǎn)錄組學(xué)研究。這兩版‘三月李’基因組測(cè)序,為李基因組學(xué)的深入研究提供了重要基礎(chǔ)和前提。
與此同時(shí),針對(duì)不同研究性狀的轉(zhuǎn)錄組學(xué)和代謝組學(xué)也在李物種相繼開展。Jo等[98-99]借助‘Akihime’和‘Formosa’品種轉(zhuǎn)錄組測(cè)序鑒定了植物體內(nèi)病毒/類病毒種類;Kim等[100]通過(guò)對(duì)富含多酚和多糖的李品種轉(zhuǎn)錄組測(cè)序調(diào)查李果實(shí)成熟過(guò)程中的基因表達(dá)情況;GONZáLEZ等[101]建立了‘Angeleno’和‘Lamoon’品種轉(zhuǎn)錄組數(shù)據(jù)庫(kù);Fang等[102]利用‘芙蓉李’轉(zhuǎn)錄組測(cè)序開展了有關(guān)果實(shí)成熟的研究,并對(duì)衍生的簡(jiǎn)單重復(fù)序列(SSR)信息進(jìn)行描述總結(jié);Farcuh等[103]利用轉(zhuǎn)錄組測(cè)序手段比較‘Santa Rosa’及其芽變材料‘Sweet Miriam’的果實(shí)發(fā)育差異變化。Fang等[96]和Liu等[97]在組裝基因組過(guò)程中也同時(shí)開展了‘三月李’的轉(zhuǎn)錄組測(cè)序輔助基因組注釋。此外,Piccolo等[104]對(duì)紅櫻桃李的可溶性固形物、顏色等果實(shí)性狀開展了代謝組學(xué)研究。
遺傳轉(zhuǎn)化是一種強(qiáng)大的植物遺傳改良技術(shù),它可以克服果樹傳統(tǒng)育種中世代周期長(zhǎng)、童期長(zhǎng)、雜合度高、遺傳變異性不足等問(wèn)題[17]。歐洲李遺傳轉(zhuǎn)化和再生技術(shù)較為成功[105]。Mante等[106]和Gonzalez- Padilla等[107]使用噻二唑侖(TDZ)和吲哚-3-丁酸(IBA)用于在農(nóng)桿菌介導(dǎo)的歐洲李下胚軸區(qū)段轉(zhuǎn)化后再生芽,在共培養(yǎng)過(guò)程中添加了2,4-D可提高轉(zhuǎn)化效率至42%,并能夠在6個(gè)月后獲得轉(zhuǎn)基因植物[105]。對(duì)于中國(guó)李的遺傳轉(zhuǎn)化,Tian等[108]使用IBA結(jié)合不同濃度的TDZ芐氨基嘌呤(BAP)使‘Shiro’‘Early Golden’‘Redheart’的下胚軸節(jié)段再生并最終獲得了再生植株[17]。
李的遺傳轉(zhuǎn)化和再生用途多在PPV抗性研究中開展和應(yīng)用。歐洲李因缺乏天然遺傳抗李痘病種質(zhì)材料,使基因工程成為研發(fā)歐洲李抗李痘病的重要方法。作為對(duì)經(jīng)典育種的改進(jìn),基因工程被用于生產(chǎn)含有PPV外殼蛋白(CP)基因的轉(zhuǎn)基因克隆,應(yīng)用病原體衍生抗性的原理。這種新方法創(chuàng)制了轉(zhuǎn)基因歐洲李‘Honey Sweet’。這種轉(zhuǎn)基因李植株對(duì)PPV具有高度抗性,并且不表達(dá)PPV-CP,幾乎檢測(cè)不到CP mRNA水平。然而,轉(zhuǎn)基因植物也可能會(huì)感染病毒,特別是當(dāng)它被嫁接在對(duì)PPV敏感的砧木時(shí),它也會(huì)成為PPV的宿主。此外,將Flowering Locus T1()基因通過(guò)35S啟動(dòng)子轉(zhuǎn)化到歐洲李中,使轉(zhuǎn)基因植株可在溫室中短時(shí)間內(nèi)開花結(jié)果,且不會(huì)在冷處理或短日照后進(jìn)入休眠狀態(tài);同時(shí)表現(xiàn)出一些不同于李的表型特征,如灌木狀生長(zhǎng)習(xí)性和總狀花序結(jié)構(gòu)。在李中表達(dá)的多態(tài)性表型表明該基因?qū)χ参锷L(zhǎng)和發(fā)育具有作用。因此,可能是改變溫帶植物以適應(yīng)不同氣候或新的種植區(qū)的基因[94,109-110]。
目前,我國(guó)地方性中國(guó)李品種的特點(diǎn)是鮮食品質(zhì)好、適應(yīng)性較好,但大多數(shù)在成熟后果肉松軟、外觀不鮮艷且不耐儲(chǔ)運(yùn),商品性不佳。2000年前,我國(guó)李育種主要以大果、優(yōu)質(zhì)為育種目標(biāo),而忽視果實(shí)硬度(貨架期)、外觀顏色等商品性好的品種選育;國(guó)外育成品種雖外觀好、貨架期長(zhǎng),但鮮食品質(zhì)欠佳。21世紀(jì)初,遼寧省果樹科學(xué)研究所在第十次國(guó)際李和第十五次國(guó)際杏會(huì)議上率先提出,為了彌補(bǔ)中國(guó)地方品種果肉軟、外觀差、產(chǎn)量不穩(wěn)定(即商品性差)和國(guó)外引進(jìn)的改良品種鮮食品質(zhì)較差等缺點(diǎn),應(yīng)利用風(fēng)味濃郁的中國(guó)地方優(yōu)良品種與商品性好的國(guó)外改良品種進(jìn)行雜交的育種策略,即‘East cross West equal to best’(簡(jiǎn)稱‘West×East’),并依托國(guó)家種質(zhì)資源熊岳李杏圃豐富的種質(zhì)資源優(yōu)勢(shì),利用我國(guó)優(yōu)良地方品種或育成品種與國(guó)外引進(jìn)品種進(jìn)行雜交,通過(guò)十幾年的不懈努力,成功培育出‘國(guó)馨’(試驗(yàn)代號(hào)‘國(guó)峰7’,圖2)和‘國(guó)色天香’(試驗(yàn)代號(hào)‘國(guó)峰2’)2個(gè)商品性較好的李新品種?!畤?guó)馨’是由我國(guó)選育的‘龍園秋李’與引進(jìn)的‘澳14’雜交選育的耐寒、硬肉、濃香的李品種,成熟時(shí)硬度達(dá)到10.8 kg?cm-2,在設(shè)施栽培條件下可溶性固形物可達(dá)21%,露地栽培可達(dá)到18%;‘國(guó)色天香’是以地方品種‘晚熟香蕉李’與日本品種‘秋姬’雜交育成的硬肉、濃香、色艷,且適宜高溫多濕地區(qū)栽培的新品種[111]。
圖2 ‘國(guó)馨’李及果實(shí)切面圖
現(xiàn)代李育種涉及多方面的理論、方法和技術(shù),面對(duì)國(guó)內(nèi)外市場(chǎng)對(duì)李新品種的需求,我國(guó)李育種還有許多問(wèn)題需要關(guān)注和解決,需要在以下幾個(gè)方面做進(jìn)一步的研究和開發(fā):(1)短低溫型李育種應(yīng)對(duì)氣溫升高。氣溫升高的趨勢(shì)對(duì)我國(guó)李栽培生產(chǎn)帶來(lái)災(zāi)難性影響,引起了國(guó)內(nèi)外李育種者的關(guān)注,應(yīng)有針對(duì)性地開展李育種改良研究[112]。(2)耐裂果遺傳育種研究。近年來(lái),受極端降雨天氣影響,我國(guó)西南地區(qū)的脆肉型李在成熟期裂果現(xiàn)象普遍,嚴(yán)重降低了李果品商品性,經(jīng)濟(jì)損失巨大。(3)加強(qiáng)抗晚霜品種選育。李樹在春季花期容易受晚霜危害,損害花器官并影響產(chǎn)量,提升李樹抗晚霜能力仍是我國(guó)李育種的主要目標(biāo)之一。(4)抗病毒育種。我國(guó)李產(chǎn)業(yè)存在被李痘病毒侵染的巨大潛在風(fēng)險(xiǎn),選育抗病毒品種是應(yīng)對(duì)病毒危害的有效手段。(5)開展?fàn)I養(yǎng)系砧木育種,提高對(duì)病蟲害和非生物因素,包括溫度、水分、營(yíng)養(yǎng)和耐再植等逆境條件的適應(yīng)能力。我國(guó)疆土幅員遼闊,生態(tài)類型多樣,野生或栽培李種質(zhì)資源類型變異豐富、多樣性水平高。李種質(zhì)資源和育種研究者可充分地發(fā)揮我國(guó)李種質(zhì)資源優(yōu)勢(shì),充分發(fā)掘種質(zhì)豐富的遺傳變異,利用于育種研究,解決中國(guó)李產(chǎn)業(yè)所處瓶頸問(wèn)題。
[1] 劉威生, 章秋平, 馬小雪, 張玉萍, 劉家成, 張玉君, 劉碩, 劉寧, 徐銘. 新中國(guó)果樹科學(xué)研究70年: 李. 果樹學(xué)報(bào), 2019, 36(10): 1320-1338.
LIU W S, ZHANG Q P, MA X X, ZHANG Y P, LIU J C, ZHANG Y J, LIU S, LIU N, XU M. Fruit scientific research in New China in the past 70 years: Plum. Journal of Fruit Science, 2019, 36(10): 1320-1338. (in Chinese)
[2] HEDRICK U P, ALDERMAN W H, DORSEY M J, TAYLOR O M, WELLINGTON R. The Plums of New York. Albany J. B. Lyon Company, State Printers, 1911.
[3] 聯(lián)合國(guó)糧農(nóng)組織數(shù)據(jù)庫(kù)[OL]. 2020. 2022-12-23.
Food and Agriculture Organization of the United Nations Database (FAOSTAT) [OL]. 2020. 2022-12-23.
[4] VAVILOV N. Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. Ninth International Horticultural Congress Report, 1930.
[5] ZHEBENTYAYEVA T, SHANKAR V, SCORZA R, CALLAHAN A, RAVELONANDRO M, CASTRO S, DEJONG T, SASKI C A, DARDICK C. Genetic characterization of worldwide(plum) germplasm using sequence-based genotyping. Horticulture Research, 2019, 6: 12.
[6] RYBIN W A. Spontaneous and experimentally produced hybrids between blackthorn and cherry plum and the descent problem of the cultivated plum. Planta, 1936, 25: 22-58.
[7] LIN P, SHI L. The discovery and distribution of Ili wild(Fritsch) in Xinjiang//Proceedings of International Symposium on Horticultural Germplasm, Cultivated and Wild, 1989: 282-286.
[8] LIN S H, PU F S, ZHANG J H, GAO X Y, LI X J. Observation on chromosomes numbers of. China Fruits, 1991, 2: 8-10.
[9] LIU W S, LIU D C, ZHANG A, FENG C, YANG J M, YOON J, LI S H. Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. Journal of the American Society for Horticultural Science, 2007, 132(5): 619-628.
[10] 張加延, 周恩. 中國(guó)果樹志-李卷. 北京: 中國(guó)林業(yè)出版社, 1998: 17-23.
ZHANG J Y, ZHOU E. China Fruit-Plant Monographs, Plum Flora. Beijing: China Forestry Publishing House, 1998: 17-23. (in Chinese)
[11] Yoshida M . The origin of fruits. 2: Plums. 1987, 42(2): 49-53.
[12] Janick J, Moore J N. Fruit Breeding, Volume 1, Tree and Tropical Fruits. Fruit Breeding, 1996: 559-607.
[13] HARTMANN W, NEUMüLLER M. Plum Breeding//Breeding Plantation Tree Crops: Temperate Species. New York, NY: Springer New York, 2008.
[14] AL-KHAYRI J M, JAIN S, JOHNSON D. Advances in Plant Breeding Strategies: Fruits. Cham: Springer, 2018: 165-215.
[15] RIMPIKA, SHARMA D. Advances in breeding of peach, plum and apricot. Prunus-Recent Advances. Intech Open, 2022.
[16] BURBANK L. How this ‘Miracle’ came to be. Sunset Magazine, 1903-1904(12): 35-36.
[17] BURBANK L, WHITSON J, JOHN R, WILLIAMS H S, SOCIETY L B. Luther Burbank: His Methods and Discoveries and Their Practical Application. New York, N.Y.; London: Luther Burbank Press, 1914.
[18] JANICK J. Luther Burbank: plant breeding artist, horticulturist, and legend. HortScience, 2015, 50(2): 153-156.
[19] CALLAHAN A, DARDICK C, TOSETTI R, LALLI D, SCORZA R. 21st century approach to improving burbank’s ‘stoneless’ plum. HortScience, 2015, 50(2): 195-200.
[20] BRUCE L T, DOUGAL M R, MICHAEL N, MARCO A D, LIU W S. Plum. Fruit breeding, 2012, 15: 571-621.
[21] HOWARD W L. Luther Burbank’s plant contributions//Berkeley, Cal.: Agricultural Experiment Station, 1945.
[22] CROW J F. Plant breeding giants: Burbank, the artist; vavilov, the scientist. Genetics, 2001, 158(4): 1391-1395.
[23] OKIE W R, RAMMING D W. Plum breeding worldwide. HortTechnology, 1999, 9(2): 162-176.
[24] BUTAC M, BOZHKOVA V, ZHIVONDOV A, MILOSEVIC N, BELLINI E, NENCETTI V, BLAZEK J, BALSEMIN E, LAFARQUE B, KAUFMANE E, GRAVITE I, VASILJEVA M, PINTEA M, JURAVELI A, WEBSTER T, HJALMARSSON I, TRAJKOVSKI V, HJELTNES S H. Overview of plum breeding in Europe. Acta Horticulturae, 2013, 981: 91-98.
[25] BELLINI E, NENCETTI V, NATARELLI L. New selections of yellow Japanese plum obtained in Florence at the dofi. Acta Horticulturae, 2010, 874: 321-326.
[26] BLA?EK J, PI?TěKOVá I. Initial results from the evaluation of plum cultivars grown in a very dense planting. Acta Horticulturae, 2012, 968: 99-108.
[27] BUTAC M, ZAGRAI I, BOTU M. Breeding of new plum cultivars in Romania. Acta Horticulturae, 201, 874: 51-58.
[28] JACOB H. Plum breeding worldwide//Symposium on Plum of Serbia. 2006: 15.
[29] KNIGHT V H, EVANS K M, SIMPSON D W, TOBUTT K R.Report on a desktop study to investigate the current world resources in Rosaceous fruit breeding programmes. East Malling Research, 2005.
[30] HJELTNES S H, NORNES L. ROGNLI O A. Inheritance of some fruit characters in plum ()//IX International Symposium on Plum and Prune Genetics, Breeding and Pomology, 2008: 45-50.
[31] SHERMAN W B, TOPP B L, LYRENE P M. Breeding low-chill Japanese-type plums for subtropical climates. Acta Horticulturae, 1992, 317: 149-154.
[32] SARKHOSH A, OLMSTEAD M A. Growing plums in florida: HS895/HS250, rev. 1/2016. EDIS, 2020, 2016(2): 12.
[33] YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Rosa’. Bulletin-National Institute of Fruit Tree Science, 1995.
[34] YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Heart’. Bulletin-National Institute of Fruit Tree Science, 1999: 15-30.
[35] JUN J H, CHUNG K H, KANG S J, KWACK Y B, PARK K S, YUN H K, JEONG S B. ‘Honey Red’, an early maturing Japanese plum. Journal of the American Pomological Society, 2008, 62: 27-29.
[36] NAKASU B H, BASSOLS M, FELICIANO A J. Temperate fruit breeding in Brazil. Fruit Varieties Journal, 1981, 35: 114-122.
[37] Ducroquet J P, Dalbó M A. SCS 409 Camila e SCS 410 Piuna-Novascultivares de ameixeira com resistência à escaldadura das folhas. Agropecuária Catarinense, 2007, 20: 67-70.
[38] TOPP B L, RUSSELL D M. Breeding early ripening Japanese plums. Acta Horticulturae, 1989, 240: 27-30.
[39] TOPP B L, RUSSELL D M. ‘Queensland bellerosa’ plum. HortScience, 1990, 25(7): 814.
[40] TOPP B L, RUSSELL D M. ‘Queensland earlisweet’ cherry plum. HortScience, 1990, 25(6): 713.
[41] 張艷波, 王雪松, 崔龍, 陳蕾, 李鋒. 抗寒李新品種‘福祿’. 園藝學(xué)報(bào), 2021, 48(6): 1265-1266.
ZHANG Y B, WANG X S, CUI L, CHEN L, LI F. A new cold resistant plum cultivar ‘fulu’. Acta Horticulturae Sinica, 2021, 48(6): 1265-1266. (in Chinese)
[42] 張艷波, 王雪松, 陳蕾, 崔龍, 李鋒, 隋松兵, 張連喜. 抗寒李新品種‘公主紅’的選育. 果樹學(xué)報(bào), 2022, 39(4): 689-691.
ZHANG Y B, WANG X S, CHEN L, CUI L, LI F, SUI S B, ZHANG L X. A new cold-resistant plum variety Gongzhu Hong. Journal of Fruit Science, 2022, 39(4): 689-691. (in Chinese)
[43] 何業(yè)華, 楊向暉, 郭翠紅, 欒愛(ài)萍, 劉朝陽(yáng), 夏靖嫻, 謝桃, 李楚豪, 曾志. 加工鮮食兼用李新品種‘興華李’的選育. 果樹學(xué)報(bào), 2020, 37(10): 1597-1600.
HE Y H, YANG X H, GUO C H, LUAN A P, LIU C Y, XIA J X, XIE T, LI C H, ZENG Z. Breeding report of a new fresh-eating and processing plum cultivar ‘Xinghuali’ (). Journal of Fruit Science, 2020, 37(10): 1597-1600. (in Chinese)
[44] 何業(yè)華, 楊向暉, 欒愛(ài)萍, 劉成明, 胡桂兵, 林順權(quán), 秦永華, 夏靖嫻, 傅嘉欣, 趙杰堂, 高用順, 張志珂, 溫瑞明, 陳世凱, 羅學(xué)優(yōu), 池瓊云, 盧仕威. 華南李新品種‘云開1號(hào)’. 園藝學(xué)報(bào), 2020, 47(S2): 2892-2893.
HE Y H, YANG X H, LUAN A P, LIU C M, HU G B, LIN S Q, QIN Y H, XIA J X, FU J X, ZHAO J T, GAO Y S, ZHANG Z K, WEN R M, CHEN S K, LUO X Y, CHI Q Y, LU S W. A new plum cultivar ‘Yunkai 1’. Acta Horticulturae Sinica, 2020, 47(S2): 2892-2893. (in Chinese)
[45] 方波, 趙倩, 黃明, 唐君, 蔡智勇, 張勛, 劉家紅, 譚平. 巫山脆李新品種‘宛青’的選育. 果樹學(xué)報(bào), 2020, 37(7): 1106-1109.
FANG B, ZHAO Q, HUANG M, TANG J, CAI Z Y, ZHANG X, LIU J H, TAN P. ‘Wanqing’, a new late-maturing plum cultivar ofLindl. Wushancuili. Journal of Fruit Science, 2020, 37(7): 1106-1109. (in Chinese)
[46] 周偉, 何才智, 張乃華, 蒲昌權(quán), 汪小偉, 朱根長(zhǎng), 萬(wàn)崇東, 張洪偉, 李麗, 程蘭, 何才宏. 李新品種‘晚霜脆李’的選育及栽培技術(shù). 中國(guó)果業(yè)信息, 2019, 36(3): 55-57.
ZHOU W, HE C Z, ZHANG N H, PU C Q, WANG X W, ZHU G C, WAN C D, ZHANG H W, LI L, CHENG L, HE C H. Breeding and cultivation techniques of a new plum variety ‘Late Frost Crispy Plum’. China Fruit News, 2019, 36(3): 55-57. (in Chinese)
[47] 熊偉, 向芳, 曾明, 王玉柱, 寇琳羚, 李興婷, 李相進(jìn), 何橋, 劉健, 劉世仙, 陳培, 李偉. 李新品種‘巫溪晚脆李’的選育. 中國(guó)南方果樹, 2020, 49(3): 92-96.
XIONG W, XIANG F, ZENG M, WANG Y Z, KOU L L, LI X T, LI X J, HE Q, LIU J, LIU S X, CHEN P, LI W. Breeding of a new plum variety ‘Wuxi Late Crispy Plum’. South China Fruits, 2020, 49(3): 92-96. (in Chinese)
[48] 宋洪偉, 遲占文, 張艷波, 陶睿, 張冰冰. 寒地李屬資源與品種選育. 北方園藝, 2008(6): 105-106.
SONG H W, CHI Z W, ZHANG Y B, TAO R, ZHANG B B. Resources and variety breeding of plum in cold region. Northern Horticulture, 2008(6): 105-106. (in Chinese)
[49] 關(guān)連捷, 李久成, 呂映霞. 寒地李樹新品種: 綏李三號(hào)和綏棱紅. 北方果樹, 1987(S1): 60-61, 48.
GUAN L J, LI J C, Lü Y X. New varieties of plum trees in cold region—Suili 3 hao and Suilinghong. Northern Fruits, 1987(S1): 60-61, 48. (in Chinese)
[50] 吳起運(yùn). 李新品種: 長(zhǎng)李7號(hào). 山西果樹, 1991(1): 41.
WU Q Y. Changli No.7, a new plum variety. Journal of Fruit Resources, 1991(1): 41. (in Chinese)
[51] 吳起運(yùn). 李新品種: 長(zhǎng)李17號(hào). 北方果樹, 1991(1): 41.
WU Q Y. Changli 17, a new plum variety. Northern Fruits, 1991(1): 41. (in Chinese)
[52] 李鋒. 李抗寒優(yōu)良新品種(系). 中國(guó)果樹, 1993(1): 1-2, 5.
LI F. A new cold-resistant plum variety (line). China Fruits, 1993(1): 1-2, 5. (in Chinese)
[53] 曾燁, 牟蘊(yùn)慧, 金殿義, 劉國(guó)華, 劉允中. 李新品種‘龍園秋李’. 中國(guó)果樹, 1998(2): 26.
ZENG Y, MOU Y H, JIN D Y, LIU G H, LIU Y Z. A new plum variety ‘Longyuan Qiuli’. China Fruits, 1998(2): 26. (in Chinese)
[54] 劉碩, 徐銘, 張玉萍, 張玉君, 馬小雪, 章秋平, 劉寧, 劉威生. 我國(guó)李育種研究進(jìn)展、存在問(wèn)題和展望. 果樹學(xué)報(bào), 2018, 35(2): 231-245.
LIU S, XU M, ZHANG Y P, ZHANG Y J, MA X X, ZHANG Q P, LIU N, LIU W S. Retrospect, problematical issues and the prospect of plum breeding in China. Journal of Fruit Science, 2018, 35(2): 231-245. (in Chinese)
[55] 唐世勇, 邢英麗, 王永杰, 才豐, 姜永峰. ‘岳寒紅葉’李的選育. 北方園藝, 2007(11): 133-134.
TANG S Y, XING Y L, WANG Y J, CAI F, JIANG Y F. Breeding of Yuehan Hongye plum. Northern Horticulture, 2007(11): 133-134. (in Chinese)
[56] 李鋒, 張冰冰, 計(jì)秀杰, 張艷波, 邢國(guó)杰. 抗寒紫葉李新品種‘長(zhǎng)春彩葉李’. 園藝學(xué)報(bào), 2007, 34(2): 534.
LI F, ZHANG B B, JI X J, ZHANG Y B, XING G J. A new variety of hardy purple-leaf plum ‘Changchun Caiye Li’. Acta Horticulturae Sinica, 2007, 34(2): 534. (in Chinese)
[57] 張艷波, 趙晨輝, 梁英海, 付立中, 李鋒, 曹??? 計(jì)秀杰. 抗寒紫葉李新品種‘北國(guó)紅’的選育. 北方園藝, 2013(12): 168-169.
ZHANG Y B, ZHAO C H, LIANG Y H, FU L Z, LI F, CAO X J, JI X J. A new variety breeding of hardy purple-leaf plum ‘Beiguohong’. Northern Horticulture, 2013(12): 168-169. (in Chinese)
[58] 陸致成, 李峰, 張靜茹, 張艷波, 宋宏偉, 趙晨輝, 孫海龍. 鮮食觀賞兼用李新品種‘一品丹楓’. 園藝學(xué)報(bào), 2014, 41(12): 2547-2548.
LU Z C, LI F, ZHANG J R, ZHANG Y B, SONG H W, ZHAO C H, SUN H L. A new edible ornamental plum cultivar ‘Yipin Danfeng’. Acta Horticulturae Sinica, 2014, 41(12): 2547-2548. (in Chinese)
[59] 李懷玉, 方玉鳳. 李實(shí)生后代變異與親本選擇. 北方園藝, 1990(4): 9-13.
LI H Y, FANG Y F. Variation of plum’s offspring and parental selection. Northern Horticulture, 1990(4): 9-13. (in Chinese)
[60] 孫偉, 高慶玉. 中國(guó)李自然雜交后代抗寒力、果實(shí)大小的遺傳與變異. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 34(3): 250-253.
SUN W, GAO Q Y. Inheritance of cold hardiness and fruit size in Chinese plum (Lindl.). Journal of Northeast Agricultural University, 2003, 34(3): 250-253. (in Chinese)
[61] SALAZAR J A, PACHECO I, SHINYA P, ZAPATA P, SILVA C, ARADHYA M, VELASCO D, RUIZ D, MARTíNEZ-GóMEZ P, INFANTE R. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (lindl.). Frontiers in Plant Science, 2017, 8: 476.
[62] 趙海娟, 劉寧, 張玉萍, 劉威生, 張玉君, 徐銘, 馬小雪, 劉家成, 劉碩. 李果皮顏色遺傳多樣性及其成色因子研究進(jìn)展. 果樹學(xué)報(bào), 2022, 39(8): 1479-1489.
ZHAO H J, LIU N, ZHANG Y P, LIU W S, ZHANG Y J, XU M, MA X X, LIU J C, LIU S. Research progress in genetic diversity and related factors of plum peel color. Journal of Fruit Science, 2022, 39(8): 1479-1489. (in Chinese)
[63] 方玉鳳, 張風(fēng)芳, 王官清, 李鐸, 李松群, 李懷玉. 六號(hào)李、綏稜紅李自然雜交后代某些性狀的遺傳. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào), 1989, 20(1): 15-19.
FANG Y F, ZHANG F F, WANG G Q, LI D, LI S Q, LI H Y. Inheritance of some characters in naturally hybridized progeny from plum 6'X Sui Ling red plum. Journal of Shenyang Agricultural University, 1989, 20(1): 15-19. (in Chinese)
[64] 劉文東. 李樹雜交后代親子性狀遺傳變異規(guī)律. 中國(guó)林副特產(chǎn), 2013(5): 96-97.
LIU W D. Genetic variation of parent-child traits in hybrid progeny of plum tree. Forest by-Product and Speciality in China, 2013(5): 96-97. (in Chinese)
[65] VALDERRAMA-SOTO D, SALAZAR J, SEPúLVEDA-GONZáLEZ A, SILVA-ANDRADE C, GARDANA C, MORALES H, BATTISTONI B, JIMéNEZ-MU?OZ P, GONZáLEZ M, PE?A-NEIRA á, INFANTE R, PACHECO I. Detection of quantitative trait loci controlling the content of phenolic compounds in an Asian plum (L.) F1population. Frontiers in Plant Science, 2021, 12: 679059.
[66] 焦春雨, 陶可全, 于澤源, 沈鐵恒. 中國(guó)李果實(shí)品質(zhì)遺傳傾向研究. 北方園藝, 1999(2): 23-25.
JIAO C Y, TAO K Q, YU Z Y, SHEN T H. Study on genetic tendency of fruit quality of China plum. Northern Horticulture, 1999(2): 23-25. (in Chinese)
[67] DE MORI G, SAVAZZINI F, GEUNA F. Molecular tools to investigate Sharka disease inspecies. Applied Plant Biotechnology for Improving Resistance to Biotic Stress. Amsterdam: Elsevier, 2020: 203-223.
[68] ATANASSOV D. Plum pox. A new virus disease. Annal of the University of Sofia Faculty Agriculture and Silvicultural, 1932, 11: 49-69.
[69] HADIDI A, BARBA M, CANDRESSE T, JELKMANN W. Virus and Virus-Like Disease of Pome and stone Fruits. APS Press/American Phytopathological Society, 2011.
[70] CAMBRA M CAPOTE N MYRTA A LLáCER G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bulletin, 2006, 36(2): 202-204.
[71] GARCíA J A, GLASA M, CAMBRA M, CANDRESSE T. Plum pox virus and sharka: A model potyvirus and a major disease. Molecular Plant Pathology, 2014, 15(3): 226-241.
[72] NEUMüLLER M, LANZL S, HARTMANN W, FEUCHT W, TREUTTER D. Towards an understanding of the inheritance of hypersensitivity resistance against the sharka virus in European plum (L.): Generation of interspecific hybrids with lower ploidy levels. Acta Horticulturae, 2009, 814: 721-726.
[73] RUBIO M, RODRíGUEZ-MORENO L, BALLESTER A R, DE MOURA M C, BONGHI C, CANDRESSE T, MARTíNEZ-GóMEZ P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using Rna-Seq. Molecular Plant Pathology, 2015, 16(2): 164-176.
[74] ZURIAGA E, SORIANO J M, ZHEBENTYAYEVA T, ROMERO C, DARDICK C, CA?IZARES J, BADENES M L. Genomic analysis reveals MATH gene (s) as candidate (s) for plum pox virus (PPV) resistance in apricot (L.). Molecular Plant Pathology, 2013, 14(7): 663-677.
[75] MARIETTE S, WONG JUN TAI F, ROCH G, BARRE A, CHAGUE A, DECROOCQ S, GROPPI A, LAIZET Y, LAMBERT P, TRICON D, NIKOLSKI M, AUDERGON J M, ABBOTT A G, DECROOCQ V. Genome-wide association links candidate genes to resistance to plum pox virus in apricot (). The New Phytologist, 2016, 209(2): 773-784.
[76] DECROOCQ S, CHAGUE A, LAMBERT P, ROCH G, AUDERGON J M, GEUNA F, CHIOZZOTTO R, BASSI D, DONDINI L, TARTARINI S, SALAVA J, KR?KA B, PALMISANO F, KARAYIANNIS I, DECROOCQ V. Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to plum pox virus (PPV) in apricot. Tree Genetics & Genomes, 2014, 10(5): 1161-1170.
[77] PASSARO M, GEUNA F, BASSI D, CIRILLI M. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (.). Molecular Breeding, 2017, 37(6): 74.
[78] ILARDI V, TAVAZZA M. Biotechnological strategies and tools for Plum pox virus resistance: Trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 2015, 6: 379.
[79] LIMERA C, SABBADINI S, SWEET J B, MEZZETTI B. New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in Plant Science, 2017, 8: 1418.
[80] GARCíA-ALMODóVAR R C, CLEMENTE-MORENO M J, DíAZ- VIVANCOS P, PETRI C, RUBIO M, PADILLA I M G, ILARDI V, BURGOS L. Greenhouse evaluation confirmssharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell, Tissue and Organ Culture, 2015, 120(2): 791-796.
[81] SIDOROVA T, PUSHIN A, MIROSHNICHENKO D, DOLGOV S. Generation of transgenic rootstock plum ((L. ×Lindl.) × (Ehrh.)) using hairpin-RNA construct for resistance to the Plum pox virus. Agronomy, 2017, 8(1): 2.
[82] YAMANE H, TAO R, SUGIURA A. Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Lindl. cv. Sordum). Plant Biotechnology, 1999, 16(5): 389-396.
[83] BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Diversity of-RNase genes and-haplotypes in Japanese plum (Lindl.). The Journal of Horticultural Science and Biotechnology, 2002, 77(6): 658-664.
[84] BEPPU K, TAKEMOTO Y, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Determination of S-haplotypes of Japanese plum (Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science, 2003, 78(3): 315-318.
[85] BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R. KATAOKA I. Analysis of S-RNase genes in self-compatible cultivars of Japanese plum, ‘Methley’, ‘Karari’ and ‘Kosyu’. Journal of the Japanese Society for Horticultural Science, 2004, 73(Suppl. 2): 253.
[86] SAPIR G, STERN R, EISIKOWITCH D, GOLDWAY M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. The Journal of Horticultural Science and Biotechnology, 2004, 79(2): 223-227.
[87] BEPPU K, KOMATSU N, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R, KATAOKA I.-haplotype confers self-compatibility in Japanese plum (Lindl.). The Journal of Horticultural Science and Biotechnology, 2005, 80(6): 760-764.
[88] BEPPU K, SYOGASE K, YAMANE H, TAO R, KATAOKA I. Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se-RNase gene-specific PCR primers. The Journal of Horticultural Science and Biotechnology, 2010, 85(3): 215-218.
[89] SUTHERLAND B G, ROBBINS T P, TOBUTT K R. Primers amplifying a range ofS-alleles. Plant Breeding, 2004, 123(6): 582-584.
[90] SUTHERLAND B G, TOBUTT K R, ROBBINS T P. Molecular genetics of self-incompatibility in plums. Acta Horticulturae, 2004(663): 557-562.
[91] VIEIRA E A, NODARI R O, DANTAS A C M, DUCROQUET J P H J, DALBó M, BORGES C V. Genetic mapping of Japanese plum. Cropp Breeding and Applied Biotechnology, 2005, 5(1): 29-37.
[92] CARRASCO B, GONZáLEZ M, GEBAUER M, GARCíA-GONZáLEZ R, MALDONADO J, SILVA H. Construction of a highly saturated linkage map in Japanese plum (L.) using GBS for SNP marker calling. PLoS One, 2018, 13(12): e0208032.
[93] ZHANG Q P, WEI X, LIU N, ZHANG Y P, XU M, ZHANG Y J, MA X X, LIU W S. Construction of an SNP-based high-density genetic map for Japanese plum in a Chinese population using specific length fragment sequencing. Tree Genetics & Genomes, 2020, 16(1): 18.
[94] CALLAHAN A M, ZHEBENTYAYEVA T N, HUMANN J L, SASKI C A, GALIMBA K D, GEORGI L L, SCORZA R, MAIN D, DARDICK C D. Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and agenome assembly of plum (). Horticulture Research, 2021, 8: 8.
[95] SCORZA R, CALLAHAN A, DARDICK C, RAVELONANDRO M, POLAK J, MALINOWSKI T, ZAGRAI I, CAMBRA M, KAMENOVA I. Genetic engineering ofresistance: ‘HoneySweet’ plum-From concept to product. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(1): 1-12.
[96] FANG Z Z, KUI L W, DAI H, ZHOU D R, JIANG C C, ESPLEY R V, DENG C, LIN Y J, PAN S L, YE X F. The genome of low-chill Chinese plum ‘Sanyueli’ (Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Molecular Ecology Resources, 2022, 22(5): 1919-1938.
[97] LIU C Y, FENG C, PENG W Z, HAO J J, WANG J T, PAN J J, HE Y H. Chromosome-level draft genome of a diploid plum (). GigaScience, 2020, 9(12): giaa130.
[98] JO Y, LIAN S, CHO J K, CHOI H, CHU H, CHO W K.transcriptome assembly of two differentcultivars. Genomics Data, 2015, 6: 262-263.
[99] JO Y, CHOI H, LIAN S, CHO J K, CHU H, CHO W K. Identification of viruses infecting six plum cultivars in Korea by RNA-sequencing. PeerJ, 2020, 8: e9588.
[100] KIM H Y, SAHA P, FARCUH M, LI B S, SADKA A, BLUMWALD E. RNA-seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums. Plant Molecular Biology Reporter, 2015, 33(6): 1634-1649.
[101] GONZáLEZ M, MALDONADO J, SALAZAR E, SILVA H, CARRASCO B.transcriptome assembly of ‘Angeleno’ and ‘Lamoon’ Japanese plum cultivars (). Genomics Data, 2016, 9: 35-36.
[102] FANG Z Z, ZHOU D R, YE X F, JIANG C C, PAN S L. Identification of candidate anthocyanin-related genes by transcriptomic analysis of ‘Furongli’ plum (Lindl.) during fruit ripening using RNA-seq. Frontiers in Plant Science, 2016, 7: 1338.
[103] FARCUH M, LI B S, RIVERO R M, SHLIZERMAN L, SADKA A, BLUMWALD E. Sugar metabolism reprogramming in a non- climacteric bud mutant of a climacteric plum fruit during development on the tree. Journal of Experimental Botany, 2017, 68(21/22): 5813-5828.
[104] PICCOLO E L, ARANITI F, LANDI M, MASSAI R, GUIDI L, ABENAVOLI M R, REMORINI D. Girdling stimulates anthocyanin accumulation and promotes sugar, organic acid, amino acid level and antioxidant activity in red plum: An overview of skin and pulp metabolomics. Scientia Horticulturae, 2021, 280: 109907.
[105] PETRI C, WEBB K, HILY J M, DARDICK C, SCORZA R. High transformation efficiency in plum (L.): A new tool for functional genomics studies inspp. Molecular Breeding, 2008, 22(4): 581-591.
[106] MANTE S, MORGENS P H, SCORZA R, CORDTS J M, CALLAHAN A M.-mediated transformation of plum (L.) hypocotyl slices and regeneration of transgenic plants. Bio/Technology, 1991, 9(9): 853-857.
[107] GONZALEZ-PADILLA I M, WEBB K, SCORZA R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (L.). Plant Cell Reports, 2003, 22(1): 38-45.
[108] TIAN L N, WEN Y, JAYASANKAR S, SIBBALD S. Regeneration ofLindl (Japanese plum) from hypocotyls of mature seeds. In Vitro Cellular & Developmental Biology - Plant, 2007, 43(4): 343-347.
[109] RAVELONANDRO M, SCORZA R, POLAK J, CALLAHAN A, KR?KA B, KUNDU J B, BRIARD P. ‘Honey Sweet’ plum-A valuable genetically engineered fruit-tree cultivar. Food and Nutrition Sciences, 2013, 4(6): 45-49.
[110] SRINIVASAN C, DARDICK C, CALLAHAN A, SCORZA R. Plum () trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One, 2012, 7: E40715.
[111] 劉威生. 最新李、杏新品種(系)簡(jiǎn)介. 果農(nóng)之友, 2017(5): 4-6.
LIU W S. Brief introduction of the latest new plum and apricot varieties (lines). Fruit Growers’ Friend, 2017(5): 4-6. (in Chinese)
[112] RUIZ D, COS J, NICOLáS-ALMANSA M, EGEA J, GARCíA F, CARRILLO A, RUBIO M, LóPEZ D, SALAZAR J, GUEVARA A. New promising Japanese plum cultivars for warm areas from CEBAS-CSIC/IMIDA breeding programme. Acta Horticulturae, 2021, 1322: 55-60.
An Overview of the Worldwide Plum Breeding
Liaoning Institute of Pomology, Yingkou 115009, Liaoning
Plum is a significant fruit tree worldwide, with the two main species beingand. Chinese plum, originating from China, exhibits high genetic heterogeneity and abundant genetic variation in fruit traits. It is speculated that wild Chinese plums still exist in the Yangtze River basin. Throughout Chinese history, the plum cultivation and varieties were recorded by many secretaries of the Qin Dynasty, the Han Dynasty, the Jin Dynasty, the Northern Song Dynasty, and the Ming Dynasty. Similarly, in other countries, such as Greece, France, Finland, the Czech Republic, and Russia, there are written records of plum, describing its origin and 14 varieties. Plum was gradually introduced into the European continent during the Roman era, and numerous new varieties have since been cultivated to improve the fruit’s quality, commercial value, and meet market demand. There were currently 88 independently bred plum varieties in China that have passed variety approval and been officially published. Breeding traits of common concern include fruit size, peel color, polyphenols, soluble solids, fruit maturity, cold resistance, disease resistance, etc. Breeding methods range from traditional methods to molecular-assisted breeding, tissue culture, and transgenic breeding. Many excellent varieties with good fresh food quality, storage and transportation resistance, and adaptability have been bred through continuous improvement of breeding methods, promoting the development of the global plum industry. China is the world’s largest plum producer, accounting for 54.94% of total production and 74.75% of total cultivation area worldwide. The rich natural resources of plum in China provide solid material and diversity guarantee for germplasm exploration and breeding application. To further strengthen the international advantages of plum germplasm resources and cultivation areas in China, and to enhance the core competitiveness of national breeding, this study reviewed the global history process of plum breeding and improvement, including the origin, dissemination, early cultivation history of plum in the world, recent research on the main breeding traits, and commercial breeding strategies for modern plum.
plum; breeding; variety; strategy
2022-05-25;
2023-03-01
遼寧省自然科學(xué)基金(2021-MS-054)、國(guó)家園藝作物種質(zhì)基礎(chǔ)服務(wù)平臺(tái)項(xiàng)目(NHGRC2021-NH10)、中央引導(dǎo)地方科技發(fā)展專項(xiàng)(2020JH6/10500070)
劉碩,E-mail:liushuo028@163.com。通信作者劉威生,E-mail:wsliulaas@163.com
10.3864/j.issn.0578-1752.2023.09.011
(責(zé)任編輯 趙伶俐)
中國(guó)農(nóng)業(yè)科學(xué)2023年9期