• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement?

    2023-05-10 03:34:18ZhaoweiCHANGJianhuaZHANGPanTANGLeiTIANLiYUGuangyiLIULiangXIA

    Zhaowei CHANG ,Jianhua ZHANG? ,Pan TANG ,Lei TIAN ,Li YU,Guangyi LIU,Liang XIA

    1State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2China Mobile Research Institute,Beijing 100053,China

    Terahertz (THz) channel propagation characteristics are vital for the design,evaluation,and optimization of THz communication systems.Moreover,reflection plays a significant role in channel propagation.In this correspondence,the reflection coefficients of the THz channel are researched based on extensive measurement campaigns.First,we set up the THz channel sounder from 220 to 320 GHz at incident angles ranging from 10?to 80?.Based on the measured propagation loss,the reflection coefficients of five building materials,i.e.,glass,tile,board,plasterboard,and aluminum alloy are calculated separately for frequencies and incident angles.It is found that the lack of THz-relative parameters leads to an inability to successfully fit the Fresnel model of nonmetallic materials to the measurement data.Thus,we propose a frequency–angle two-dimensional reflection coefficient (FARC) model by modifying the Fresnel model with the Lorenz and Drude models.The proposed model characterizes the frequency and incident angle for reflection coefficients and shows low root-mean-square error (RMSE) with the measurement data.Generally,these results are useful for modeling THz channels.

    1 Introduction

    To meet the increasing demand for higher data rates,THz communication between 0.1 and 10 THz is attracting a great deal of attention due to its wide bandwidth,which can support much higher data rates from tens of Gb/s to a few Tb/s than millimeter wave (mmWave) communication (Zhang et al.,2017;Chen et al.,2019;Zhu et al.,2020).THz channel propagation characteristics play an important role in the design,evaluation,and optimization of THz communication systems(Eckhardt et al.,2019).Furthermore,due to the short wavelength at THz bands,the propagation mechanisms,i.e.,reflection and diffraction,may change(Zhang et al.,2019,2020).Therefore,it is quite necessary to measure and model the reflection coefficients at THz bands.

    Recently,several measurement campaigns have been conducted to characterize reflection coefficients at THz bands.For example,reflection coefficients of materials were measured in Alawnch et al.(2018)with a dielectric lens antenna from 207 to 247 GHz.In Xing et al.(2019),measurements of reflection coefficients with incident angles of 10?,30?,60?,and 80?were carried out for drywall at 142 GHz.Piesiewicz et al.(2005) presented a measurement of reflection coefficients by THz time-domain spectroscopy(THz-TDS) for different building materials from 70 to 350 GHz at angles ranging from 20?to 75?.In Kokkoniemi et al.(2016),THz-TDS measurements were conducted from 100 GHz to 4 THz at incident angles ranging from 35?to 70?.In short,reflection coefficients of different materials have been measured in some THz bands.However,the dependence of reflection coefficients on frequencies,incident angles,and materials has been only partially investigated.Also,there is still no comprehensive model that can accurately describe the above-mentioned dependence.

    The contributions of this correspondence are as follows:

    1.We present an extensive reflection coefficient measurement at frequencies ranging from 220 to 320 GHz and incident angles ranging from 10?to 80?.The extensive measurement data are collected with five building materials,i.e.,glass,tile,board,plasterboard,and aluminum alloy.

    2.We investigate the dependence of reflection coefficients on frequencies,incident angles,and materials based on the measurement data and Fresnel model,which provides guidance for modeling reflection coefficients.

    3.By modifying the Fresnel model with the Lorenz and Drude models,we propose the FARC model at THz bands.Based on the measurement results,sets of fitted parameters of different materials are obtained using the FARC model.The FARC model can successfully describe the dependence of reflection coefficients on frequencies and incident angles.

    2 Measurement of terahertz reflection coefficients

    The measurement of reflection coefficients is conducted by a wideband channel sounder.The details of the channel sounder can be referenced in Tang et al.(2021).The measurement setup,procedures,and data processing are introduced in this section.

    2.1 Measurement setup and procedures

    The measurement of reflection coefficients is conducted in a 25?C clean room.Before installing the channel sounder,the system is calibrated after the frequency mixers are connected to each other without antennas.System calibration was introduced in Tang et al.(2021).After installing the channel sounder,the two antennas are aligneddref(dref=10 cm) apart to obtain the reference powerPref.Then the five building materials (i.e.,glass,tile,board,plasterboard,and aluminum alloy) are fixed at the clamp successively with the transmitter (TX) and receiver (RX) antennas being set as shown in Fig.1a.The distances between the TX antenna and the materials(dt)and between the RX antenna and the materials (dr) are both 5 cm.The sketch of the measurement setup is shown in Fig.1b.The reflection coefficients of the vertically polarized signal are measured from 10?to 80?in a step of 10?.In addition,the measurement is performed from 220 to 320 GHz in a step of 10 GHz except 270 and 310 GHz.These two frequency points are not measured because the measurement system is unstable when measuring.For each measurement,50 snapshots of in-phase and quadrature (IQ) data are collected.

    Fig.1 Terahertz reflection coefficient measurement setup: (a) actual measurement;(b) sketch

    2.2 Data processing

    The formula calculating the reflection coefficient can be expressed as(Landron et al.,1993)

    wherePris the power received by reflection.PrandPrefare calibrated due to systematic deviation.

    3 Analysis of reflection characteristics

    This section shows the reflection coefficient results of five materials.First,the dependence of reflection coefficients on frequencies and incident angles is investigated by comparing the measurement results with theoretical modeling.Then,based on comparisons,the relationships between the reflection coefficients and five materials are described.

    3.1 Frequency and angle dependence of reflection coefficients

    To investigate the frequency and angle dependence of reflection coefficients,the reflection coeffi-cients of five materials are plotted from 10?to 80?at different frequency points (Fig.2).The results at nine frequency points are shown.For comparison,the Fresnel reflection coefficient model is plotted and the formula is given as(Landron et al.,1993)

    whereθeis the incident angle,σis the standard deviation of the surface roughness,λis the wavelength,andδis the relative permittivity.The relative properties of five materials in the Fresnel model are summarized in Table 1.The relative properties are theoretical values of conventional materials in the standard environment.

    Table 1 Relative properties of five materials

    The angle dependence of reflection coefficients can be observed in Figs.2a–2e.We can see that the trends of the measurement results and the Fresnel model are similar.Because of the difference between the relative parameters used in the Fresnel model and the THz measurement,there is a deviation between the results of non-metallic materials and the theoretical results.In Figs.2a–2d,the reflection coeffi-cients and the growth rates of non-metallic materials increase with the increase of the incident angle.Furthermore,the growth rate obviously increases when the incident angle is≥50?.The same trends of reflection coefficients at different frequency bands can be found in Ahmadi-Shokouh et al.(2011)and Kim et al.(2021).The reflection coefficients of metallic materials are stable at around 0.8 in Fig.2e,and the measurement results of the aluminum alloy arelower than the theoretical results.The reason is that the aluminum alloy may be covered with metallic oxide.The frequency dependence of reflection coefficients can also be observed in Figs.2a–2e.The obvious fluctuations are observed by comparing reflection coefficients with frequency.Moreover,the fluctuations are related to frequency at the same incident angle.The fluctuations of plasterboard and board are within 0.2,which are smaller than those of the other three materials.

    3.2 Material dependence of reflection coefficients

    To research the material dependence of reflection coefficients,the average reflection coefficients of five materials are shown in Fig.2f in the 220–320 GHz frequency range.The average reflection coefficients are the average of the measured reflection coefficients at eight angles.Comparing the average reflection coefficients of these five materials,the average reflection coefficients of aluminum alloy are approximately 0.28 higher than that of tile and almost 0.50 higher than that of plasterboard.The aluminum alloy having the largest complex dielectric constant reflects more power,and then in turn tile,glass,board,and plasterboard.In short,the materials with larger complex dielectric constants can reflect more power.

    Fig.2 Measurement results of reflection coefficients of glass (a),tile (b),board (c),plasterboard (d),and aluminum alloy (e) at nine frequency points compared with the calculation results obtained using the Fresnel model,and the average reflection coefficients of five materials at eight angles (f)

    4 Reflection coefficient modeling

    In this section,an FARC model is proposed to describe the dependence of reflection coefficients on frequencies,incident angles,and materials.

    The FARC model is inspired by the Lorenz,Drude,and Fresnel reflection coefficient models.The Lorenz model representing the relationship between frequency and dielectric constant of non-metallic materials is written as follows(Popescu,2010):

    j is the imaginary unit,Nis the number of electrons per unit volume,eis the unit positive charge,mis the mass of an electron,?0is the permittivity of vacuum,γis the damping constant,ω0is the resonant frequency,andωis the angular velocity.Here,we choosee=1.6×10?19C,m=9.3×10?31kg,and?0=8.85×10?12F/m.The Drude model representing the relationship between frequency and dielectric constant of metallic materials is expressed as follows(Popescu,2010):

    In Eqs.(3) and (5),ω=2πf,wherefis the frequency.Therefore,the Lorenz and Drude models can describe the dielectric constant continuously with frequency.To characterize the reflection coefficients in the Fresnel model at consecutive frequencies,the dielectric constants of non-metallic and metallic materials should be expressed by the Lorenz and Drude models,respectively.Thus,we substitute Eqs.(3) and (5) into Eq.(2).The FARC model of the non-metallic materials is written as

    The FARC model can calculate the reflection coefficients with physical parameters of materials such asσ,γ,ω0,and.Because the Fresnel,Lorenz,and Drude models that derive the FARC model are not frequency-or material-limited,the FARC model does not have restrictions on these two dimensions.Moreover,the FARC model describes the reflection coefficients with frequency and angle in wide-frequency bands continuously with only one set of physical parameters.The Fresnel model describes the reflection coefficients at different frequencies by changing the frequency-dependent dielectric coefficients and cannot directly use frequency as a variable to describe the reflection coefficient.Thus,compared with the two-dimensional dependence described by FARC,the Fresnel model involves only the one-dimensional dependence,i.e.,angle.

    We changeωandλto 2πfandc/frespectively,wherefis in GHz andcis the speed of light.To characterize the model more simply,we separateθeandfin Eqs.(6) and (7).For example,Eq.(6) can be deduced as

    We set the separated physical parameters of the same materials in Eq.(8)to constants.Moreover,because of the large magnitudes of 8π2σ2/c2,(2πγ),and(2πγ),we use powers of 10 to reduce their fitting complexity.Thus,the statistical FARC model of non-metallic materials can be written as

    wherea,b,c,anddcan be derived as lg(8π2σ2/c2),lg((2πγ)),lg((2πγ)),and 2π/γ,respectively.They do not have the exact physical meaning.However,these parameters are related to several physical parameters;i.e.,a,b,c,anddare related to the surface roughness of the materials,the ratio of the charge per unit volume to damping constant,the ratio of the resonant frequency to damping constant,and the damping constant,respectively.Therefore,a,b,c,anddcan be seen as constants to be fitted statistically.Moreover,the statistical FARC model of metallic materials can be obtained in the same way.The statistical FARC model of metallic materials is expressed as

    To verify the feasibility of this model,we fit the reflection coefficients of the five materials based on the measurement results.As a representative,the results of the materials are shown in Fig.3.Fig.3a shows the comparison between the FARC and Fresnel models,and the measurement results of the board at 280 GHz in the angle dimension.The parameters in the Fresnel model are set according to Table 1.The trend of the FARC model is similar to that of the Fresnel model.In addition,it is found that the FARC model fits the measurement results better than the Fresnel model at the dimension of angle.Fig.3b shows the comparison between the calculation results obtained using the FARC model and the measurement results of the plasterboard in the two dimensions of frequency and angle.The measurement data fit well with the calculation results,and most deviation values between measurement and model results are≤0.05.The fitted parameters of five materials are summarized in Table 2.These four parameters of non-metallic materials are similar because the reflection coefficient trends of non-metallic materials varying with angle are similar.The fitted parameters of metallic materials are much different from those of non-metallic materials because their reflection coefficients have different trends.Furthermore,the RMSEs of glass,tile,board,plasterboard,and aluminum alloy are 0.11,0.12,0.10,0.08,and 0.16,respectively.This demonstrates the good performance of the proposed FARC model.In summary,the proposed FARC model can characterize the frequency and angle well for reflection coefficients.

    Fig.3 Reflection coefficient fitting comparison of the board at 280 Hz in the angle dimension (a) and the plasterboard in the two dimensions of frequency and angle (b)

    Table 2 Fitted parameters of five materials at nine frequency points

    5 Conclusions

    This correspondence focused on analysis and modeling in THz bands of the reflection coefficients of building materials.Based on extensive measurement campaigns from 220 to 320 GHz,we determined the reflection coefficients of five building materials.Also,the dependence of reflection coefficients on frequencies,incident angles,and materials has been investigated by comparing the measurement results with the calculation results obtained using the Fresnel model.To further describe these dependencies of reflection coefficients,an FARC model and a statistical FARC model have been proposed based on the Fresnel,Lorenz,and Drude models.By fitting all measurement data with the statistical FARC model,the reflection coefficients of five materials were obtained in continuous large bands.Generally,this work is helpful in understanding THz channel propagation mechanisms and in simulating THz channels.

    Contributors

    Zhaowei CHANG designed and conducted the research,processed the data,and drafted the paper.Pan TANG,Lei TIAN,Li YU,Guangyi LIU,and Liang XIA revised the paper.Jianhua ZHANG revised and finalized the paper.

    Compliance with ethics guidelines

    Zhaowei CHANG,Jianhua ZHANG,Pan TANG,Lei TIAN,Li YU,Guangyi LIU,and Liang XIA declare that they have no conflict of interest.

    Data availability

    Due to the nature of this research,participants of this study did not agree for their data to be shared publicly,so supporting data are not available.

    日韩人妻精品一区2区三区| 老司机福利观看| 校园春色视频在线观看| av电影中文网址| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| 女人被狂操c到高潮| 亚洲免费av在线视频| 亚洲九九香蕉| 一本一本久久a久久精品综合妖精| 亚洲全国av大片| 搡老岳熟女国产| 巨乳人妻的诱惑在线观看| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 欧美精品高潮呻吟av久久| 久久久国产欧美日韩av| 久久久国产欧美日韩av| av欧美777| 日韩三级视频一区二区三区| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲| av一本久久久久| 国产成人av激情在线播放| 精品国内亚洲2022精品成人 | 久久久久久久久免费视频了| 成人影院久久| 美女扒开内裤让男人捅视频| 日韩一卡2卡3卡4卡2021年| 青草久久国产| 久久中文字幕人妻熟女| 女性生殖器流出的白浆| 人妻 亚洲 视频| 国产蜜桃级精品一区二区三区 | a级片在线免费高清观看视频| 无遮挡黄片免费观看| 国产99白浆流出| 亚洲国产精品合色在线| 一区福利在线观看| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频 | 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线观看99| av福利片在线| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 色94色欧美一区二区| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 日韩免费av在线播放| 捣出白浆h1v1| 亚洲欧美激情综合另类| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 色94色欧美一区二区| 日本wwww免费看| 在线观看免费高清a一片| 男人舔女人的私密视频| 欧美日韩亚洲综合一区二区三区_| 精品无人区乱码1区二区| 看黄色毛片网站| 大型黄色视频在线免费观看| 91av网站免费观看| 精品午夜福利视频在线观看一区| 色婷婷久久久亚洲欧美| 国产高清激情床上av| 夜夜爽天天搞| 精品国产乱子伦一区二区三区| 妹子高潮喷水视频| 久久精品人人爽人人爽视色| 中文字幕色久视频| 女同久久另类99精品国产91| 国产一卡二卡三卡精品| 香蕉国产在线看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产一区二区入口| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲高清精品| 极品教师在线免费播放| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡| 精品一品国产午夜福利视频| 成人手机av| 精品一区二区三区av网在线观看| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 老司机午夜福利在线观看视频| 欧美性长视频在线观看| 亚洲精品一二三| 国产精华一区二区三区| 看片在线看免费视频| 91字幕亚洲| 天天添夜夜摸| 大码成人一级视频| 午夜两性在线视频| 国产精品.久久久| 18禁黄网站禁片午夜丰满| 淫妇啪啪啪对白视频| 飞空精品影院首页| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 久久精品亚洲熟妇少妇任你| 日本精品一区二区三区蜜桃| 国产成人av教育| 美国免费a级毛片| 国产在线观看jvid| 青草久久国产| 一本综合久久免费| 欧美午夜高清在线| 精品无人区乱码1区二区| 高清欧美精品videossex| 国产又色又爽无遮挡免费看| 大香蕉久久成人网| 热re99久久国产66热| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 精品亚洲成a人片在线观看| 99re6热这里在线精品视频| 19禁男女啪啪无遮挡网站| 黑人操中国人逼视频| 黄色毛片三级朝国网站| av电影中文网址| 欧美日韩国产mv在线观看视频| 亚洲色图av天堂| 嫩草影视91久久| 久久中文看片网| 国产成人精品无人区| 午夜老司机福利片| 色尼玛亚洲综合影院| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 亚洲第一av免费看| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 女人被狂操c到高潮| 久久国产亚洲av麻豆专区| 亚洲精品在线美女| av视频免费观看在线观看| 99精国产麻豆久久婷婷| 熟女少妇亚洲综合色aaa.| 一边摸一边做爽爽视频免费| 久久久国产精品麻豆| 在线av久久热| 侵犯人妻中文字幕一二三四区| 国产不卡av网站在线观看| 亚洲国产精品一区二区三区在线| 91成年电影在线观看| 飞空精品影院首页| 大型黄色视频在线免费观看| 日韩欧美国产一区二区入口| 亚洲av美国av| av网站免费在线观看视频| 国产亚洲欧美98| 久久国产亚洲av麻豆专区| 日韩中文字幕欧美一区二区| 一级a爱片免费观看的视频| 久久久久久久午夜电影 | 午夜福利在线免费观看网站| 国产精品久久电影中文字幕 | 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 69精品国产乱码久久久| 下体分泌物呈黄色| 久久香蕉国产精品| 黄色丝袜av网址大全| 大型黄色视频在线免费观看| 最新的欧美精品一区二区| 91精品国产国语对白视频| 亚洲国产精品sss在线观看 | 欧美日韩福利视频一区二区| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 国产97色在线日韩免费| av电影中文网址| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| 成年女人毛片免费观看观看9 | 天天操日日干夜夜撸| 50天的宝宝边吃奶边哭怎么回事| 黄色 视频免费看| 啦啦啦免费观看视频1| 国产精品1区2区在线观看. | 亚洲美女黄片视频| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 精品午夜福利视频在线观看一区| 超碰成人久久| tube8黄色片| 久久中文字幕人妻熟女| 首页视频小说图片口味搜索| 美国免费a级毛片| 波多野结衣av一区二区av| 极品教师在线免费播放| 中文字幕色久视频| 两性午夜刺激爽爽歪歪视频在线观看 | 超色免费av| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 国产一卡二卡三卡精品| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 国产不卡av网站在线观看| 久久精品成人免费网站| 最近最新中文字幕大全电影3 | 少妇粗大呻吟视频| 国产欧美亚洲国产| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 亚洲欧美激情综合另类| 欧美乱色亚洲激情| 精品国产一区二区三区四区第35| 夜夜爽天天搞| 成人影院久久| 热re99久久精品国产66热6| 午夜福利,免费看| 香蕉国产在线看| 黄色毛片三级朝国网站| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色 | 纯流量卡能插随身wifi吗| 久久久久久久午夜电影 | 国内久久婷婷六月综合欲色啪| 麻豆成人av在线观看| 18禁国产床啪视频网站| tocl精华| 丁香六月欧美| 老熟妇仑乱视频hdxx| 1024香蕉在线观看| 99riav亚洲国产免费| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 国产精品欧美亚洲77777| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 一本一本久久a久久精品综合妖精| 成人手机av| 日日摸夜夜添夜夜添小说| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 99久久综合精品五月天人人| 男女午夜视频在线观看| 无人区码免费观看不卡| 飞空精品影院首页| 日韩大码丰满熟妇| 一级黄色大片毛片| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 在线天堂中文资源库| svipshipincom国产片| 国产精品影院久久| 在线观看午夜福利视频| 国产日韩一区二区三区精品不卡| 久久香蕉精品热| 国产精品久久久人人做人人爽| 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕 | 日韩欧美一区二区三区在线观看 | 免费在线观看日本一区| 国产欧美日韩一区二区三区在线| 女性生殖器流出的白浆| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 色在线成人网| 色精品久久人妻99蜜桃| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 国产成人精品在线电影| 日日爽夜夜爽网站| 久久天堂一区二区三区四区| 男女之事视频高清在线观看| 国产精品秋霞免费鲁丝片| 一本综合久久免费| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 极品人妻少妇av视频| 欧美日韩精品网址| 一夜夜www| 亚洲午夜理论影院| 欧美日本中文国产一区发布| 免费观看精品视频网站| www.999成人在线观看| 成人影院久久| 亚洲成人国产一区在线观看| 最新美女视频免费是黄的| 91成人精品电影| 国产极品粉嫩免费观看在线| 999久久久精品免费观看国产| 色精品久久人妻99蜜桃| 变态另类成人亚洲欧美熟女 | 91成年电影在线观看| 脱女人内裤的视频| 免费在线观看完整版高清| 色尼玛亚洲综合影院| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 午夜免费成人在线视频| 99热网站在线观看| 成人国产一区最新在线观看| 人人妻人人澡人人看| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 亚洲欧美激情在线| 大香蕉久久成人网| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片 | 午夜亚洲福利在线播放| 黑人操中国人逼视频| 视频区欧美日本亚洲| 久久青草综合色| 一本一本久久a久久精品综合妖精| 高清在线国产一区| 日韩欧美一区二区三区在线观看 | 日韩成人在线观看一区二区三区| 久久久国产成人精品二区 | 99国产综合亚洲精品| 一区二区三区国产精品乱码| 国产一区二区三区在线臀色熟女 | 久久久国产一区二区| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 国产熟女午夜一区二区三区| 国产在视频线精品| 精品国产美女av久久久久小说| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费男女视频| 亚洲精品一二三| 69精品国产乱码久久久| 久久香蕉精品热| 精品福利永久在线观看| 好看av亚洲va欧美ⅴa在| 欧美激情 高清一区二区三区| 女警被强在线播放| 欧美激情久久久久久爽电影 | 国产成人免费无遮挡视频| av欧美777| 亚洲综合色网址| 亚洲国产精品sss在线观看 | 99热网站在线观看| 久久久国产欧美日韩av| 欧美一级毛片孕妇| 精品人妻在线不人妻| 国产精品免费大片| 午夜免费观看网址| 午夜免费鲁丝| 国产精品九九99| 亚洲 欧美一区二区三区| 天堂√8在线中文| 国产精品电影一区二区三区 | 在线观看舔阴道视频| 亚洲性夜色夜夜综合| 亚洲成人手机| 国产精品自产拍在线观看55亚洲 | 免费看十八禁软件| 动漫黄色视频在线观看| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 精品亚洲成国产av| 亚洲第一欧美日韩一区二区三区| 国产精品香港三级国产av潘金莲| 免费av中文字幕在线| 一进一出好大好爽视频| 亚洲在线自拍视频| 五月开心婷婷网| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 一夜夜www| 亚洲精品av麻豆狂野| 黄色女人牲交| 99久久精品国产亚洲精品| 一区二区三区激情视频| 大型av网站在线播放| 男男h啪啪无遮挡| 亚洲av成人av| 亚洲avbb在线观看| 免费看a级黄色片| 中文欧美无线码| 又黄又爽又免费观看的视频| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 麻豆av在线久日| 99国产精品一区二区三区| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 精品福利观看| 国产精品一区二区在线观看99| av天堂久久9| av中文乱码字幕在线| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 日韩有码中文字幕| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯 | 深夜精品福利| 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区蜜桃| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 狠狠婷婷综合久久久久久88av| 欧美大码av| 国产在线一区二区三区精| 这个男人来自地球电影免费观看| 王馨瑶露胸无遮挡在线观看| 在线永久观看黄色视频| 操美女的视频在线观看| 久久久久久免费高清国产稀缺| 精品无人区乱码1区二区| 无限看片的www在线观看| 视频区欧美日本亚洲| 国产亚洲精品一区二区www | 不卡一级毛片| 性少妇av在线| av欧美777| 欧美久久黑人一区二区| 人人妻人人澡人人爽人人夜夜| 又黄又粗又硬又大视频| 亚洲五月天丁香| 精品一区二区三区视频在线观看免费 | 久久久国产欧美日韩av| 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费 | 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 美女国产高潮福利片在线看| av网站免费在线观看视频| 亚洲成人免费电影在线观看| 国产成人av教育| 一级a爱片免费观看的视频| av一本久久久久| 国产一区二区三区综合在线观看| 香蕉久久夜色| 久久久久国内视频| 纯流量卡能插随身wifi吗| 欧美黄色淫秽网站| 他把我摸到了高潮在线观看| 黄色毛片三级朝国网站| 久久精品国产亚洲av高清一级| 又紧又爽又黄一区二区| 国产欧美日韩综合在线一区二区| 久久国产精品男人的天堂亚洲| 国产高清国产精品国产三级| av有码第一页| 国产精品国产高清国产av | 极品少妇高潮喷水抽搐| 国产激情久久老熟女| 中文字幕人妻丝袜一区二区| 国产亚洲精品一区二区www | 日韩免费高清中文字幕av| 老司机影院毛片| 国产精品久久电影中文字幕 | 国产有黄有色有爽视频| 精品国产国语对白av| 国产免费现黄频在线看| 一级毛片精品| 欧美激情极品国产一区二区三区| 国产激情欧美一区二区| 天堂中文最新版在线下载| 变态另类成人亚洲欧美熟女 | 久热这里只有精品99| 大片电影免费在线观看免费| 免费少妇av软件| 成年女人毛片免费观看观看9 | 亚洲av电影在线进入| 中文字幕av电影在线播放| 国产亚洲欧美在线一区二区| 国精品久久久久久国模美| 亚洲中文av在线| 精品高清国产在线一区| 色94色欧美一区二区| 中文字幕高清在线视频| 91成年电影在线观看| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 亚洲av日韩精品久久久久久密| 在线观看免费高清a一片| 视频区欧美日本亚洲| 在线国产一区二区在线| 精品久久久久久久毛片微露脸| 亚洲成人手机| videosex国产| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 久久国产亚洲av麻豆专区| 美女高潮到喷水免费观看| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 一级毛片高清免费大全| 狠狠婷婷综合久久久久久88av| 亚洲三区欧美一区| 操美女的视频在线观看| a级片在线免费高清观看视频| 精品卡一卡二卡四卡免费| 中亚洲国语对白在线视频| 欧美+亚洲+日韩+国产| 欧美日韩亚洲国产一区二区在线观看 | 青草久久国产| tube8黄色片| 黄色a级毛片大全视频| 天堂中文最新版在线下载| 999久久久精品免费观看国产| 久久久国产成人精品二区 | 欧美色视频一区免费| 丁香欧美五月| 脱女人内裤的视频| 天天操日日干夜夜撸| 午夜精品国产一区二区电影| 午夜成年电影在线免费观看| 色94色欧美一区二区| 少妇 在线观看| 性少妇av在线| 99热只有精品国产| av不卡在线播放| 中文欧美无线码| 搡老岳熟女国产| 脱女人内裤的视频| 母亲3免费完整高清在线观看| 久久人人97超碰香蕉20202| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线免费观看网站| 国产亚洲精品久久久久久毛片 | 午夜福利一区二区在线看| 国产成人精品久久二区二区免费| 久久精品成人免费网站| 91成人精品电影| 午夜免费鲁丝| 人成视频在线观看免费观看| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 捣出白浆h1v1| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| a级毛片黄视频| 一边摸一边抽搐一进一小说 | 久久草成人影院| 久久久久精品人妻al黑| 国产乱人伦免费视频| 国产麻豆69| 免费在线观看完整版高清| 久久精品亚洲熟妇少妇任你| 中文字幕人妻熟女乱码| 欧美黑人精品巨大| 韩国av一区二区三区四区| 亚洲五月天丁香| 国产精品久久久久久精品古装| 99久久国产精品久久久| 久久国产乱子伦精品免费另类| 校园春色视频在线观看| 成人免费观看视频高清| 中文亚洲av片在线观看爽 | 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| а√天堂www在线а√下载 | 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 久久性视频一级片| 好男人电影高清在线观看| 亚洲欧洲精品一区二区精品久久久| 香蕉丝袜av| 悠悠久久av| 黑人猛操日本美女一级片| 香蕉丝袜av| 国产欧美日韩一区二区三区在线| 久久久久精品国产欧美久久久| 香蕉丝袜av| 老熟妇仑乱视频hdxx| 成人影院久久| 亚洲七黄色美女视频| 伊人久久大香线蕉亚洲五| 国产aⅴ精品一区二区三区波| 精品免费久久久久久久清纯 | 欧美另类亚洲清纯唯美| 视频区欧美日本亚洲| 激情视频va一区二区三区| 国产男女内射视频| 成在线人永久免费视频| 亚洲精品在线美女| √禁漫天堂资源中文www| 91av网站免费观看|