• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wavelength‐selective wavefront shaping by metasurface*#

    2023-05-10 03:34:18ZixinCAIXinHEXinLIUShijieTUXinjieSUNPaulBECKETTAdityaDUBEYArnanMITCHELLGuanghuiRENXuLIUXiangHAO

    Zixin CAI ,Xin HE?? ,Xin LIU ,Shijie TU ,Xinjie SUN ,Paul BECKETT ,Aditya DUBEY,Arnan MITCHELL,Guanghui REN??,Xu LIU,Xiang HAO??,4,5

    1State Key Laboratory of Modern Optical Instrumentation,College of Optical Science and Technology,Zhejiang University,Hangzhou 310027,China

    2School of Engineering,RMIT University,Melbourne 3000,Australia

    3Integrated Photonics and Applications Centre (InPAC),RMIT University,Melbourne 3001,Australia

    4Intelligent Optics &Photonics Research Center,Jiaxing Research Institute Zhejiang University,Jiaxing 314000,China

    5Jiaxing Key Laboratory of Photonic Sensing &Intelligent Imaging,Jiaxing 314000,China

    Precise,wavelength-dependent phase retarding is essential in many fields,such as superresolution imaging,full-color holography,nanomanufacturing,and optical communications.This demand can be achieved by a combination of multiple optical devices but is challenging to implement using a single element.In this paper,we develop a method for metasurface design that allows wavelength-selective wavefront shaping.Specifically,we demonstrate a metasurface that can selectively modulate a beam with a spiral phase at 785 nm and leave another beam unaffected at 590 nm.The wavefronts are experimentally validated by an interferometer and the measurement of the cor‐responding point spread functions (PSFs).Compared to prior spatial multiplexing and dispersion engineer‐ing approaches,our strategy is straightforward and flexible during optimization for systems that need to selectively modulate one beam at a wavelength and leave another one unaffected.Such a planar device provides a compact method for wavelength-selective wavefront modulation.

    1 Introduction

    Phase modulation is demanding across a range of applications,such as optical communication (Huang et al.,2020),superresolution imaging (Hell and Wichmann,1994;Hao et al.,2021),beam shaping (Ouadghiri-Idrissi et al.,2016),quantum cryptography (Mirhosseini et al.,2015),and holographic displays (Sasaki et al.,2014).Conventional approaches to phase modulation involve devices such as phase plates (Ruffato et al.,2014;Guo et al.,2020),deformable mirrors (Ma et al.,2018;Yu et al.,2018),and spatial light modulators (Jesacher et al.,2014;Liu X et al.,2021,2022),which allow flexible wavefront shaping.How‐ever,they are always bulky and tend to dramatically increase the system’s complexity when multiple laser beams with diverse wavefronts are expected.

    Metasurfaces,comprising surface-patterned nano‐structures with subwavelength geometries,have attracted much attention in recent years due to their excellent light modulation capability.These nanoscale patterned surfaces have been shown to interact with the modu‐lated incident wavefront in terms of polarization (Mueller et al.,2017;Liu MZ et al.,2021;Zheng et al.,2021),angle of incidence (Deng et al.,2018;Sp?gele et al.,2021),and wavelength (He et al.,2020;Zhang et al.,2021) multiplexing.In particular,compared to con‐ventional optical devices,metasurface structures show unprecedented flexibility to manipulate the properties of light,leading to various ultrathin optical elements,such as metalenses (Khorasaninejad et al.,2016b),holographic pulse shapers (Georgi et al.,2021),vortex beam generators (Hu et al.,2021),and filters (Yang et al.,2020).

    Among them,wavelength-selective metasurfaces exhibit the additional ability to implement distinct modulation functions at different illumination wave‐lengths.Previous studies on wavelength-selective meta‐surfaces include sectoring regions (Khorasaninejad et al.,2016a;Maguid et al.,2016;Li et al.,2021),interleaved pixels (Arbabi et al.,2016;Bao et al.,2019;Feng et al.,2019),and dispersion engineering of subwavelength building blocks (Sell et al.,2017;Shi et al.,2018;Shrestha et al.,2018).In sectoring and interleaved ap‐proaches,the metasurface is divided into several regions or subpixels,each specifically aiming at a unique wave‐length.Owing to their partitioned geometry,these spatial multiplexing approaches inevitably suffer from crosstalk problems between adjacent regions or sub‐pixels.They also exhibit an inherent limit to their maximum efficiency since each subregion is designed for only one wavelength.In contrast,dispersion engi‐neering approaches can simultaneously fulfil the target wavefront modulation at all desired wavelengths,thereby addressing the crosstalk issue and overcoming the transmission efficiency limit.However,these methods require building a large meta-atom library to meet the multiwavelength response and thus mandate a bruteforce search of all these potential building blocks,which in turn requires huge computing resources.This pres‐ents an increasing design and optimization challenge as the number of operating wavelengths increases.

    In this paper,we employ a combination of wavelength-dependent polarization conversion and geometric phase (Mueller et al.,2017) to design a metasurface-based wavelength-selective phase modu‐lator that can exhibit unique wavefront responses at different illumination wavelengths.Specifically,we design a metasurface that focuses the beam to an an‐nular ring at 785 nm and a solid spot at 590 nm.For those systems that need to selectively modulate one wavelength wavefront and leave another unaffected,our design can break the inherent efficiency limit since every element simultaneously contributes at both target wavelengths in contrast to the spatial multiplexing ap‐proaches.Furthermore,brute-force searching of the unit cell in a large meta-atom library is not required so that the optimization process is less time-consuming.

    2 Design and simulation

    The basic building block of our design,shown in Fig.1a,consists of a rectangular nanofin arranged on a hexagonal substrate with the center-to-center distanceS.Each nanofin has the same height (H),length (L),and width (W),but has different azimuthal anglesφ’s at different positions.Such an element can be described as a conventional linearly birefringent waveplate with the Jones matrixJ(φ) (Devlin et al.,2016):

    Fig.1 Metasurface design and simulation validation

    whereR(φ) is the rotation matrix andandare the complex transmission coefficients along the long and short axes of the nanofin,respectively.With a circu‐larly polarized beam incidence,the transmitted beam can be expressed as

    which shows that the transmitted beam includes two components: the copolarization part and the crosspolarization part.The modulated phase shift of the copolarization part includes only the dynamic phase (the phase part of,also called the propagation phase,which is a function of the nanofin material and its geometry.In addition to this propagation phase,the phase shift of the cross-polarization includes an‐other component: the Pancharatnam–Berry (PB) phase,also called the geometric phase,which is a function of the azimuthal angleφfor the nanofin (Berry,1987).An important difference here is that while the propa‐gation phase is wavelength-dependent and determined by the fin size,the PB phase is affected only by its azimuthal angle and is independent of its size.Once the lengthLand the widthWare fixed,so are the complex transmission coefficientsand,as well as the propagation phase of two beams with different circular polarization values.Thus,while the PB phase remains fixed unless the azimuthal angle is changed,the nanofin size affects the complex transmission co‐efficients and therefore affects the output polarization state of the transmitted beam.As a result,by suitably designing the size,a low polarization conversion rate (PCR) (mainly copolarization part with only propaga‐tion phase) at the desired wavelength and a high PCR (mainly cross-polarization part with propagation phase and PB phase) at another specified wavelength can be obtained.Here,PCR is defined as the ratio of the transmitted optical power with the opposite helicity to the total transmitted power.Based on this concept,a fixed phase shift of the copolarization part can be obtained according to Eq.(1) at a given wavelength.To generate an annular-shaped PSF at another wave‐length,the metasurface would have to impose a spiral phase on the incident beam,which can be achieved by rotating the nanofin to set the PB phase of the cross-polarization component.

    As a demonstration,we explored the operation of the metasurface at two wavelengths: a constant phase modulation at 590 nm and a spiral phase modu‐lation at 785 nm.As the propagation phase in Eq.(2) depends on the nanofin material and its geometry,the selection of the metasurface material is an impor‐tant design choice.We used crystalline silicon (c-Si) in this demonstration due to the low extinction coeffi‐cient of its transparent window across the visible and near-infrared (NIR) regions (Ikezawa et al.,2022).First,we simulated the unit cell of our design using the COMSOL Multiphysics finite element analysis tool to find suitable fin dimensions.In the simula‐tion,periodic boundary conditions were applied atxandyboundaries,and perfectly matched layers were applied atzboundary.To satisfy the Nyquist sampling criterion and suppress high-order diffraction effects,the center-to-center distanceSwas set to 400 nm.A nanofin height (H) of 500 nm was found to optimize transmission properties at the two wavelengths.The width (W) and length (L) were determined to maxi‐mize PCR at a wavelength of 785 nm and minimize PCR at 590 nm.Fig.1b shows that a nanofin withW=93 nm andL=185 nm can provide the desired PCR at the two target wavelengths.At 785 nm,the trans‐mitted beam comprises just over 93% of the crosspolarization component,while at 590 nm,the copo‐larization component dominates at over 90%.The transmission efficiency is approximately 58% at 590 nm and 98% at 785 nm.Fig.1c shows the phase shift with different rotation angles at different wavelengths.At 785 nm,the phase shift of the cross-polarization part is twice the azimuthal angle,while the phase shift of the copolarization part is constant at 590 nm.The spiral phase distributionpat 785 nm can be expressed as follows:

    where (r,θ) are the cylindrical coordinates of each nanofin on the metasurface andqis the topological charge.Thus,combined with Eq.(2),the azimuthal angle of each nanofin is

    In our case,we set the topological chargeqto ±1,where the sign depends on the handedness of the incident circular polarization.The simulation of the overall device was performed using commercial finitedifference time-domain software (FDTD solutions,Lumerical Inc.).The diameter of the metasurface was set to 36 μm due to the computational cost concerns.In contrast to the simulation of the unit cell,perfectly matched layers were used atx,y,andzboundaries.Anx-polarized plane-wave source with its phase set to 0° and ay-polarized plane-wave source with its phase set to 90° were used to build a circularly polar‐ized incident beam.A perfect electrical conductor (PEC) aperture was set to match the diameter of our design and filter the unmodulated beam.

    As shown in Figs.1d and 1h,the simulated am‐plitude distributions of the two wavelengths are al‐most uniform.The corresponding phase distribution results are given in Figs.1e and 1i.The results exhibit a spiral phase distribution at 785 nm and a relatively flat phase distribution at 590 nm.After being modu‐lated by the metasurface,the incident beam can then be focused to an annular PSF (Fig.1f) and a solid PSF (Fig.1j).These PSFs are calculated according to the vectorial diffraction theory described by Rich‐ards and Wolf (1959) and Liu X et al.(2021).Finally,the intensity profiles along the horizontal and vertical lines cutting through the center of the PSFs are shown in Figs.1g and 1k,respectively.

    3 Fabrication and results

    To physically verify our design,a circular meta‐surface with a diameter of 500 μm was fabricated on a crystalline silicon-on-sapphire (SOS) wafer (Section 1 in the supplementary materials for details of fabrica‐tion).Both optical and scanning electron microscopy (SEM) images of the fabricated metasurface are shown in Fig.2.In this section,we will discuss the perfor‐mance of the metasurface from the phase distribution to the PSF results.

    To characterize the spiral phase distribution,we used a custom-built Mach?Zehnder interferometer as shown in Fig.3a (Section 2 in the supplementary ma‐terials for details of the configuration).The orienta‐tion of the Al2O3substrate we used is r-plane (1-102),and the thickness is 530 μm.As the substrate is aniso‐tropic,the linearly polarized beam should first be turned into an elliptically polarized beam (inset in Fig.3a).The Al2O3substrate then imposes circular polarization in a direction opposite to that of the ref‐erence beam.Thus,the rotation angle of the second quarter-wave plate (QWP2) in front of the metasur‐face must be carefully designed to alleviate the sys‐tematic error of the wavefront measurement.This can be determined by observing the interference fringe in the unmodulated area outside the metasur‐face.As shown in Figs.3b and 3c,the background outside the perimeter of the metasurface does not in‐terfere with the reference beam only when the QWP2 and the Al2O3substrate modulate the linearly polar‐ized incident beam into circular polarization.Mean‐while,the interference fringe in the area of the metasurface achieves the highest contrast,which can serve to increase the precision of the phase re‐trieval.If the wave plate is not at the correct rotation angle,the background will interfere with the refer‐ence beam because of its elliptical polarization,as shown in Figs.3d and 3e.In this way,the correct polar‐ization of the incident beam can be confirmed.Fig.3f shows the forked interference fringe captured by the camera at 785 nm.Then,the wavefront is extracted via the Fourier transform-based method (Zhao et al.,2021),as shown in Fig.3g.The observed phase is close to the simulated phase in Fig.1e and thus agrees well with our theoretical prediction.To quantify the quality of the phase,we calculated the error between the measured phase and the standard phase.The result (Fig.3h) shows an almost uniform distribution,indi‐cating that the measured phase distribution closely matches the target spiral phase.In addition,the root mean square (RMS) wavefront error is 0.2789.

    Although the shape of the annular PSF is deter‐mined mainly by the phase distribution,other factors,such as amplitude and polarization,are still consid‐ered.To quantify the effect,we directly characterized the PSF at different wavelengths.The setup is avail‐able in Fig.S2 in the supplementary materials.Since the size of the metasurface is small,here we used a 4fsystem to match the pupil size of the aperture that filters out the unmodulated beam.As presented in Figs.3i and 3j,an annular PSF at 785 nm and a solid PSF at 590 nm are obtained,thereby verifying our initial design.Fig.3k shows the intensity profiles at different wavelengths across horizontal and vertical transects.At 785 nm,the transmitted beam consists almost entirely the cross-polarization component with spiral phase modulation.At 590 nm,a Gaussian beam profile is observed,which means that the beam con‐sists primarily of the copolarization component with‐out spiral phase modulation.A polarimeter was used to obtain the Jones vector of the transmitted beam,and the PCR was calculated from the vector.The result is approximately 91% at 785 nm and 8% at 590 nm.These results illustrate that our design can modulate the beam with different phase modulations at different wavelengths,one with spiral phase modulation and the other with a relatively flat phase shift.The beam can then be focused into either an annulus or a spot.

    Fig.3 Characterization of the designed metasurface

    From the measured PSF profile shown in Fig.3k,thex-andy-transect plots are slightly different from each other,which may have been caused by aberration and irregular illumination.Furthermore,the minimum at the center of the PSF is nonzero (i.e.,slightly over 20% of the peak in Fig.3k),which is different from the simulation result.This can be explained by the fact that the geometric size of the nanofin (shown in Fig.2) does not perfectly match the designed geometry due to fabrication error,leading to a lower PCR and introducing some copolarized noise to the annular PSF.It is possible to circumvent this limitation by advanced manufacturing technology.In addition,it is possible to improve the transmission performance by using a SiO2substrate instead of Al2O3but at the expense of a more complex manufacturing process (Bao et al.,2019).Since the SiO2substrate does not change the polarization state of the incident beam,as does the Al2O3substrate,it can reduce the difficulty of using the metasurface without an elliptically polarized inci‐dent beam.

    Although the spiral phase modulation of the meta‐surface is designed for a single wavelength,the meta‐surface still performs adequately over a reasonably wide range of wavelengths.As shown in Fig.4,a Gaussian PSF can be obtained at 545 nm,555 nm,565 nm,and 575 nm,while a clear annulus is still visible at 645 nm,705 nm,755 nm,and 795 nm.This can be explained by noting that the device has a low PCR between 545 nm and 575 nm,as shown in Fig.1b;thus,the transmitted beam consists mainly of the copolarization component with constant phase modu‐lation.For other wavelengths,the device has a high PCR,and the transmitted beam consists mainly of the cross-polarization component with spiral phase modulation.Although the contrast between the bright and dark regions varies nonmonotonically and may not be sufficient for some applications,these results indicate that it would be straightforward to expand the design to other combinations of wavelengths or even to multiwavelength configurations.

    Fig.4 Measured point spread functions (PSFs) and the intensity profile across horizontal and vertical transects at different wavelengths

    4 Conclusions

    In summary,we have proposed a wavelengthselective shaping metasurface based on a combination of wavelength-dependent polarization conversion and geometric phase modulation.To verify the theory,we designed and fabricated a metasurface that can modu‐late an incident beam with a spiral phase at 785 nm and another with a relatively flat phase at 590 nm.The beams can then be focused into either an annular or a solid PSF depending on the wavelength,which may be useful for photolithographic systems,stimulated emission depletion (STED) microscopy systems,and other applications where auto-alignment of the beam is demanded.This scheme can also be expanded to any other combination of wavelengths or multiwavelength configurations.This ultracompact wavelength-selective device is a promising building block in the develop‐ment and integration of complex optical systems.

    Contributors

    Zixin CAI,Xin HE,Xu LIU,and Xiang HAO designed the research.Zixin CAI and Xin HE processed the data,performed the theoretical analysis and the measurement of the sample,and drafted the paper.Aditya DUBEY,Arnan MITCHELL,and Guanghui REN fabricated the samples.Xin LIU,Shijie TU,Xin‐jie SUN,and Paul BECKETT helped organize the paper.Zixin CAI,Xin HE,and Xiang HAO revised and finalized the paper.

    Acknowledgements

    We thank the Westlake Center for Micro/Nano Fabrica‐tion for facility support and technical assistance.

    Compliance with ethics guidelines

    Zixin CAI,Xin HE,Xin LIU,Shijie TU,Xinjie SUN,Paul BECKETT,Aditya DUBEY,Arnan MITCHELL,Guanghui REN,Xu LIU,and Xiang HAO declare that they have no conflict of interest.Data availability

    The data that support the findings of this study are avail‐able from the corresponding authors upon reasonable request.

    List of supplementary materials

    1 Fabrication of the metasurface

    2 Phase characterization with Mach?Zehnder interferometer

    3 Point spread function characterization system

    Fig.S1 Scheme of the interferometric setup used to characterize

    the phase distribution of the modulated beam

    Fig.S2 Scheme of the point spread function characteriza‐

    tion system

    亚洲伊人色综图| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 91大片在线观看| 又黄又爽又免费观看的视频| 国产在线观看jvid| 性色av乱码一区二区三区2| 日本一区二区免费在线视频| 欧美一级a爱片免费观看看 | 中文字幕高清在线视频| 欧美日韩黄片免| 1024香蕉在线观看| 给我免费播放毛片高清在线观看| 欧美色欧美亚洲另类二区 | 女性生殖器流出的白浆| 很黄的视频免费| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| www.999成人在线观看| 桃红色精品国产亚洲av| 久久午夜综合久久蜜桃| 不卡一级毛片| 欧美黄色片欧美黄色片| 丝袜人妻中文字幕| 91大片在线观看| 亚洲国产精品合色在线| 日韩欧美一区视频在线观看| 制服丝袜大香蕉在线| 很黄的视频免费| 男男h啪啪无遮挡| 亚洲熟女毛片儿| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 日本三级黄在线观看| 亚洲国产精品合色在线| 在线观看免费视频网站a站| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 91九色精品人成在线观看| 男人舔女人的私密视频| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 免费一级毛片在线播放高清视频 | 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| av有码第一页| 午夜老司机福利片| 欧美 亚洲 国产 日韩一| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 两个人看的免费小视频| 亚洲一区二区三区色噜噜| 岛国视频午夜一区免费看| 男人的好看免费观看在线视频 | 国产精品亚洲av一区麻豆| 精品久久久久久久人妻蜜臀av | 18禁裸乳无遮挡免费网站照片 | 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 97人妻天天添夜夜摸| 久久 成人 亚洲| 中文字幕av电影在线播放| 亚洲自偷自拍图片 自拍| 国产午夜福利久久久久久| 久久久久亚洲av毛片大全| 人人妻人人澡欧美一区二区 | 美女 人体艺术 gogo| 69精品国产乱码久久久| 亚洲第一欧美日韩一区二区三区| 亚洲免费av在线视频| 非洲黑人性xxxx精品又粗又长| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人澡人人看| 欧美成人免费av一区二区三区| 精品久久蜜臀av无| 精品久久久久久成人av| 欧美久久黑人一区二区| 午夜久久久在线观看| √禁漫天堂资源中文www| 岛国在线观看网站| 亚洲精品久久成人aⅴ小说| av超薄肉色丝袜交足视频| www.精华液| 变态另类成人亚洲欧美熟女 | 性少妇av在线| 国产在线精品亚洲第一网站| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区激情视频| 99re在线观看精品视频| 亚洲,欧美精品.| 日本 av在线| 国产精品久久久久久精品电影 | 欧美激情 高清一区二区三区| 日韩欧美一区视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲熟妇熟女久久| 亚洲人成77777在线视频| 黑丝袜美女国产一区| a级毛片在线看网站| 欧美成狂野欧美在线观看| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 精品熟女少妇八av免费久了| 一级毛片精品| 99re在线观看精品视频| 精品欧美国产一区二区三| 国产成人免费无遮挡视频| 99国产极品粉嫩在线观看| 免费在线观看完整版高清| 国产精品av久久久久免费| 狠狠狠狠99中文字幕| www.www免费av| 黄片大片在线免费观看| 国产不卡一卡二| 欧美黄色片欧美黄色片| 俄罗斯特黄特色一大片| 中亚洲国语对白在线视频| 操出白浆在线播放| √禁漫天堂资源中文www| 日日夜夜操网爽| 亚洲电影在线观看av| 男女做爰动态图高潮gif福利片 | 真人一进一出gif抽搐免费| 操美女的视频在线观看| 国产亚洲av高清不卡| 长腿黑丝高跟| 狂野欧美激情性xxxx| av免费在线观看网站| 18禁国产床啪视频网站| 欧美色视频一区免费| 亚洲av成人一区二区三| 他把我摸到了高潮在线观看| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 免费少妇av软件| 国产精品久久视频播放| 久久 成人 亚洲| 波多野结衣av一区二区av| 人成视频在线观看免费观看| 日韩大尺度精品在线看网址 | 亚洲av电影不卡..在线观看| 久久久久久免费高清国产稀缺| 国产精品日韩av在线免费观看 | 在线观看免费视频网站a站| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 亚洲国产看品久久| 两性夫妻黄色片| 亚洲av片天天在线观看| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 欧美日韩瑟瑟在线播放| 19禁男女啪啪无遮挡网站| 在线av久久热| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 国产精品久久电影中文字幕| 女人被躁到高潮嗷嗷叫费观| 性色av乱码一区二区三区2| 久久伊人香网站| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 国产成人精品久久二区二区91| 久久午夜综合久久蜜桃| 精品久久久久久,| 一级,二级,三级黄色视频| 国内精品久久久久精免费| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费观看网址| www国产在线视频色| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 91老司机精品| 日本免费一区二区三区高清不卡 | 一边摸一边做爽爽视频免费| 欧美日韩乱码在线| 国产99久久九九免费精品| 波多野结衣av一区二区av| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 韩国精品一区二区三区| 日韩高清综合在线| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 波多野结衣一区麻豆| 成人欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 日本五十路高清| 欧美黄色片欧美黄色片| a在线观看视频网站| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 欧美精品啪啪一区二区三区| 免费看a级黄色片| 亚洲中文av在线| 免费看十八禁软件| 狂野欧美激情性xxxx| 亚洲av片天天在线观看| 黄网站色视频无遮挡免费观看| 国产成人系列免费观看| 女生性感内裤真人,穿戴方法视频| 99riav亚洲国产免费| 日韩欧美国产在线观看| 女同久久另类99精品国产91| 国产免费av片在线观看野外av| bbb黄色大片| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 欧美中文综合在线视频| 午夜影院日韩av| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 亚洲久久久国产精品| 国产97色在线日韩免费| 亚洲电影在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 国产精品香港三级国产av潘金莲| 国产极品粉嫩免费观看在线| 精品一区二区三区视频在线观看免费| 男女下面插进去视频免费观看| 中文字幕久久专区| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 亚洲欧美精品综合一区二区三区| 51午夜福利影视在线观看| 级片在线观看| 一区福利在线观看| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2 | 亚洲精品国产色婷婷电影| av中文乱码字幕在线| 亚洲五月婷婷丁香| 一级a爱视频在线免费观看| 天天添夜夜摸| 国产99久久九九免费精品| 久久亚洲精品不卡| 中文字幕色久视频| 纯流量卡能插随身wifi吗| 电影成人av| 亚洲国产日韩欧美精品在线观看 | 制服诱惑二区| 国产精品免费视频内射| 99国产精品一区二区蜜桃av| 丝袜美足系列| 久久香蕉国产精品| 多毛熟女@视频| 亚洲三区欧美一区| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩黄片免| 人成视频在线观看免费观看| 精品卡一卡二卡四卡免费| 美女高潮喷水抽搐中文字幕| 欧美成人免费av一区二区三区| 91字幕亚洲| a在线观看视频网站| 欧美性长视频在线观看| 免费高清在线观看日韩| 久久 成人 亚洲| 国产精品,欧美在线| 国产成人欧美在线观看| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| 亚洲免费av在线视频| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三| 中国美女看黄片| av天堂久久9| 日韩中文字幕欧美一区二区| 国产一卡二卡三卡精品| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 国产1区2区3区精品| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 免费不卡黄色视频| 亚洲一区中文字幕在线| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| svipshipincom国产片| 精品人妻1区二区| 在线观看日韩欧美| 老汉色∧v一级毛片| 中国美女看黄片| www日本在线高清视频| 免费高清视频大片| 91大片在线观看| 在线观看免费视频网站a站| 亚洲一区高清亚洲精品| 麻豆久久精品国产亚洲av| 久久久久久久精品吃奶| 757午夜福利合集在线观看| 国产精品自产拍在线观看55亚洲| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 亚洲久久久国产精品| 中文字幕最新亚洲高清| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 婷婷六月久久综合丁香| 国产精品永久免费网站| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片 | 12—13女人毛片做爰片一| 午夜福利视频1000在线观看 | 别揉我奶头~嗯~啊~动态视频| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影| 亚洲自偷自拍图片 自拍| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 久久久水蜜桃国产精品网| 91大片在线观看| 在线永久观看黄色视频| 日韩欧美在线二视频| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| 国产一区在线观看成人免费| 一卡2卡三卡四卡精品乱码亚洲| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 亚洲精品在线观看二区| 无人区码免费观看不卡| 精品人妻1区二区| 精品国产一区二区久久| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 少妇粗大呻吟视频| 国产国语露脸激情在线看| 老熟妇仑乱视频hdxx| 精品欧美国产一区二区三| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 视频区欧美日本亚洲| 久久国产亚洲av麻豆专区| 国产一区二区激情短视频| 国产激情欧美一区二区| 99国产精品免费福利视频| 人人澡人人妻人| 88av欧美| 亚洲在线自拍视频| 天堂√8在线中文| 久久青草综合色| 长腿黑丝高跟| 男男h啪啪无遮挡| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 日本a在线网址| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 97人妻天天添夜夜摸| 久久亚洲真实| 国产亚洲av高清不卡| 日韩大码丰满熟妇| 999精品在线视频| 99在线视频只有这里精品首页| 丝袜在线中文字幕| 美女 人体艺术 gogo| 国产精品久久久久久亚洲av鲁大| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 | 亚洲av成人一区二区三| 在线观看免费视频网站a站| 可以在线观看的亚洲视频| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站 | 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 久久热在线av| av欧美777| 欧美色欧美亚洲另类二区 | 国产亚洲av嫩草精品影院| 欧美精品啪啪一区二区三区| 女性生殖器流出的白浆| svipshipincom国产片| 无遮挡黄片免费观看| 精品欧美国产一区二区三| 少妇 在线观看| 日日干狠狠操夜夜爽| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站 | 黄片播放在线免费| 99在线人妻在线中文字幕| 精品久久久久久久人妻蜜臀av | 看免费av毛片| or卡值多少钱| 女性被躁到高潮视频| 日日干狠狠操夜夜爽| 777久久人妻少妇嫩草av网站| 欧美在线一区亚洲| 欧美日韩精品网址| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区蜜桃| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 欧美老熟妇乱子伦牲交| 在线观看免费视频日本深夜| 一区二区日韩欧美中文字幕| 18禁黄网站禁片午夜丰满| 婷婷六月久久综合丁香| 免费不卡黄色视频| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产看品久久| 欧美国产日韩亚洲一区| 天堂动漫精品| 日日爽夜夜爽网站| 日韩视频一区二区在线观看| 免费在线观看视频国产中文字幕亚洲| 夜夜爽天天搞| 精品国产亚洲在线| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 日韩大尺度精品在线看网址 | 中文字幕最新亚洲高清| 嫩草影视91久久| 国产亚洲av嫩草精品影院| 国产精品国产高清国产av| 国产精品av久久久久免费| 久久 成人 亚洲| АⅤ资源中文在线天堂| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 欧美一区二区精品小视频在线| 成人手机av| 亚洲熟女毛片儿| a级毛片在线看网站| 在线十欧美十亚洲十日本专区| 亚洲无线在线观看| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 久久伊人香网站| 欧美在线黄色| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| 香蕉丝袜av| 亚洲一区二区三区不卡视频| 18禁美女被吸乳视频| 黑人巨大精品欧美一区二区mp4| 99香蕉大伊视频| 午夜免费成人在线视频| 精品久久久久久成人av| 长腿黑丝高跟| 欧美绝顶高潮抽搐喷水| 久久久久国内视频| 亚洲成人久久性| 欧美色欧美亚洲另类二区 | 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 夜夜爽天天搞| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色 | 国产精品爽爽va在线观看网站 | 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频 | 欧美亚洲日本最大视频资源| 97超级碰碰碰精品色视频在线观看| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 俄罗斯特黄特色一大片| 黄色成人免费大全| 免费在线观看黄色视频的| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 一进一出好大好爽视频| 一级毛片精品| 色播亚洲综合网| 亚洲精品中文字幕在线视频| 狂野欧美激情性xxxx| 午夜福利,免费看| 91九色精品人成在线观看| 麻豆av在线久日| 成人国产一区最新在线观看| 日韩欧美在线二视频| 久久香蕉国产精品| 亚洲色图av天堂| 日韩有码中文字幕| 在线观看免费视频网站a站| 99精品在免费线老司机午夜| 国产成人精品无人区| 动漫黄色视频在线观看| 青草久久国产| 老司机靠b影院| 十分钟在线观看高清视频www| av视频免费观看在线观看| 可以在线观看毛片的网站| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| av片东京热男人的天堂| 黄片小视频在线播放| 国产精品野战在线观看| 51午夜福利影视在线观看| 亚洲中文字幕一区二区三区有码在线看 | 色综合欧美亚洲国产小说| 天堂动漫精品| 757午夜福利合集在线观看| 一区在线观看完整版| 精品久久久久久,| 国产精品一区二区免费欧美| 亚洲九九香蕉| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 午夜免费观看网址| 美国免费a级毛片| 91国产中文字幕| 亚洲国产精品sss在线观看| 我的亚洲天堂| 亚洲av熟女| 悠悠久久av| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| 老熟妇乱子伦视频在线观看| 国产熟女午夜一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲av电影不卡..在线观看| 成人免费观看视频高清| 欧美精品亚洲一区二区| 无人区码免费观看不卡| 国产主播在线观看一区二区| 精品久久久久久久人妻蜜臀av | 国产99久久九九免费精品| 少妇裸体淫交视频免费看高清 | 亚洲av电影不卡..在线观看| 亚洲中文av在线| 9热在线视频观看99| 精品国产一区二区久久| 国产免费av片在线观看野外av| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 欧美一区二区精品小视频在线| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 美国免费a级毛片| 久久性视频一级片| 97碰自拍视频| 亚洲精品国产色婷婷电影| 免费看美女性在线毛片视频| 动漫黄色视频在线观看| 成熟少妇高潮喷水视频| 成人亚洲精品一区在线观看| 日韩中文字幕欧美一区二区| 91麻豆av在线| 成人免费观看视频高清| 久久香蕉精品热| 欧美日韩福利视频一区二区| 色综合亚洲欧美另类图片| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 9色porny在线观看| cao死你这个sao货| 国产精品综合久久久久久久免费 | 午夜免费成人在线视频| 淫妇啪啪啪对白视频| 人成视频在线观看免费观看| 嫩草影视91久久| 亚洲情色 制服丝袜| 国内毛片毛片毛片毛片毛片| 少妇粗大呻吟视频| 亚洲精品国产色婷婷电影| 日本免费a在线| 老司机靠b影院| 美女扒开内裤让男人捅视频| 日韩视频一区二区在线观看| 999精品在线视频| 成人18禁在线播放| 日本免费a在线| 大型黄色视频在线免费观看| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 18禁美女被吸乳视频| 老汉色∧v一级毛片|