李磊 馬憲民
摘 要:為提高電力系統(tǒng)電磁暫態(tài)計(jì)算精度,輸電線路元件模擬常用分布參數(shù),電磁暫態(tài)仿真軟件中,也有與之匹配的輸電線路頻率相關(guān)模型。為驗(yàn)證ATP與PSCAD中該模型的精確度,提出一種時(shí)域仿真反推算輸電線路衰減系數(shù)的方法,通過(guò)卡爾松公式計(jì)算輸電線路理論衰減系數(shù);分別建立輸電線路電磁暫態(tài)仿真模型,使系統(tǒng)在某一頻率下進(jìn)行暫態(tài)仿真直至穩(wěn)態(tài),分析線路中點(diǎn)與末端電壓波形,利用穩(wěn)態(tài)參數(shù)反推算其衰減系數(shù),比較在不同頻率下與理論計(jì)算所得衰減系數(shù)的誤差;通過(guò)對(duì)比輸電線路參數(shù)理論計(jì)算值與仿真計(jì)算值,分析誤差產(chǎn)生的原因。結(jié)果表明:輸電線路暫態(tài)過(guò)程中,高頻下的衰減系數(shù)遠(yuǎn)大于工頻。隨著頻率的升高,輸電線路參數(shù)正序、零序的衰減系數(shù)都逐漸增大,且零序表現(xiàn)的更為明顯,在頻率為50 000 Hz時(shí),其衰減系數(shù)可達(dá)到工頻時(shí)的17倍;比較理論與仿真計(jì)算結(jié)果,ATP中的頻率相關(guān)模型參數(shù)計(jì)算比較精確,50 000 Hz時(shí)計(jì)算出衰減系數(shù)誤差為0.66%,PSCAD中衰減系數(shù)誤差較為明顯,50 000 Hz時(shí)計(jì)算出衰減系數(shù)誤差為3.41%,且隨著頻率的增大,衰減系數(shù)誤差也越來(lái)越大。究其原因,PSCAD中線路參數(shù)計(jì)算得到的電阻值偏大,其與程序中求解頻變參數(shù)計(jì)算公式有關(guān),電磁暫態(tài)仿真時(shí)需予以重視。
關(guān)鍵詞:輸電線路;分布參數(shù);反推算;衰減系數(shù);頻變參數(shù)
中圖分類號(hào):TM 743
文獻(xiàn)標(biāo)志碼:
A
文章編號(hào):1672-9315(2023)06-1219
-08
DOI:10.13800/j.cnki.xakjdxxb.2023.0620開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
A frequency-dependent model for transient analysis of transmission lines
LI Lei,MA Xianmin(College of Electrical and Control Engineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:
In order to improve the accuracy of electromagnetic transient calculation of power system,the distribution parameters are commonly used in the simulation of transmission line components.In the electromagnetic transient simulation software,there are also corresponding transmission line frequency correlation models.In order to verify the accuracy of the model in ATP and PSCAD,a method for inversely calculating the attenuation coefficient of transmission lines was proposed by time domain simulation,and the theoretical attenuation coefficient of transmission lines was calculated by Karlssons formula.The two software were used to establish the electromagnetic transient simulation model of the transmission line,so that the system can be simulated to the steady state at a certain frequency,the voltage waveforms at the midpoint and the end of the line were analyzed,the attenuation coefficient was inversely calculated by using the steady-state parameters,and the error of the attenuation coefficient was compared with the theoretical calculation at different frequencies.By comparing the theoretical calculation values of transmission line parameters with the simulation calculation values,the causes of errors were analyzed.The results show that the attenuation coefficient at high frequency is much greater than that at power frequency during the transient process of transmission line.With the increase of frequency,the attenuation coefficients of the transmission line parameters in positive sequence and zero sequence gradually increase,and the zero sequence is more obvious.when the frequency is 50 000 Hz,the attenuation coefficient can reach 17 times that of power frequency.Comparing the theoretical and simulation results,the frequency-related model parameters in ATP are more accurate.The error of attenuation coefficient is 0.66% at 50 000 Hz,and the error of attenuation coefficient in PSCAD is more obvious.The error of attenuation coefficient is 3.41% at 50 000 Hz,and with the increase of frequency,the attenuation coefficient error is also increasing.The reason is that the resistance value calculated by line parameters in PSCAD is too large,which is related to the calculation formula of frequency-dependent parameters in the program.Attention should be paid to electromagnetic transient simulation.
Key words:transmission line;distributed parameter element;inverse estimation;attenuation coefficient;frequency-varying parameter
0 引 言近年來(lái)超遠(yuǎn)距離、超大容量輸電技術(shù)逐漸興起,超特高壓直流、交流輸電方式被各個(gè)研究機(jī)構(gòu)關(guān)注。為更好地模擬、預(yù)測(cè)此類輸電方式在各個(gè)情況下的運(yùn)行狀況,電磁暫態(tài)仿真必不可少。輸電線路作為最重要的環(huán)節(jié)之一,其模型的建立會(huì)根據(jù)研究?jī)?nèi)容的不同而考慮因素不同,建立的模型特點(diǎn)也參差不齊[1-5]。對(duì)于復(fù)雜環(huán)境下半波傳輸線理論,提出分段建模的辦法,并綜合考慮復(fù)長(zhǎng)輸電線路沿線電壓和電流分布情況;基于多導(dǎo)體雜環(huán)境求解線路分布參數(shù),通過(guò)鏈參數(shù)矩陣級(jí)聯(lián)各分段線路,建立精細(xì)化傳輸線路模型[6];系統(tǒng)暫態(tài)過(guò)程中,由于輸電線路會(huì)因頻率變化而導(dǎo)致線路參數(shù)發(fā)生變化,其對(duì)計(jì)算結(jié)果有很大影響,為此提出了線路導(dǎo)納權(quán)函數(shù)法,通過(guò)選取線路的電流沖激響應(yīng)作為基元,利用卷積運(yùn)算求解頻變參數(shù)線路的暫態(tài)過(guò)程。但由于導(dǎo)納權(quán)函數(shù)具有時(shí)間較長(zhǎng)的多次脈沖,進(jìn)行卷積運(yùn)算時(shí)必須在某一時(shí)刻截?cái)啵蕰?huì)失去大量信息導(dǎo)致計(jì)算誤差[7];為了提高輸電線路頻變特性下參數(shù)計(jì)算速度與精度,提出前、反行波權(quán)函數(shù)法,其將線路阻抗特性視為不隨頻率變化常數(shù),再進(jìn)行加權(quán)處理前行波、反行波,再利用指數(shù)函數(shù)對(duì)線路階躍響應(yīng)及脈沖導(dǎo)納響應(yīng)進(jìn)行擬合,利用插值法將卷積運(yùn)算簡(jiǎn)化為由當(dāng)前輸入值及其歷史值組成的遞推公式,設(shè)置收斂值,從而大大節(jié)省計(jì)算時(shí)間,提高計(jì)算精度[8];對(duì)于具有頻率相關(guān)參數(shù)的輸電線路,由于存在非線性時(shí)變網(wǎng)絡(luò),其中含有的脈沖響應(yīng)項(xiàng),將影響線路參數(shù)計(jì)算速度,為此提出一種簡(jiǎn)單有效的脈沖響應(yīng)計(jì)算方法,通過(guò)分離不同線路部分從而提高計(jì)算速度[26];此外,部分學(xué)者通過(guò)多相混合模型在不影響計(jì)算精度的同時(shí)對(duì)不同相域進(jìn)行連續(xù)轉(zhuǎn)置,從而縮短計(jì)算時(shí)間[27]。輸電線路中的電壓、電流均以行波形式出現(xiàn)。當(dāng)系統(tǒng)發(fā)生某一暫態(tài)過(guò)程,輸電線路中出現(xiàn)的過(guò)電壓或過(guò)電流在傳播過(guò)程中會(huì)以與之匹配的衰減系數(shù)衰減至穩(wěn)態(tài)[9-11]。對(duì)輸電線路的電磁暫態(tài)仿真主要是為了計(jì)算分析毫秒級(jí)以內(nèi)的電壓、電流瞬時(shí)值變化過(guò)程,計(jì)算系統(tǒng)各個(gè)節(jié)點(diǎn)上可能出現(xiàn)的暫態(tài)過(guò)電壓、過(guò)電流,以便根據(jù)其對(duì)相關(guān)電力設(shè)備進(jìn)行合理設(shè)計(jì)[12-13]。而急劇變化過(guò)程中振蕩頻率往往達(dá)到上千赫茲,對(duì)電壓、電流的波過(guò)程有很大影響[13-18]。輸電線路在高頻下的衰減系數(shù)大于工頻下的衰減系數(shù),如果仿真時(shí)使用工頻參數(shù),則計(jì)算的峰值會(huì)虛高很多,而且信號(hào)的衰減也比實(shí)際要慢,計(jì)算結(jié)果會(huì)有很大誤差。根據(jù)研究需要,輸電線路模型通常都是在分布參數(shù)的基礎(chǔ)上,通過(guò)將模擬濾波技術(shù)應(yīng)用于求解頻變參數(shù)線路,建立輸電線路頻率相關(guān)模型[19-23]。目前,對(duì)輸電線路的建模電磁暫態(tài)仿真程序都有輸電線路頻率相關(guān)模型,但計(jì)算精度均有偏差。根據(jù)不同考慮因素,常見(jiàn)的電磁暫態(tài)計(jì)算軟件中包含的頻率相關(guān)模型可以分為以下2種:
1)ATP中的JMarti模型;
2)PSCAD中的頻變模型。文中從卡爾松公式入手,計(jì)算輸電線路頻率相關(guān)模型的基本參數(shù),提出一種時(shí)域仿真反推算線路衰減系數(shù)的方法,利用ATP-EMTP和PSCAD分別建立輸電線路動(dòng)態(tài)仿真模型,分析線路中點(diǎn)與末端電壓波形,利用穩(wěn)態(tài)參數(shù)來(lái)反推算其衰減系數(shù),比較在不同頻率下與理論計(jì)算所得衰減系數(shù)的誤差,對(duì)模型的準(zhǔn)確性進(jìn)行比較。
3 線路參數(shù)仿真計(jì)算仿真線路物理結(jié)構(gòu)與基本參數(shù)如圖1所示,仿真中電源取7個(gè)頻率:f=0.05,0.5,5,50,500,5 000,50 000 Hz;電源取零序、正序2種情況。電壓幅值可取100 V,能夠保證計(jì)算精度,并且便于計(jì)算結(jié)果的后續(xù)使用。仿真總時(shí)長(zhǎng)按如下取值:電壓前行波到達(dá)末端E后,發(fā)生全反射,但直到仿真結(jié)束反射波沒(méi)有到達(dá)點(diǎn)M。分別在ATP與PSCAD中使用頻率相關(guān)模型建立反推算電路,其中電導(dǎo)均取G=1×10-8 S/km,利用式(7)~(8),分別計(jì)算反推算所得正序和零序衰減系數(shù)及誤差,反推算值見(jiàn)表3和表4,其線路參數(shù)衰減誤差的對(duì)比如圖4所示。
通過(guò)仿真反推算電路得到的輸電線路正序和零序衰減系數(shù)值,與表1和表2得到的理論計(jì)算結(jié)果進(jìn)行比較,可以得到相應(yīng)的計(jì)算誤差。從圖4可以看出,隨著頻率的升高,正序、零序的衰減系數(shù)都逐漸增大,且零序表現(xiàn)得更為明顯,在50 000 Hz時(shí),其衰減系數(shù)已經(jīng)達(dá)到工頻時(shí)的17倍,2個(gè)仿真模型也同時(shí)驗(yàn)證了上述理論分析的正確性,即輸電線路暫態(tài)過(guò)程中,高頻下的衰減系數(shù)大于工頻,若仿真模擬時(shí)僅使用工頻模型,則計(jì)算的參數(shù)會(huì)較實(shí)際值虛高很多,且衰減至穩(wěn)態(tài)的速度也會(huì)延緩,與實(shí)際結(jié)果產(chǎn)生誤差,難以對(duì)輸電線路的暫態(tài)過(guò)程進(jìn)行精確分析。
從2個(gè)仿真模型誤差結(jié)果也可看到,相同模型參數(shù)下,ATP中頻率相關(guān)模型仿真反推算得到的衰減系數(shù)與理論計(jì)算結(jié)果較為契合,衰減系數(shù)誤差均保持在1%之內(nèi)。而PSCAD的計(jì)算結(jié)果,雖然其衰減系數(shù)變化趨勢(shì)與理論計(jì)算結(jié)果吻合,但隨著頻率的升高,計(jì)算誤差也呈現(xiàn)逐漸增大的趨勢(shì),相較于ATP計(jì)算結(jié)果,其計(jì)算精確度存在較大偏差。為了進(jìn)一步驗(yàn)證造成ATP中頻率相關(guān)模型和PSCAD中頻率相關(guān)模型衰減系數(shù)不同的原因,利用ATP和PSCAD中的線路參數(shù)計(jì)算模塊分別對(duì)圖1所示的線路模型進(jìn)行參數(shù)計(jì)算,得到其與理論計(jì)算結(jié)果的比較情況見(jiàn)表5和表6。
由表5和表6可知,低頻、工頻時(shí),ATP與PSCAD分別計(jì)算的線路零序和正序電阻值與理論計(jì)算值誤差極小,均在0.02%左右,可忽略不計(jì);高頻時(shí),ATP的計(jì)算值誤差也都保持在1%以內(nèi),PSCAD的計(jì)算誤差逐漸開始變大,隨著頻率的升高,計(jì)算誤差也越來(lái)越大。
輸電線路暫態(tài)過(guò)程與線路參數(shù)有關(guān),波在其暫態(tài)過(guò)程傳播時(shí)的難易程度,即在電阻上的損耗程度,可用衰減系數(shù)來(lái)表示。造成PSCAD中頻率相關(guān)模型的衰減系數(shù)偏大的原因是在PSCAD線路參數(shù)計(jì)算中,輸電線路的計(jì)算模型與實(shí)際不符,建模過(guò)程中,求解線路頻變參數(shù)的計(jì)算公式程序在計(jì)算高頻時(shí)存在偏差,導(dǎo)致參數(shù)計(jì)算值偏大,衰減系數(shù)偏大。ATP線路模型求解線路頻變參數(shù)的計(jì)算公式程序與實(shí)際比較貼合,計(jì)算結(jié)果較為精確。
4 模型對(duì)比由于高壓輸電線路電壓等級(jí)一般為220 kV及以上,為了更進(jìn)一步說(shuō)明高壓輸電線路ATP中的頻率相關(guān)模型和PSCAD中頻率相關(guān)模型的區(qū)別,利用ATP和PSCAD分別建立高壓輸電線路模型并進(jìn)行三相空載合閘試驗(yàn)仿真。三相空載合閘試驗(yàn)可以反映輸電線路末端對(duì)電壓電流波形的反射作用,同時(shí)也能夠比較不同輸電線路模型中電壓電流高頻分量的衰減過(guò)程。PSCAD中的頻率相關(guān)
模型的衰減系數(shù)大于理論值,這對(duì)輸電線路電磁暫態(tài)過(guò)程有明顯影響。
通過(guò)正序三相空載合閘試驗(yàn),分析使用不同仿真模型
ATP和PSCAD中頻率相關(guān)模型產(chǎn)生的不同暫態(tài)過(guò)程。
圖5為建立的220 kV輸電線路分別在ATP和PSCAD的頻率相關(guān)模型下,三相空載合閘時(shí)A相的末端電壓。線路在空載合閘過(guò)程中,產(chǎn)生大量的高頻分量,導(dǎo)致2個(gè)程序計(jì)算的線路參數(shù)的不同,過(guò)渡到穩(wěn)態(tài)的時(shí)間不同。其中圖(b)是圖(a)的局部放大圖。
從圖5可以看出,2種程序所搭建的高壓輸電線路模型在合閘瞬間波形和最終穩(wěn)態(tài)波形均比較接近,其不同點(diǎn)是暫態(tài)向穩(wěn)態(tài)過(guò)渡過(guò)程存在較大差異。2種計(jì)算模型下,紅色線條剛開始包絡(luò)黑色線條,到后期逐漸被黑色線條包絡(luò),即PSCAD頻率相關(guān)模型受計(jì)算公式程序影響,暫態(tài)起始值較大,且對(duì)高頻分量的衰減比較快,而ATP的高頻分量的衰減相對(duì)慢一些,與實(shí)際情況接近。
5 結(jié) 論1)輸電線路暫態(tài)過(guò)程中,高頻下的衰減系數(shù)遠(yuǎn)大于工頻。隨著頻率的升高,輸電線路參數(shù)正序、零序的衰減系數(shù)都逐漸增大,且零序表現(xiàn)得更為明顯,在頻率為50 000 Hz時(shí),其衰減系數(shù)可達(dá)到工頻時(shí)的17倍。2)比較理論與仿真計(jì)算結(jié)果,ATP中的頻率相關(guān)模型參數(shù)計(jì)算比較精確,PSCAD中的頻率相關(guān)模型存在一定的誤差。相同模型參數(shù)下,ATP中頻率相關(guān)模型仿真反推算得到衰減系數(shù)與理論計(jì)算結(jié)果較為契合,衰減系數(shù)誤差均保持在1%之內(nèi)。PSCAD雖衰減系數(shù)變化趨勢(shì)與理論計(jì)算結(jié)果吻合,但隨著頻率的升高,計(jì)算誤差呈現(xiàn)逐漸增大趨勢(shì)。3)PSCAD頻率相關(guān)模型在高頻計(jì)算時(shí)誤差較大,其原因是該軟件在建立模型時(shí),求解線路頻變參數(shù)計(jì)算程序公式與實(shí)際存在偏差,導(dǎo)致計(jì)算電阻值偏大,衰減系數(shù)偏大。故在高頻仿真時(shí)需要引起足夠的重視。參考文獻(xiàn)(References):
[1]
李智琦,羅日成,李穩(wěn),等.±800 kV特高壓直流輸電線路帶電作業(yè)電位轉(zhuǎn)移特性分析[J].高壓電器,2020,56(3):164-168,175.LI Zhiqi,LUO Richeng,LI Wen,et al.Analysis of potential transfer characteristics of live working on ±800 kV UHVDC transmission lines[J].High Voltage Apparatus,2020,56(3):164-168,175.[2]林偉芳,易俊,賈俊川,等.故障后半波長(zhǎng)輸電線路的穩(wěn)態(tài)過(guò)電壓控制措施[J].電力建設(shè),2019,40(2):109-116.
LIN Weifang,YI Jun,JIA Junchuan,et al.Study on system stability control measures for steady-state overvoltage in UHV half wavelength transmission lines[J]
.Electric Power Construction,2019,40(2):109-116.
[3]肖宏峰,羅日成,黃軍,等.基于多重雷擊的超高壓輸電線路雷過(guò)電壓分析[J].高壓電器,2022,58(8):245-251.XIAO Hongfeng,LUO Richeng,HUANG Jun,et al.
Lightning overvoltage analysis of ultra-high voltage transmission line based on multiple lightning strikes[J].High Voltage Apparatus,2022,58(8):245-251.
[4]周治伊,牛浩明,崔力心,等.特高壓輸電線路故障工頻相量高精度提取方法[J].電工技術(shù),2020(23):11-14.
ZHOU Zhiyi,NIU Haoming,CUI Lixin,et al.High precision extraction method of power frequency phasor for UHV transmission line fault[J].Electric Engineering,2020(23):11-14.
[5]CARSON J R.Wave propagation in overhead wires with ground return[J].Bell System Technical Journal,1926(5):539-554.
[6]焦重慶,汪貝,李昱蓉.用于半波長(zhǎng)輸電線路的精細(xì)化傳輸線模型[J].高電壓技術(shù),2018,44(1):3-13.
JIAO Chongqing,WANG Bei,LI Yurong.Refined transmission line model for half-wavelength transmission lines[J].High Voltage Engineering,2018,44(1):3-13.
[7]李云閣.輸電線路電磁暫態(tài)仿真及應(yīng)用[M].北京:中國(guó)電力出版社,2019.
[8]郎凱,張重遠(yuǎn).強(qiáng)干擾下的輸電線路參數(shù)測(cè)量研究和實(shí)現(xiàn)[J].陜西電力,2012,40(12):39-42.
LANG Kai,ZHANG Zhongyuan.Research and realization of transmission line parameter measurement under strong interference[J].Shaanxi Electric Power,2012,40(12):39-42.
[9]段建東,程文姬,魏朝陽(yáng),等.PSASP2 ATP暫態(tài)模型參數(shù)轉(zhuǎn)換研究及軟件研發(fā)[J].智慧電力,2021,49(1):102-108.DUAN Jiandong,CHENG Wenji,WEI Chaoyang,et al.Research on parameter conversion and software development of PSASP2 ATP transient model[J].Smart Power,2021,49(1):102-108.
[10]肖遙,范毅,程瀾.單回及同塔雙回交流輸電線路參數(shù)測(cè)量理論[J].中國(guó)電機(jī)工程學(xué)報(bào),2016,36(20):5515-5522.
XIAO Yao,F(xiàn)AN Yi,CHENG Lan.A parameter measurement theory of single and double circuit AC transmission lines[J].Proceedings of the CSEE,2016,36(20):5515-5522.
[11]MARTI J R.Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations[J].IEEE Transactions on Power Apparatus and
Systems,1982,101(1):147-157.
[12]黃宇辰,楊真.雷擊輸電線路時(shí)全波電磁暫態(tài)特性研究[J].電網(wǎng)與清潔能源,2022,38(9):10-16.HUANG Yuchen,YANG Zhen.A study on full-wave electromagnetic transient characteristics when lightning strikes a transmission line[J].Power System and Clean Energy,2022,38(9):10-16.
[13]陳勇,李鵬,張忠軍,等.基于PCA-GA-LSSVM的輸電線路覆冰負(fù)荷在線預(yù)測(cè)模型[J].電力系統(tǒng)保護(hù)與控制,2019,47(10):110-119.
CHEN Yong,LI Peng,ZHANG Zhongjun,et al.On-line forecasting model of transmission line icing load based on PCA-GA-LSSVM[J].Power System Protection and Control,2019,47(10):110-119.
[14]MEYER W S,DOMMEL H W.Numerical modeling of frequency-dependent transmission parameters in an electromagnetic transient program[J].IEEE PICA Conference,1974,93(5):1401-1409.
[15]張韻琦,叢偉,張玉璽.基于初始電壓行波頻域衰減速率的MMC-HVDC線路保護(hù)方案[J].電力自動(dòng)化設(shè)備,2020,40(12):143-155.ZHANG Yunqi,CONG Wei,ZHANG Yuxi.MMC-HVDC line protection scheme based on frequency domain attenuation rate of initial voltage traveling wave[J].Electric Power Automation Equipment,2020,40(12):143-155.
[16]MARTI L.Low-order approximation of transmission line parameters for frequency-dependent models[J].IEEE Transactions on Power Apparatus and Systems,1983,102(11):3582-3589.
[17]王煒,王全金,尹力,等.基于零模行波波速量化的高壓輸電線路雙端故障定位方法[J].電力自動(dòng)化設(shè)備,2022,42(12):165-170.WANG Wei,WANG Quanjin,YIN Li,et al.Two-terminal fault location method for high-voltage transmission line based on zero-mode traveling wave velocity quantization[J].Electric Power Automation Equipment,2022,42(12):165-170.
[18]林先堪,姜蘇.基于多脈沖回?fù)綦娏髂P偷妮旊娋€路耦合過(guò)電壓研究[J].電工技術(shù),2021(4):55-56,58.LIN Xiankan,JIANG Su.Study on coupling overvoltage of transmission line based on multi-pulse return current model[J].Electric Engineering,2021(4):55-56,58.
[19]滿九方,謝小榮,唐健,等.適用于柔直系統(tǒng)高頻諧振分析的輸電線路模型[J].電網(wǎng)技術(shù),2021,45(5):1782-1789.MAN Jiufang,XIE Xiaorong,
TANG Jian,et al.Transmission line model suitable for high frequency resonance analysis of flexible and direct system[J].Power System Technology,2021,45(5):1782-1789.
[20]CASTELLANOS F,
MARTI J R.Full frequency-dependent phase-domain transmission line model[J].IEEE Transactions on Power Systems,1997,12(3):1331-1339.
[21]哈恒旭,于洋,張旭光,等.考慮頻率相關(guān)參數(shù)的直流輸電線路故障特征分析[J].電力系統(tǒng)自動(dòng)化,2012,36(16):70-75.HA Hengxu,YU Yang,ZHANG Xuguang,et al.Frequency characteristics of fault transients for HVDC transmission line with frequency-dependent distributed parameters[J].Automation of Electric Power Systems,2012,36(16):70-75.
[22]劉俊,郭瑾程,魏占宏,等.頻變輸電線路模型中的低階擬合方法[J].電網(wǎng)技術(shù),2017,41(4):1197-1203.
LIU Jun,GUO Jincheng,WEI Zhanhong,et al.Low-order approximation method for frequency-dependent transmission line model[J].Power System Technology,2017,41(4):1197-1203.
[23]符傳福,姚冬,陳欽柱,等.輸電線路桿塔縱向不平衡載荷動(dòng)態(tài)預(yù)測(cè)模型研究[J].自動(dòng)化與儀器儀表,2020(1):142-145.FU Chuanfu,YAO Dong,CHEN Qinzhu,et al.Study on dynamic prediction model of longitudinal unbalanced load of transmission line tower[J].Automation and Instrumentation,2020(1):142-145.
[24]NGUYEN H V,DOMMEL H W,MARTI J R.Direct phase-domain modeling of frequency dependent overhead transmission lines[J].IEEE Transactions on Power Delivery,1997,12(3):1335-1342.
[25]陳鵬輝,周羽生,葛天科,等.基于ATP-EMTP的交直流同塔多回輸電線路耐雷性能分析[J].電瓷避雷器,2019(3):111-117.CHEN Penghui,ZHOU Yusheng,GE Tianke,et al.Lightning performance analysis of AC/DC multi-circuit transmission lines on the same tower based on ATP-EMTP[J].Insulators and Surge Arresters,2019(3):111-117.
[26]MAFFUCCI A,MIANO
G.An accurate time-domain model of transmission lines with frequency-dependent parameters[J].International Journal of Circuit Theory and Applications,2000,28:263-280.
[27]GUSTAVSEN B.Frequency-dependent transmission line modeling utilizing transposed conditions[J].IEEE Transactions on Power Delivery,2002,17(3):834-839.
[28]MORCHED A,
GUSTAVSEN
B,TARTIBI
M.A universal model for accurate calculation of eletromagnetic transients on overhead lines and underground cables[J].IEEE Transactions on Power Delivery,1999,14(3):1032-1038.
[29]時(shí)帥,安鵬,符楊,等.含風(fēng)電場(chǎng)的多端柔性直流輸電系統(tǒng)小信號(hào)建模方法[J].電力系統(tǒng)自動(dòng)化,2020,44(10):92-102.SHI Shuai,AN Peng,F(xiàn)U Yang,et al.Small signal modeling method of multi-terminal flexible DC transmission system with wind farm[J].Automation of Electric Power Systems,2020,44(10):92-102.
[30]藍(lán)磊,張韜,文習(xí)山,等.±1 100 kV輸電線路雷電屏蔽特性的模型試驗(yàn)及觀測(cè)[J].電網(wǎng)技術(shù),2020,44(1):105-113.LAN Lei,ZHANG Tao,WEN Xishan,et al.Model test and observation of lightning shielding characteristics of ±1 100 kV transmission lines[J].Power System Technology,2020,44(1):105-113.
(責(zé)任編輯:高佳)