• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    半休氏勒合金LiMgAs結(jié)構(gòu)和熱力學(xué)性質(zhì)的第一性原理計算

    2023-04-29 15:07:11楊建軍逯來玉
    關(guān)鍵詞:性質(zhì)

    楊建軍 逯來玉

    本文利用基于密度泛函理論的第一原理方法研究了Half-Heusler合金LiMgAs 的結(jié)構(gòu)性質(zhì)以及熱力學(xué)性質(zhì). 所計算的晶格常數(shù)、彈性模量以及彈性模量對壓強的導(dǎo)數(shù)均與實驗及其他理論值相吻合. 本文還計算了α、β和γ 三種相的LiMgAs聲子頻率,發(fā)現(xiàn)沒有虛頻的α-LiMgAs熱力學(xué)結(jié)構(gòu)穩(wěn)定,其他兩相均有虛頻,不穩(wěn)定. 本文通過準(zhǔn)諧德拜模型,研究并獲得了不同溫度0~1500 K和不同壓強0~70 GPa下的熱膨脹系數(shù)、熱容、熵、德拜溫度和Grüneisen參數(shù). 我們發(fā)現(xiàn),熱膨脹系數(shù)、熱容、熵和Grüneisen參數(shù)隨溫度的增加而增加,隨壓強的增加而減?。欢鴾囟群蛪簭妼Φ掳轀囟群蛷椥阅A康挠绊懞蛯ι厦嫫渌锢砹康挠绊懬『孟喾? 另外,當(dāng)溫度高于1000 K時,熱容值變化很小,遵循Dulong-Petit定律.

    第一性原理; 結(jié)構(gòu)和熱力學(xué)性質(zhì); 高溫和高壓; half-Heusler合金

    O521+.2A2023.024001

    收稿日期: 2022-08-05

    基金項目: 國家自然科學(xué)基金(50952025); 教育部高校學(xué)生司第一期供需對接就業(yè)育人項目(202201022688)

    作者簡介: 楊建軍(1976-), 男, 碩士, 研究方向為電子科學(xué)與技術(shù). E-mail: jianjun.yang999@qq.com

    First-principles calculations of structural and thermodynamic properties of half-Heusler alloy LiMgAs

    YANG Jian-Jun1, LU Lai-Yu2

    (1. Department of Microelectronics, Chengdu College of University of Electronic Science and Technology of China, Chengdu 611731, China;2. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China)

    The crystal structure and thermodynamic properties of half-Heusler alloy LiMgAs are investigated using first-principles calculations. The calculated ground-state quantities such as lattice parameter, bulk modulus and its pressure derivative are in agreement with previous works and the existing experimental data. Phonon spectra are calculated for LiMgAs in α, β and γ phases, it is found that the LiMgAs in α phase is dynamically stable due to no imaginary frequencies, the LiMgAs is dynamically unstable for β and γ phases with imaginary frequencies. Using the quasi-harmonic Debye model considering the phonon effects, the temperature and pressure dependencies of bulk modulus, heat capacity, entropy, Debye temperature, Grüneisen parameter and thermal expansion coefficient are investigated systematically in the ranges of 0~70 GPa and 0~1500 K. It is found that heat capacity, entropy, thermal expansion coefficient and Grüneisen parameter increase with the increasing temperature at a given pressure, and decrease with increasing temperature at a given temperature. However, the Debye temperature bulk modulus are contrary to the above laws of physical quantities. When temperature is higher than 1000 K, the heat capacity change a little, which obeys Dulong and Petits rule.

    First-principles; Structural and thermodynamic properties; High pressure and high temperature; Half-Heusler alloy

    1 Introduction

    The world at present is facing two major problems relating to energy. One is the energy crisis and another is its environmental impact arising from conventional ways of utilizing energy resources. The first problem is driving research for alternative energy resources and the second problem concerns better ways of utilizing the energy resources. Thermoelectricity is considered to be one of the potential ways towards addressing both these problems[1-3]. Half-Heusler materials are considered to be potential thermoelectric materials[4-6] because of their consistent temperature stability. Furthermore, they offer the possibility of alloying, which can reduce thermal conductivity due to mass fluctuation[2]. LiMgAs is a typical Half-Heusler materials, and there are lots of studies on the material, including experimental and theoretical research[7-15].

    The optical properties of LiMgAs have been measured using a photoluminescence method[7] and a scanning spectrophotometer[8]. Raman-scattering experiment has been used to measure the zone-center phonon modes of LiMgAs[9]. The structural, elastic, electronic and phonon properties of LiMgP and LiMgAs in different phases were studied by employing the plane wave pseudopotential method based on density functional theory, within the local density approximation[10]. Vibrational properties of LiMgAs in a-phase have been calculated[11] by using the density functional perturbation theory as implemented in the ABINIT code. The electronic and optical properties of the filled tetrahedral compounds LiMgN, LiMgP and LiMgAs were carried out which based on the First principles calculations by means of the full-potential linearized augmented plane wave method within the local density approximation[12]. Covalent bonding and the nature of band gaps in some half-Heusler compounds were investigated using LAPW and LMTO calculations[13]. The half-Heusler ternary LiMgZ (Z = P, As, Bi) compositions were discussed using the first principles study in the density functional theory and FP-LAPW method to study thermoelectric behaviors, electronic structure and structural properties[14]. First-principles calculations were performed to study electronic structures and magnetic properties of Mn doped LiMgAs system[15]. Despite much work on the structural and electronic properties of LiMgAs, however, few people have investigated the thermodynamic properties under pressure and temperature. In this work, the structural and thermodynamic properties for LiMgAs are researched using first principle within a generalized gradient approximation (GGA).

    2 Calculation methods

    The first-principles calculations of LiMgAs are performed by using CASTEP simulation package[16] which is based on density functional theory. The Vanderbilt ultrasoft pseudopotential[17] is used. Exchange-correlation effects are taken into account using the Generalized Gradient Approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)[18]. The plane wave cut-off energy of 460 eV is employed. The valance electrons is considered in this study included 1s2s1 for Li, 2p63s2 for Mg and 4s24p3 for As. The k-point meshes of 4 × 4 × 4 are generated by using the Monkhorst-Pack scheme[19].

    The calculations of thermodynamic properties, which are carried out by using the GIBBS program, are based on the Quasi-Harmonic Debye model (QHD)[20,21]. After the parameters of the minimum energy are calculated, the lattice parameters are obtained, the GIBBS code is input with the energy-volume (E-V) data acquired from the first-principles calculations using the previous structure set.

    3 Results and discussion

    3.1 Structural properties

    LiMgAs crystallizes in tetrahedral structure with a space group F43m. The structure can be assumed to be derived from the combination of a rock-salt type (NaCl) structure with a zinc-blende type structure. Mg cation sits at (0, 0, 0), with As at (0.25, 0.25, 0.25) and Li at (0.5, 0.5, 0.5) (α phase). It is also feasible for Li to occupy either the (0.75, 0.75, 0.75) site neighboring the Mg cation position (β phase) or switching with As sit in between the Mg and As (γ phase). For the α phase, β phase and γ phase of the LiMgAs, a series of the different lattice constant a are set to calculate the total energies E and corresponding volumes V, which shown in Fig. 1. It is noted that the α phase is the most stable state. The energy-volume(E-V) can be obtained by fitting the calculated E-V data to the third Birch-Murnaghan EOS[22]. At equilibrium volume, the obtaining lattice constants, bulk modulum B0(GPa) and its pressure deritive B′0 for the α phase, β phase and γ phase of the LiMgAs are listed in Tab. 1, compared with experimental data[8] and other theoretical results[10, 13, 15, 23]. It is seen the calculated values are in good agreement with experimental value and other calculated results.

    In order to investigate the behaviors of the phase transition pressure, we obtain the relation of the enthalpy and pressure using the third Birch-Murnaghan EOS[22]. According to the isoenthalpy principle, the phase transition pressure for the α phase and the γ phase is 26.5 GPa, for the β phase? and the γ phase is 2 GPa,? while there is no transition pressure for the α phase and the β phase, which is shown in Fig. 2.

    3.2 Dynamical properties

    The importance of the phonon interpretation of lattice dynamics is illustrated by the large number of physical properties that can be understood in terms of phonons: infrared, Raman, and neutron scattering spectra, specific heat, thermal expansion, and heat conduction, and so on. The basic theory of phonons, in crystals is well understood and has been described in detail[24,25]. In our phonon calculations, finite displacement calculations are carried out in the supercell with cutoff radius 5.0 , 7× 7 × 7 meshes are used in the interpolation of the phonon calculations. the phonon dispersion curves along the high symmetry directions in the Brillouin zone for LiMgAs in the α, β and γ phases are plotted in Fig.3. There are no imaginary frequencies in α phase in the Brillouin zone, however, the β phase? and the γ phase have imaginary frequencies, which intimates the LiMgAs in α phase is dynamically stable, the LiMgAs is dynamically unstable for β and γ phases. So, the following thermodynamic properties will only focus on the the α phase of LiMgAs.

    The calculated phonon frequencies of α phase at the zone center are TO(G)=238.82 cm-1, LO(G)=302.46 cm-1 , which agree well with the previous theoretical results[10] (TO(G)=253.30 cm-1, LO(G)=303.70 cm-1) and are smaller than experimental results (TO(G)=307 cm-1, LO(G)=329 cm-1). The discrepancies between the theoretical calculation and experimental results are similar to LiZnAs with identical structure[26], which may result from the difference between the observed and calculated lattice constants and lattice imperfection. Our calculated value of the zone-center LO(G)-TO(G) splittings are 63.64 cm-1 for the LiMgAs in α phase.

    3.3 Thermodynamic properties

    To investigate the thermodynamic properties of LiMgAs under high temperature and high pressure, we have applied the quasi-harmonic Debye approximation. As the first step, a set of total energy calculation versus primitive cell volume (E-V), in the static approximation, is carried out for each compound and fitted with the third Birch-Murnaghan EOS in order to determine its structural parameters at p= 0 and T = 0, and then derived the macroscopic properties as a function of p and T from standard thermodynamic relations. The thermal properties are determined in the temperature range from 0 to 1000 K, the pressure range from 0 to 70 GPa.

    The bulk modulus variation versus temperature at a given pressure is showed in Tab. 2. The compressibility increases with increasing temperature at a given pressure and decreases with pressure at a given temperature. These results are due to the fact that the effect of increasing pressure on the material is the same as the decreasing temperature of the material. The effect of the temperature T on the isothermal bulk modulus is less important than that of the pressure.

    The variation of the thermal expansion coefficient α as a function of temperature and pressure is showed in Fig. 4. It is shown that, at a given pressure, α increases sharply with the increase of temperature up to 300 K. When T > 300 K, α gradually increases linearly with enhanced temperature and the propensity of increment becomes moderate, which means that the temperature dependence of α is very small at high temperature. For a given temperature, α decreases drastically with the increase of pressure.

    Knowledge of the heat capacity of a substance not only provides essential insight into its vibrational properties, but also is mandatory for many applications. The relationship between the heat capacity CV and temperature at different pressures (p = 0, 20, 40, 70 GPa) is shown in Fig. 5, and CV is calculated by the obtained phonon dispersion, which is plotted hollow circle in Fig. 3. It is shown that the thermodynamic properties of LiMgAs based on the quasi-harmonic Debye approximation are reasonable. CV is very small at low temperatures, and approaches a constant value at high temperatures. At low temperatures, CV increases exponentially, which follow the Debye model (CV~T3), and at sufficiently high temperatures (>1000 K), the heat capacity obeys Dulong and Petits rule, and the difference between them is very slight, which are similar to the calculational results[27-31].

    Entropy is a measure of the chaos for a material system. Entropy under different pressures and temperatures is showed in Fig. 6. Under the same pressure, the entropy increases with the increase of temperature, and the increasing trend gradually slows down at high temperature. At the same temperature, entropy decreases with the increase of pressure. The rise and fall of entropy is relate to the vibration between LiMgAs atoms. Pressure reduces the vibration amplitude of Li, Mg and As atoms, so entropy decreases with increasing Pressure.

    The Debye temperature θD is closely related to many physical properties of solids, such as elastic properties, sound velocities, hardness and specific heat. Another important thermodynamic parameter is Grüneisen parameter γ, which describes the anharmonic effects in the crystal vibrations, and also, it is used to characterize the thermodynamic behavior of a material at high pressures and temperatures. the Debye temperatures and Grüneisen parameters for LiMgAs at different pressures and temperatures are listed in Tab. 2. At a constant temperature, θD increases with the increasing pressure, while γ decreases. However, at a constant pressure, θD decreases with the increasing temperature, while γ increases.

    4 Conclusions

    Using the first-principles plane-wave pseudopotential density functional theory within GGA and the quasi-harmonic Debye model (QHD), the structural, thermodynamic properties of LiMgAs have been investigated. The calculated structural parameters at zero pressure are in agreement with the available experimental data. It is found the phase transition pressure for the α phase and the γ phase is 26.5 GPa, and for the β phase? and the γ phase is 2 GPa. No phase transition occurs between α phase and? β phase. There are no imaginary frequencies in the α phase,?? which intimates the LiMgAs is dynamically stable in α phase, and β and γ phases are unstable due to imaginary frequencies.

    It is found that the high temperature leads to a smaller bulk modulus, a larger heat capacity, larger entropy, larger thermal expansion coefficient and a larger Grüneisen parameter at a given pressure. However, the high-pressure results in a larger bulk modulus, a smaller heat capacity, a smaller entropy, a smaller Grüneisen parameter and a smaller thermal expansion coefficient at a given temperature. The heat capacity and the thermal expansion coefficient tend to a constant value at high temperatures and high pressure.

    References:

    [1] Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat Mater, 2008, 7: 105.

    [2] Alam H, Ramakrishna S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials [J]. Nano Energy, 2013, 2: 190.

    [3] Yadav M K, Sanyal B. First-principles study of thermoelectric properties of CuI [J]. Mater Res Express, 2014, 1: 015708.

    [4] Hohl H, Ramirez A P, Goldmann C, et al. Efficient dopants for ZrNiSn-based thermoelectric materials [J]. Phys? Condens Matter, 1999, 11: 1697.

    [5] Nolas G S, Poon J, Kanatzidis M. Recent Developments in Bulk Thermoelectric Materials [J]. MRS Bulletin, 2006, 31: 199.

    [6] Yu C, Zhu T J, Shi R Z, et al. High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sinteri [J]. Acta Mater, 2009, 57: 2757.

    [7] Kuriyama K, Kushida K. Band edge and phonon-assisted deep level emissions in the ordered filled tetrahedral semiconductor LiMgP [J]. J Appl Phys, 2000, 87: 2303.

    [8] Kuriyama K, Kushida K. Optical band gap of the filled tetrahedral semiconductor LiMgAs [J]. J Appl Phys, 2000, 87: 3168.

    [9] Kuriyama K, Yamashita Y, Suzuki Y, et al. Raman scattering from the filled tetrahedral semiconductor LiMgAs [C]//Caldas M J, Studart N. Proceedings of the 29th International Conference on the Physics of Semiconductors. Rio de Janeiro, Brazil: American Insititute of Physics, 2010.

    [10] Soyalp F, Ugur G, Ugur S, et al. A first-principles study of the structural, elastic, electronic and phonon properties of LiMgP and LiMgAs in the a, b and c phases [J]. J Alloys Compd, 2013, 551: 108.

    [11] Mellouki A, Bennecer B, Kalarasse F. Calculation of the vibrational properties of LiMgAs [J]. J Phys: Condens Matter, 2009, 21: 305402.

    [12] Djeroud S, Kalarasse L, Bennecer B, et al. Electronic and optical properties of LiMgN, LiMgP and LiMgAs under hydrostatic pressure [J]. J Phys Chem Solids, 2009, 70: 26.

    [13] Kandpal H C, Felser C, Seshadri R. Covalent bonding and the nature of band gaps in some half-Heusler compounds [J]. J Phys D: Appl Phys, 2006, 39: 776.

    [14] Parsamehr S, Boochani A, Amiri M, et al. Thermodynamic phase diagram and thermoelectric properties of LiMgZ (Z = P, As, Bi): ab initio method study [J]. Philos Mag, 2020, 101: 1.

    [15] Zhang H Y, Zhang C Y, Du Y Y, et al. Photoelectric properties of Mn-doped LiMgAs new diluted magnetic semiconductors [J]. J Funct Mater, 2019, 9: 09102.

    [16] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J Phys: Condens Matter, 2002, 14: 2717.

    [17] Vanderbilt D. Soft self-consisitent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B, 1990, 41: 7892.

    [18] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J] Phys Rev Lett, 1996, 77: 3865.

    [19] Monkhorst H J, Pack J D. Special points for Brillouin-zone integration J]. Phys Rev B, 1976, 13: 5188.

    [20] Blanco M A, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Comput Phys Comm, 2004, 158: 57.

    [21] Poirer J P. Introduction to the physics of the earths interior[M]. England: Cambridge University Press, 1991.

    [22] Hill R. The elastic behaviour of a crystalline aggregate [J]. Proc Phys Soc, 1952, 65: 350.

    [23] Kalarasse F, Bennecer B, Mellouki A. Optical properties of the filled tetrahedral semiconductors LiMgX (X = N, P and As) [J]. J Phys: Condens Matter, 2006, 18: 7237.

    [24] Born M, Huang K. Dynamical theory of crystal lattices [M]. Oxford: Oxford University Press, 1954.

    [25] Ashcroft N W, Mermin N D. Solid state physics [M]. Stanford: Cengage Learning, 1976.

    [26] Kuriyama K, Ishikawa T. Raman scattering from the filled tetrahedral semiconductor LiZnAs [J]. Phys Rev B, 2005, 72: 233201.

    [27] Yi H X, Wang C J, Sun B, et al. First-principles study of structural, elastic, electronic, optical and thermodynamic properties of tungsten carbide at high temperature and high pressure [J]. J At Mol Phys(原子與分子物理學(xué)報), 2020, 37: 239.

    [28] Lei H R, Zhang L H. High-pressure physical properties for P6m2-ReB2[J]. J Sichuan Univ: Nat Sci Ed, 2022, 59: 014004.

    [29] Zheng P, Hou T P, Lin H Fu, et al. First-principles calculation of thermodynamic properties of alloy carbide Fe3Mo3C at high temperature and pressure [J]. J At Mol Phys(原子與分子物理學(xué)報), 2023, 40: 034001 (in Chinese).

    [30] Liu Y K, Dong L J, Zhang Y Y, et al. First-principles calculations of the mechanical and thermodynamic properties of MAX phases Nb2SnC and Nb2SnN [J]. J At Mol Phys(原子與分子物理學(xué)報), 2022, 39: 066005 (in Chinese).

    [31] Wang N, Du G S, Wang W X, et al. A first principles study on the mechanical and thermodynamic properties of MgCu4Sn-type rare earth-magnesium compounds [J]. J At Mol Phys(原子與分子物理學(xué)報), 2021, 38: 026003 (in Chinese).

    猜你喜歡
    性質(zhì)
    含有絕對值的不等式的性質(zhì)及其應(yīng)用
    MP弱Core逆的性質(zhì)和應(yīng)用
    弱CM環(huán)的性質(zhì)
    一類非線性隨機微分方程的統(tǒng)計性質(zhì)
    隨機變量的分布列性質(zhì)的應(yīng)用
    一類多重循環(huán)群的剩余有限性質(zhì)
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
    性質(zhì)(H)及其攝動
    九點圓的性質(zhì)和應(yīng)用
    免费观看性生交大片5| 亚洲成人一二三区av| 亚洲久久久国产精品| 国精品久久久久久国模美| 久久久久国产一级毛片高清牌| 19禁男女啪啪无遮挡网站| 九色亚洲精品在线播放| 久久久久精品国产欧美久久久 | 在现免费观看毛片| 少妇人妻 视频| 久久ye,这里只有精品| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| av网站在线播放免费| 久久精品国产亚洲av涩爱| 免费在线观看视频国产中文字幕亚洲 | 天美传媒精品一区二区| 国产精品久久久av美女十八| 精品国产国语对白av| 国产熟女欧美一区二区| 水蜜桃什么品种好| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 男女午夜视频在线观看| 亚洲精品av麻豆狂野| 哪个播放器可以免费观看大片| 黄网站色视频无遮挡免费观看| 99热国产这里只有精品6| 亚洲av日韩精品久久久久久密 | 十分钟在线观看高清视频www| 欧美老熟妇乱子伦牲交| 久久久久久人妻| 国产成人欧美| 亚洲精品国产色婷婷电影| 两性夫妻黄色片| 国产黄色免费在线视频| 看非洲黑人一级黄片| 国产一区二区在线观看av| 久久99一区二区三区| 黄频高清免费视频| 日韩一区二区三区影片| 久久精品亚洲av国产电影网| 午夜福利免费观看在线| 国产又色又爽无遮挡免| 啦啦啦视频在线资源免费观看| 成年美女黄网站色视频大全免费| 久久天躁狠狠躁夜夜2o2o | 电影成人av| 悠悠久久av| 精品第一国产精品| 国产一区二区激情短视频 | 国产高清国产精品国产三级| 国产淫语在线视频| 中文字幕高清在线视频| 亚洲成色77777| 婷婷色综合www| 成人黄色视频免费在线看| 好男人视频免费观看在线| 亚洲人成77777在线视频| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影 | 亚洲欧美清纯卡通| 亚洲精品日韩在线中文字幕| 中文字幕人妻丝袜一区二区 | 日韩视频在线欧美| 国产精品蜜桃在线观看| 91精品国产国语对白视频| 中文欧美无线码| 国产精品av久久久久免费| 日韩欧美精品免费久久| 久久久亚洲精品成人影院| 巨乳人妻的诱惑在线观看| 最近2019中文字幕mv第一页| av国产精品久久久久影院| 免费高清在线观看视频在线观看| 亚洲精华国产精华液的使用体验| 午夜精品国产一区二区电影| 欧美精品亚洲一区二区| 亚洲综合色网址| 麻豆av在线久日| 中文字幕另类日韩欧美亚洲嫩草| 日日啪夜夜爽| 久久精品国产综合久久久| 日韩不卡一区二区三区视频在线| 人体艺术视频欧美日本| 无限看片的www在线观看| 丰满乱子伦码专区| 99精国产麻豆久久婷婷| 久久久久久人人人人人| 人人妻人人添人人爽欧美一区卜| 日韩制服骚丝袜av| 亚洲国产欧美一区二区综合| 亚洲成人一二三区av| 丰满少妇做爰视频| 午夜激情久久久久久久| 亚洲国产欧美一区二区综合| 国产精品香港三级国产av潘金莲 | 精品久久蜜臀av无| 超色免费av| 精品视频人人做人人爽| 精品少妇一区二区三区视频日本电影 | 成人三级做爰电影| 中文字幕人妻熟女乱码| 免费在线观看完整版高清| 欧美变态另类bdsm刘玥| 国产爽快片一区二区三区| 水蜜桃什么品种好| av国产精品久久久久影院| 免费不卡黄色视频| 亚洲欧美精品自产自拍| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 亚洲在久久综合| 街头女战士在线观看网站| 精品人妻熟女毛片av久久网站| 久久久久久人妻| 丝袜脚勾引网站| 七月丁香在线播放| 制服诱惑二区| av视频免费观看在线观看| 夜夜骑夜夜射夜夜干| 日韩一卡2卡3卡4卡2021年| 99热网站在线观看| 成人手机av| 亚洲精品在线美女| 9热在线视频观看99| 日韩av免费高清视频| 日本色播在线视频| 国产精品成人在线| 老鸭窝网址在线观看| 亚洲国产日韩一区二区| 如何舔出高潮| 男男h啪啪无遮挡| 制服人妻中文乱码| 国产97色在线日韩免费| 下体分泌物呈黄色| 女性生殖器流出的白浆| 色综合欧美亚洲国产小说| 国产 精品1| 欧美国产精品一级二级三级| 欧美中文综合在线视频| 国产精品无大码| 如何舔出高潮| 亚洲一区中文字幕在线| 9色porny在线观看| 国产一区二区在线观看av| 天天躁夜夜躁狠狠久久av| 成年人免费黄色播放视频| 一区二区日韩欧美中文字幕| tube8黄色片| 黑人巨大精品欧美一区二区蜜桃| 高清欧美精品videossex| 国精品久久久久久国模美| 最黄视频免费看| 日韩大码丰满熟妇| 亚洲视频免费观看视频| 一区二区三区精品91| 久久国产精品大桥未久av| 久久久欧美国产精品| 777久久人妻少妇嫩草av网站| 欧美 亚洲 国产 日韩一| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 久久久亚洲精品成人影院| 大香蕉久久成人网| 色综合欧美亚洲国产小说| 婷婷色综合www| 亚洲精品日本国产第一区| 免费在线观看视频国产中文字幕亚洲 | 国产欧美日韩一区二区三区在线| 成年av动漫网址| 亚洲精品国产区一区二| 国产日韩欧美在线精品| 精品国产一区二区三区四区第35| 少妇被粗大的猛进出69影院| 看十八女毛片水多多多| 国产成人一区二区在线| 人妻一区二区av| 欧美日韩一区二区视频在线观看视频在线| 1024视频免费在线观看| 中文字幕色久视频| 一二三四中文在线观看免费高清| 亚洲精品日本国产第一区| 国产在线一区二区三区精| 久久精品国产亚洲av涩爱| 亚洲国产成人一精品久久久| 在线亚洲精品国产二区图片欧美| 午夜免费男女啪啪视频观看| 美女高潮到喷水免费观看| 免费高清在线观看日韩| 亚洲精品,欧美精品| 中国国产av一级| 中文乱码字字幕精品一区二区三区| 秋霞伦理黄片| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx| 人妻人人澡人人爽人人| 丁香六月天网| 90打野战视频偷拍视频| 国产极品天堂在线| 最黄视频免费看| 啦啦啦中文免费视频观看日本| 久久久久国产精品人妻一区二区| 久久婷婷青草| 亚洲久久久国产精品| 成人毛片60女人毛片免费| 精品一区二区三区四区五区乱码 | 一区福利在线观看| 婷婷色av中文字幕| 涩涩av久久男人的天堂| 亚洲av日韩精品久久久久久密 | 国产成人精品无人区| 99热国产这里只有精品6| 色综合欧美亚洲国产小说| www.精华液| 毛片一级片免费看久久久久| 丝袜在线中文字幕| 成年人午夜在线观看视频| 男人舔女人的私密视频| 国产探花极品一区二区| 欧美日韩视频精品一区| 在线观看免费午夜福利视频| 日韩成人av中文字幕在线观看| 狂野欧美激情性xxxx| 日韩大片免费观看网站| 精品国产乱码久久久久久小说| 51午夜福利影视在线观看| 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡| 国产乱来视频区| 亚洲欧洲国产日韩| 国产成人免费观看mmmm| 天天躁夜夜躁狠狠久久av| 国产野战对白在线观看| 91精品国产国语对白视频| a级毛片黄视频| 久久国产精品男人的天堂亚洲| 男的添女的下面高潮视频| 日韩大片免费观看网站| av国产精品久久久久影院| 一区二区三区四区激情视频| 最新的欧美精品一区二区| 黄色一级大片看看| 国产av码专区亚洲av| 午夜日本视频在线| 国产激情久久老熟女| 看免费av毛片| 999精品在线视频| 午夜福利乱码中文字幕| 国产女主播在线喷水免费视频网站| 精品一区二区三区四区五区乱码 | 亚洲人成77777在线视频| 99香蕉大伊视频| 色播在线永久视频| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 亚洲av日韩精品久久久久久密 | 热re99久久国产66热| av视频免费观看在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 宅男免费午夜| 久久久精品94久久精品| 精品视频人人做人人爽| 七月丁香在线播放| 九九爱精品视频在线观看| 日韩大码丰满熟妇| 一级a爱视频在线免费观看| 香蕉丝袜av| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 哪个播放器可以免费观看大片| 欧美日韩精品网址| 午夜福利网站1000一区二区三区| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 久久久久精品国产欧美久久久 | 热99国产精品久久久久久7| 亚洲av日韩精品久久久久久密 | 久久精品国产综合久久久| 亚洲成人国产一区在线观看 | 一边摸一边抽搐一进一出视频| 国产精品.久久久| 久久午夜综合久久蜜桃| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 九九爱精品视频在线观看| 中文欧美无线码| 热99国产精品久久久久久7| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 黄片小视频在线播放| 高清av免费在线| 亚洲伊人色综图| 国产精品一国产av| 日韩中文字幕欧美一区二区 | 久久久国产一区二区| 高清在线视频一区二区三区| 国产麻豆69| 亚洲av综合色区一区| 男的添女的下面高潮视频| 最近手机中文字幕大全| 19禁男女啪啪无遮挡网站| 777米奇影视久久| 国产精品久久久久久精品古装| 国产在线免费精品| svipshipincom国产片| 亚洲三区欧美一区| 国产精品久久久人人做人人爽| 久久人妻熟女aⅴ| √禁漫天堂资源中文www| 一本大道久久a久久精品| 无遮挡黄片免费观看| 欧美最新免费一区二区三区| 精品国产一区二区久久| 超碰成人久久| 尾随美女入室| 日韩一卡2卡3卡4卡2021年| 黄色怎么调成土黄色| 国产精品一二三区在线看| 美女高潮到喷水免费观看| 各种免费的搞黄视频| 欧美日韩av久久| 成人亚洲精品一区在线观看| 欧美精品av麻豆av| 在线亚洲精品国产二区图片欧美| 最近中文字幕2019免费版| 国产成人免费观看mmmm| 黄色毛片三级朝国网站| 亚洲欧美成人综合另类久久久| 欧美国产精品一级二级三级| 秋霞在线观看毛片| 午夜福利,免费看| 欧美日韩福利视频一区二区| 好男人视频免费观看在线| 纯流量卡能插随身wifi吗| 午夜福利在线免费观看网站| 一级片'在线观看视频| 免费看av在线观看网站| 老司机影院毛片| 少妇的丰满在线观看| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 亚洲成人国产一区在线观看 | 男人添女人高潮全过程视频| 久久性视频一级片| 最近手机中文字幕大全| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 韩国高清视频一区二区三区| 免费观看人在逋| 人人妻人人添人人爽欧美一区卜| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| 毛片一级片免费看久久久久| 亚洲欧美成人精品一区二区| 成年女人毛片免费观看观看9 | 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 国产福利在线免费观看视频| 夫妻午夜视频| 妹子高潮喷水视频| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线 | 国产精品99久久99久久久不卡 | 人妻人人澡人人爽人人| 99国产综合亚洲精品| 久久精品国产综合久久久| 国产高清不卡午夜福利| 9191精品国产免费久久| 国产av码专区亚洲av| 国产在视频线精品| 免费观看av网站的网址| av不卡在线播放| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 性高湖久久久久久久久免费观看| av卡一久久| 伦理电影大哥的女人| 日日爽夜夜爽网站| 国产高清不卡午夜福利| 国产精品久久久久成人av| 国产有黄有色有爽视频| 在现免费观看毛片| 久久天躁狠狠躁夜夜2o2o | 久久精品aⅴ一区二区三区四区| av又黄又爽大尺度在线免费看| 巨乳人妻的诱惑在线观看| 午夜激情久久久久久久| 久久久欧美国产精品| 亚洲av电影在线观看一区二区三区| 国产精品久久久人人做人人爽| 国产人伦9x9x在线观看| 亚洲久久久国产精品| 久久青草综合色| 国产欧美亚洲国产| 丰满少妇做爰视频| 叶爱在线成人免费视频播放| 一边摸一边抽搐一进一出视频| 伊人亚洲综合成人网| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 蜜桃国产av成人99| 精品国产一区二区久久| 国产精品久久久av美女十八| 国产精品免费大片| 亚洲精品一二三| 青春草亚洲视频在线观看| 欧美激情 高清一区二区三区| 欧美日韩视频高清一区二区三区二| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 国产一区二区激情短视频 | 久久热在线av| 精品酒店卫生间| 午夜福利视频精品| 国产高清不卡午夜福利| 一边摸一边抽搐一进一出视频| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| 亚洲美女黄色视频免费看| 亚洲精品国产av蜜桃| 中文字幕人妻熟女乱码| 伊人久久国产一区二区| 亚洲精品国产一区二区精华液| av国产精品久久久久影院| 精品一区二区三区av网在线观看 | 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 毛片一级片免费看久久久久| 国产在线视频一区二区| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 亚洲成色77777| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美视频二区| 精品亚洲乱码少妇综合久久| 国产 一区精品| 777久久人妻少妇嫩草av网站| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频| 日韩制服丝袜自拍偷拍| 视频在线观看一区二区三区| 2021少妇久久久久久久久久久| 久久久国产精品麻豆| 国产成人av激情在线播放| 男女无遮挡免费网站观看| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 精品酒店卫生间| 久久综合国产亚洲精品| 人人妻人人添人人爽欧美一区卜| 国产亚洲一区二区精品| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| videosex国产| 国产一区二区 视频在线| 日韩精品免费视频一区二区三区| 成人国语在线视频| 18禁动态无遮挡网站| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图| 久久婷婷青草| 中文精品一卡2卡3卡4更新| 丁香六月天网| 菩萨蛮人人尽说江南好唐韦庄| 狠狠精品人妻久久久久久综合| 街头女战士在线观看网站| 欧美亚洲日本最大视频资源| 男女下面插进去视频免费观看| 美女福利国产在线| 久久99一区二区三区| 久久久精品区二区三区| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区黑人| 黄网站色视频无遮挡免费观看| 午夜老司机福利片| 美女午夜性视频免费| 久久影院123| 日日啪夜夜爽| 一级毛片电影观看| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 男女边摸边吃奶| 亚洲精品在线美女| 国产97色在线日韩免费| a级片在线免费高清观看视频| svipshipincom国产片| 大香蕉久久网| 最近手机中文字幕大全| 一区二区三区精品91| 精品亚洲乱码少妇综合久久| 国产片内射在线| www.av在线官网国产| 卡戴珊不雅视频在线播放| 亚洲人成77777在线视频| 下体分泌物呈黄色| 操出白浆在线播放| 国产xxxxx性猛交| 人人妻人人添人人爽欧美一区卜| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看| 少妇人妻久久综合中文| 丁香六月天网| 国产精品女同一区二区软件| 欧美激情高清一区二区三区 | 十八禁网站网址无遮挡| 日本欧美国产在线视频| 欧美日韩视频精品一区| 天天影视国产精品| 观看美女的网站| 成人亚洲精品一区在线观看| 狂野欧美激情性bbbbbb| 亚洲欧洲国产日韩| 国产精品久久久人人做人人爽| 毛片一级片免费看久久久久| 麻豆av在线久日| 99久久人妻综合| 国产精品欧美亚洲77777| 捣出白浆h1v1| 国产片特级美女逼逼视频| 91国产中文字幕| 丝袜喷水一区| 国产人伦9x9x在线观看| 人体艺术视频欧美日本| 一级黄片播放器| 亚洲美女视频黄频| 亚洲视频免费观看视频| 美国免费a级毛片| 久久性视频一级片| 在线观看一区二区三区激情| 亚洲情色 制服丝袜| 欧美日韩亚洲综合一区二区三区_| 亚洲三区欧美一区| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三| 国产老妇伦熟女老妇高清| 哪个播放器可以免费观看大片| 日韩视频在线欧美| 国精品久久久久久国模美| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 久久久久人妻精品一区果冻| 中文字幕人妻丝袜制服| 久久久久久免费高清国产稀缺| 国产精品亚洲av一区麻豆 | 人妻人人澡人人爽人人| 两性夫妻黄色片| 欧美97在线视频| 午夜免费鲁丝| 欧美精品一区二区大全| 午夜精品国产一区二区电影| 久久久精品94久久精品| 美女脱内裤让男人舔精品视频| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 大香蕉久久网| 精品少妇一区二区三区视频日本电影 | 激情五月婷婷亚洲| 久久久久久久久久久免费av| 在线免费观看不下载黄p国产| 精品一区二区三区四区五区乱码 | 成人亚洲精品一区在线观看| 日韩一区二区三区影片| 日韩中文字幕视频在线看片| 捣出白浆h1v1| 亚洲欧美精品综合一区二区三区| 国产成人91sexporn| 高清视频免费观看一区二区| 精品久久久精品久久久| 日本色播在线视频| 精品一品国产午夜福利视频| 色播在线永久视频| 只有这里有精品99| 搡老岳熟女国产| 国产免费视频播放在线视频| av网站免费在线观看视频| 蜜桃国产av成人99| 国产精品 欧美亚洲| 欧美最新免费一区二区三区| 久久久久久免费高清国产稀缺| 日韩av免费高清视频| 夫妻性生交免费视频一级片| 激情视频va一区二区三区| av网站在线播放免费| 国产精品.久久久| 国产精品一二三区在线看| 久久久国产一区二区| 午夜福利在线免费观看网站| 热re99久久精品国产66热6| 又粗又硬又长又爽又黄的视频| 90打野战视频偷拍视频| 在线观看www视频免费| 日本猛色少妇xxxxx猛交久久| 欧美最新免费一区二区三区|