劉玉琴 陳密 唐蘭燕 周麗智 黃鑫 張磐
摘要:
肝性腦?。℉E)是肝硬化患者常見的并發(fā)癥,也是肝硬化患者死亡的獨立危險因素。腦乳酸水平與HE的進展及嚴重程度相關(guān),對于腦乳酸水平的研究有助于進一步解釋HE的發(fā)病機制。本文通過總結(jié)腦乳酸代謝過程、腦乳酸水平與HE的關(guān)系、HE潛在治療靶點,為臨床醫(yī)生進一步系統(tǒng)地評估HE患者的病情進展、治療效果及預(yù)后情況提供一定的參考依據(jù),旨在減輕患者醫(yī)藥負擔(dān),改善HE患者預(yù)后。
關(guān)鍵詞:
肝性腦??; 乳酸; 血腦屏障; 腦水腫
基金項目:湖南省自然科學(xué)基金面上項目? (2020JJ4862)
Research advances in brain lactate level and hepatic encephalopathy
LIU Yuqin, CHEN Mi, TANG Lanyan, ZHOU Lizhi, HUANG Xin, ZHANG Pan. (Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha 410000, China)
Corresponding author:
ZHANG Pan, zhangp2017@163.com (ORCID:0000-0001-8778-4079)
Abstract:
Hepatic encephalopathy (HE) is a common complication and an independent risk factor for death in patients with liver cirrhosis. Brain lactate level is associated with the progression and severity of HE, and research on brain lactate level may help to further explain the pathogenesis of HE. This article summarizes the metabolic process of brain lactate, the association between brain lactate level and HE, and the potential therapeutic targets for HE and provides a reference for clinicians to further systematically evaluate the progression, treatment outcome, and prognosis of patients with HE, in order to reduce the medical burden of patients and improve the prognosis of patients with HE.
Key words:
Hepatic Encephalopathy; ?? Lactic Acid; ?????? Blood-Brain Barrier; Brain Edema
Research funding:
Natural Science Foundation of Hunan Province (2020JJ4862)
肝性腦病 (hepatic encephalopathy,HE) 是指急、慢性肝功能嚴重障礙或門-體分流異常引起的腦功能障礙,表現(xiàn)為輕重程度不同的神經(jīng)或精神異常,如輕度認知障礙、明顯的定向障礙、意識模糊甚至昏迷[1]。近年來我國學(xué)者對HE包括輕微肝性腦病(minimal hepatic encephalopathy,MHE)的流行病學(xué)進行的多中心研究[2-3]顯示, 在住院的肝硬化患者中約40%有MHE;30%~45%的肝硬化患者和10%~50%的經(jīng)頸靜脈肝內(nèi)門-體分流術(shù)后患者發(fā)生過顯性HE。血液中的乳酸主要在肝臟中代謝,乳酸可以反映肝臟的氧代謝水平、微循環(huán)狀態(tài)和組織灌注情況[4],而腦乳酸水平的增高與 HE 的進展和嚴重程度有關(guān)[5]。目前HE的發(fā)病機制中處于中心地位的學(xué)說是“氨中毒學(xué)說”,然而對于部分HE患者而言,以降氨為主的治療方案效果不佳, 進一步探究腦乳酸水平與HE的關(guān)系并探索HE的潛在治療靶點有助于更好地改善患者預(yù)后。
1 腦乳酸代謝
乳酸可通過組織中的氧化應(yīng)激、丙酮酸無氧糖酵解[6]以及通過腎上腺素相關(guān)的肌膜 Na+/K+-ATP酶刺激產(chǎn)生[7],并被煙酰胺腺嘌呤二核苷酸依賴性乳酸脫氫酶代謝為丙酮酸,隨后在線粒體中被氧化為二氧化碳和水,并生成ATP。靜息狀態(tài)下,乳酸主要由皮膚(25%)、肌肉(25%)、紅細胞(20%)、中樞神經(jīng)系統(tǒng)(20%)和胃腸道(10%)產(chǎn)生[8],而在劇烈運動期間,骨骼肌成為產(chǎn)生乳酸的主力軍。糖原是大腦重要的能量儲備物質(zhì),主要儲存在星形膠質(zhì)細胞中,其主要的代謝產(chǎn)物并非葡萄糖,而是乳酸。研究發(fā)現(xiàn)兒茶酚胺類神經(jīng)遞質(zhì)能夠調(diào)節(jié)腦內(nèi)葡萄糖的攝取、利用和糖酵解反應(yīng),腦內(nèi)的去甲腎上腺素主要來自藍斑,Tang等[9]發(fā)現(xiàn),腦內(nèi)低水平的乳酸能刺激藍斑神經(jīng)元增加細胞內(nèi)Ca2+,提高放電率,釋放去甲腎上腺素,并介導(dǎo)糖原分解,從而為星形膠質(zhì)細胞的激活提供能量。乳酸是腦能量代謝的重要組成部分,星形膠質(zhì)細胞和神經(jīng)元均可產(chǎn)生乳酸?!靶切文z質(zhì)細胞-神經(jīng)元乳酸穿梭”假說提出在神經(jīng)元活動期間,星形膠質(zhì)細胞通過突觸處攝取谷氨酸從而觸發(fā)有氧糖酵解并導(dǎo)致葡萄糖攝取和乳酸釋放,隨后乳酸轉(zhuǎn)運至神經(jīng)元作為首選的能量來源[10]。外周乳酸和腦乳酸之間相互循環(huán),相互影響,靜息時大腦呈凈產(chǎn)乳酸狀態(tài),腦乳酸能向大腦提供7%的能量,此時腦內(nèi)乳酸濃度略高于外周血乳酸濃度,在這種濃度差作用之下,腦乳酸可通過跨膜運輸?shù)郊毎庖洪g隙中,再通過間隙內(nèi)的淋巴系統(tǒng)或微血管引流到血液中,從而進入到全身循環(huán)中參與代謝。而在運動和乳酸灌注時,外周血乳酸濃度升高,高于腦乳酸濃度,此時大腦會轉(zhuǎn)變成凈攝取乳酸狀態(tài),外周血乳酸通過血腦屏障上的單羧酸轉(zhuǎn)運蛋白(monocarboxylate transporter,MCT)轉(zhuǎn)運進入中樞神經(jīng)系統(tǒng),腦乳酸濃度增高,腦細胞攝取乳酸增加同時也在清除外周血乳酸,此時腦乳酸可為大腦提供高達25%的能量,并且運動狀態(tài)下大腦對乳酸的清除可高達11%[11]。不同亞型的MCT與乳酸的結(jié)合力不同,高親和力的轉(zhuǎn)運體更容易在細胞內(nèi)低濃度時攝取細胞外乳酸,低親和力的轉(zhuǎn)運體可運出乳酸降低胞內(nèi)乳酸濃度[12],正常生理情況下,腦乳酸維持著相對穩(wěn)定的水平。
2 腦乳酸水平與HE的關(guān)系
2.1 腦乳酸水平與HE的相互作用機制
2.1.1 高血氨導(dǎo)致腦乳酸升高 HE發(fā)生的具體機制尚不明確,“氨中毒學(xué)說”是目前眾多假說中最為被廣泛接受的。氨通過介導(dǎo)細胞腫脹、炎癥刺激、氧化應(yīng)激反應(yīng)、線粒體功能障礙、干擾能量代謝、影響pH 值的變化和膜電位的改變等途徑發(fā)揮其有害作用[13]。氨抑制大腦皮層線粒體中的α-酮戊二酸脫氫酶、丙酮酸脫氫酶和異檸檬酸脫氫酶等三羧酸循環(huán)酶,影響三羧酸循環(huán)的運行速率以及隨后的電子傳輸鏈。由于丙酮酸脫氫酶被抑制,導(dǎo)致糖酵解產(chǎn)生的丙酮酸增加,然而增加的丙酮酸不能以乙酰輔酶 A 的形式進入三羧酸循環(huán),被乳酸脫氫酶還原成乳酸,而在HE和高氨血癥患者中也發(fā)現(xiàn)乳酸水平增高[14]。原代培養(yǎng)的小鼠腦皮質(zhì)星形膠質(zhì)細胞經(jīng)氨處理后檢測發(fā)現(xiàn)乳酸水平顯著增加,丙酮酸/乳酸比值降低[15]。 Lerchundi等[16]發(fā)現(xiàn)神經(jīng)元以活動依賴性方式產(chǎn)生NH+4,生理水平的NH+4通過線粒體丙酮酸分流誘導(dǎo)星形膠質(zhì)細胞快速產(chǎn)生和釋放乳酸,并且 NH+4還可將乳酸從星形膠質(zhì)細胞轉(zhuǎn)移到神經(jīng)元。星形膠質(zhì)細胞是大腦內(nèi)分布最廣泛的細胞,具有調(diào)節(jié)細胞外微環(huán)境、維持血腦屏障功能、影響神經(jīng)興奮性等功能[17],星形膠質(zhì)細胞還在調(diào)節(jié)腦能量代謝中起關(guān)鍵作用,與大腦記憶形成、神經(jīng)保護、抗氧化應(yīng)激等功能有關(guān)[18]。研究[19]發(fā)現(xiàn)乳酸會導(dǎo)致培養(yǎng)的星形膠質(zhì)細胞腫脹。高氨阻礙腦能量代謝,乳酸水平隨之升高,乳酸的蓄積導(dǎo)致細胞腫脹,是腦水腫的基礎(chǔ)。乳酸可導(dǎo)致與腦氨水平升高相關(guān)的一些細胞功能障礙[20]。當腦能量代謝障礙時,乳酸是神經(jīng)元重要的供能物質(zhì),但大腦中乳酸水平過度增加與腦水腫的發(fā)展和顱內(nèi)壓增高緊密相關(guān)。
2.1.2 炎癥促進腦乳酸水平升高 炎癥因子導(dǎo)致HE發(fā)生的機制仍舊未完全明確,有研究[21-22]發(fā)現(xiàn),多種促炎因子如TNF-α、IL-1、IL-6、IL-12、內(nèi)毒素等增多與HE的發(fā)生有關(guān)。 Manzhalii等[23]也發(fā)現(xiàn)炎性因子與HE的發(fā)生和嚴重程度緊密相關(guān)。失代償肝硬化患者因腸道通透性增加、菌群易位導(dǎo)致體內(nèi)多種炎癥因子升高,繼發(fā)全身炎癥反應(yīng)。感染是HE的誘因,一方面血腦屏障對炎癥刺激高度敏感,細胞因子和炎癥反應(yīng)分子可損傷腦血管內(nèi)皮細胞并破壞血腦屏障,導(dǎo)致血腦屏障通透性升高,氨和炎性介質(zhì)更易進入大腦,激活中樞神經(jīng)炎癥,誘發(fā)HE[24];另一方面炎癥反應(yīng)導(dǎo)致氧耗增加,缺氧情況下乳酸生成增多,腦乳酸水平升高導(dǎo)致腦組織水腫和神經(jīng)元功能障礙,進而影響大腦正常功能,最終導(dǎo)致HE發(fā)生[25]??垢腥局委熃档脱装Y反應(yīng)可明顯改善HE患者的癥狀,Agusti等[26]通過對門腔分流術(shù)導(dǎo)致的HE大鼠進行抗炎治療,結(jié)果提示消除神經(jīng)炎癥、降低炎癥因子的水平可以明顯改善小鼠的認知功能障礙,并幫助其恢復(fù)運動協(xié)調(diào)。此外,在炎癥過程中,先天免疫細胞會大量產(chǎn)生和分泌乳酸,而乳酸可調(diào)節(jié)免疫細胞的代謝,可起到負反饋信號的作用,以防止過度的炎癥反應(yīng)[27],這也可以解釋神經(jīng)炎癥時促進腦乳酸水平進一步升高。
2.1.3 腦乳酸水平和血腦屏障的相互影響 腦內(nèi)糖原的主要代謝產(chǎn)物為乳酸,有研究顯示乳酸可滲透通過血腦屏障[28],也可經(jīng)過不同的MCT 跨細胞膜轉(zhuǎn)運[29],中樞神經(jīng)系統(tǒng)中,MCT1在血管內(nèi)皮細胞、星形膠質(zhì)細胞和少突膠質(zhì)細胞上均有表達,MCT2則主要分布在神經(jīng)元細胞,在軸突及樹突中均有表達,而MCT4主要在星形膠質(zhì)細胞上表達[30]。當血腦屏障破壞,通透性升高,動脈血乳酸水平可能會影響到腦乳酸水平,進一步導(dǎo)致腦水腫加重。在嚴重急性肝衰竭(ALF)和腦水腫患者中發(fā)現(xiàn),腦微透析液(細胞外)乳酸濃度受動脈血乳酸濃度的影響[31]。其次,多種證據(jù)表明乳酸會影響血腦屏障的發(fā)育、成熟,以及結(jié)構(gòu)和功能的完整性。大腦中的內(nèi)皮細胞或星形膠質(zhì)細胞產(chǎn)生的乳酸可通過MCT轉(zhuǎn)運到細胞外基質(zhì),并可能通過特定的乳酸受體作用于相鄰細胞。星形膠質(zhì)細胞中的活性糖酵解是支持神經(jīng)元活動和血管生成所必需的,而內(nèi)皮細胞能調(diào)節(jié)腦細胞對乳酸的利用度以及乳酸通過血腦屏障的雙向轉(zhuǎn)運[32]。當腦乳酸水平增高導(dǎo)致血腦屏障系統(tǒng)發(fā)生障礙,會增加乳酸和一些毒性物質(zhì)的進入,引起中樞神經(jīng)系統(tǒng)細胞的死亡,進一步加重神經(jīng)系統(tǒng)功能障礙,最終導(dǎo)致HE的發(fā)生。
現(xiàn)將腦乳酸水平與HE的相互作用機制進行總結(jié),見圖1。
2.2 腦乳酸水平與HE的進展和嚴重程度相關(guān) 正常生理條件下,腦乳酸有多種生物學(xué)功能[33]:(1)參與腦能量代謝,在葡萄糖供能異常時,乳酸是腦內(nèi)重要的能量補充物質(zhì);(2)乳酸在星形膠質(zhì)細胞和神經(jīng)元之間的信號傳遞對長期記憶的形成有重要作用[34];(3)參與腦內(nèi)pH及呼吸功能調(diào)節(jié)[35];(4)參與腦血管張力調(diào)節(jié)[36];(5)參與體液平衡調(diào)節(jié)[37];(6)作為一個信號分子,參與中樞神經(jīng)系統(tǒng)的腦能量代謝、神經(jīng)遞質(zhì)傳遞,以及神經(jīng)血管偶聯(lián)等活動信號傳遞[38]等。當病理情況下,腦乳酸水平升高,上述的生物學(xué)功能障礙可能會影響大腦正常運轉(zhuǎn)。有研究[39]發(fā)現(xiàn)乳酸是慢加急性肝衰竭患者預(yù)后的獨立危險因素,與HE存在相關(guān)性。ALF時,HE和高氨血癥患者血液及大腦的乳酸水平均升高[40]。肝病患者乳酸升高一方面與肝臟受損對乳酸清除減少、肝細胞壞死釋放乳酸增加相關(guān),另一方面可能與有效循環(huán)血量減少、微循環(huán)功能障礙、能量代謝障礙有關(guān)[41]。乳酸是無氧糖酵解的產(chǎn)物,也是參與神經(jīng)元能量代謝的底物,由于糖酵解活性增加或腦組織能量衰竭,腦乳酸水平增加,可滲透性誘導(dǎo)腦內(nèi)入水量增加,從而導(dǎo)致腦水腫,甚至顱內(nèi)高壓,而腦水腫是HE 的神經(jīng)病理學(xué)特征,腦乳酸的增多可能會誘導(dǎo)HE的發(fā)生。Wang等[33]發(fā)現(xiàn)乳酸水平升高會刺激海馬神經(jīng)干細胞激活,損害新生神經(jīng)元的終末分化,最終導(dǎo)致海馬神經(jīng)干細胞耗竭及認知受損,并且研究還發(fā)現(xiàn)破壞大腦內(nèi)皮細胞中的MCT1 基因后,乳酸轉(zhuǎn)運受限,蓄積在腦內(nèi),阻礙海馬神經(jīng)的發(fā)生以及導(dǎo)致認知功能受損,進一步證實維持腦乳酸穩(wěn)態(tài)有助于成人海馬神經(jīng)的發(fā)生和保持正常的認知功能。腦乳酸的增加與 HE 的進展和嚴重程度有關(guān)。Chatauret等[42]發(fā)現(xiàn)在ALF 的大鼠和豬的腦中檢測到細胞外乳酸水平與腦水腫嚴重程度平行增加。Bosoi等[43]研究證明,在患有腦水腫和 MHE 的肝硬化大鼠模型中,腦乳酸增加才是腦水腫發(fā)病機制的關(guān)鍵因素。Dienel[44]發(fā)現(xiàn)干預(yù)性高劑量注射乳酸可導(dǎo)致cAMP介導(dǎo)的神經(jīng)元功能下調(diào),抑制神經(jīng)元放電,并影響星形膠質(zhì)細胞和神經(jīng)元的氧化還原和代謝。腦內(nèi)乳酸蓄積,誘導(dǎo)腦細胞腫脹,干擾神經(jīng)細胞的正常能量代謝,導(dǎo)致神經(jīng)元功能障礙,促進HE的發(fā)生,并且隨著乳酸生成增加,HE的程度越嚴重,維持腦乳酸的動態(tài)平衡對改善HE至關(guān)重要。
3 腦乳酸可能是治療HE的潛在靶點
在暴發(fā)性肝功能衰竭患者中,腦乳酸水平的增加與顱內(nèi)壓升高相關(guān),而治療性干預(yù)措施,如低溫、白蛋白透析,可減少腦乳酸的水平以及腦水腫的程度,從而影響HE的進展[45]。實驗發(fā)現(xiàn)亞低溫可以選擇性地阻止ALF大鼠額葉皮層能量和葡萄糖代謝的改變,降低氧耗,防止腦乳酸水平增高,可延緩腦水腫和腦病的發(fā)作[42]。二氯乙酸 (DCA) 可刺激體內(nèi)丙酮酸氧化,降低血漿乳酸濃度,并緩解細胞內(nèi)酸中毒,研究發(fā)現(xiàn)DCA安全有效地減弱了原位肝移植期間的乳酸堆積并緩解酸中毒[46]。在患有腦水腫和 MHE 的膽管結(jié)扎致肝硬化的大鼠模型中也發(fā)現(xiàn),用DCA 治療的大鼠的腦水腫和腦乳酸減少,腦乳酸增加是慢性肝病腦水腫發(fā)病機制的關(guān)鍵[43]。腦乳酸可通過跨膜轉(zhuǎn)運、淋巴系統(tǒng)引流入血液循環(huán)中,腦乳酸和動脈血乳酸之間相關(guān)影響,改善大腦的缺血缺氧狀態(tài),減少腦乳酸的生成,或許是治療HE 的一個新的潛在靶點。
4 小結(jié)
HE是導(dǎo)致肝硬化患者住院和反復(fù)再入院的最常見并發(fā)癥,與肝病的其他并發(fā)癥相比,HE占用了更多的醫(yī)療資源,并且HE的相關(guān)醫(yī)療保健負擔(dān)較重。HE的發(fā)生是多種因素作用的結(jié)果,而其中腦乳酸水平與HE的進展過程密切相關(guān)。乳酸不僅是評估肝病患者預(yù)后的良好預(yù)測指標,而且在中樞神經(jīng)系統(tǒng)的代謝及生物學(xué)功能中發(fā)揮著舉足輕重的作用。腦乳酸的增加是腦水腫發(fā)病機制的關(guān)鍵因素,并且與 HE 的進展和嚴重程度相關(guān),但是腦乳酸在HE中的具體機制尚未明確,針對于乳酸的治療仍處于探索階段,改善大腦缺血缺氧的狀態(tài),減少乳酸生成可能是治療 HE 的一個新的潛在靶點。進一步探究腦乳酸水平與HE的內(nèi)在聯(lián)系,對進一步解釋HE的作用機制及臨床治療和預(yù)防HE有著重要意義。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:劉玉琴負責(zé)選題,收集分析資料,撰寫文章;陳密、唐蘭燕、周麗智、黃鑫參與收集資料,修改論文;張磐擬定寫作方向和思路,指導(dǎo)文章撰寫,提供修改意見并最終定稿。
參考文獻:
[1]
Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the management of hepatic encephalopathy in cirrhosis[J]. J Clin Hepatol, 2018, 34(10): 2076-2089. DOI: 10.3969/j.issn.1001-5256.2018.10.007.
中華醫(yī)學(xué)會肝病學(xué)分會. 肝硬化肝性腦病診療指南[J]. 臨床肝膽病雜志, 2018, 34(10): 2076-2089. DOI: 10.3969/j.issn.1001-5256.2018.10.007.
[2]GUO JS. Epidemiology,diagnosis and treatment of minimal hepatic encephalopathy[J]. Chin J Hepatol, 2014, 22(2): 92-93. DOI: 10.3760/cma.j.issn.1007-3418.2014.02.005.
郭津生. 重視輕微型肝性腦病的流行病學(xué)及診斷與治療[J]. 中華肝臟病雜志, 2014, 22(2): 92-93. DOI: 10.3760/cma.j.issn.1007-3418.2014.02.005.
[3]LIU SY, LI LH, LI SX, et al. Predictive value of controlled nutritional status score for overt hepatic encephalopathy after transjugular intrahepatic portosystemic stent-shunt of Budd-Chiari syndrome[J]. Chin J Dig Surg, 2023, 22(2): 251-259. DOI:10.3760/cma.j.cn115610-20221205-00733.
劉勝炎, 李路豪, 李素新, 等. 控制營養(yǎng)狀況評分對布-加綜合征患者行經(jīng)頸靜脈肝內(nèi)門腔內(nèi)支架分流術(shù)后發(fā)生顯性肝性腦病的預(yù)測價值[J]. 中華消化外科雜志, 2023, 22(2): 251-259. DOI:10.3760/cma.j.cn115610-20221205-00733.
[4]JANSEN TC, van BOMMEL J, BAKKER J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment[J]. Crit Care Med, 2009, 37(10): 2827-2839. DOI: 10.1097/CCM.0b013e3181a98899.
[5]ROSE CF. Increase brain lactate in hepatic encephalopathy: cause or consequence?[J]. Neurochem Int, 2010, 57(4): 389-394. DOI: 10.1016/j.neuint.2010.06.012.
[6]ANDERSEN LW, MACKENHAUER J, ROBERTS JC, et al. Etiology and therapeutic approach to elevated lactate levels[J]. Mayo Clin Proc, 2013, 88(10): 1127-1140. DOI: 10.1016/j.mayocp.2013.06.012.
[7]LEVY B. Lactate and shock state: the metabolic view[J]. Curr Opin Crit Care, 2006, 12(4): 315-321. DOI: 10.1097/01.ccx.0000235208.77450.15.
[8]JUEL C. Lactate-proton cotransport in skeletal muscle[J]. Physiol Rev, 1997, 77(2): 321-358. DOI: 10.1152/physrev.1997.77.2.321.
[9]TANG F, LANE S, KORSAK A, et al. Lactate-mediated glia-neuronal signalling in the mammalian brain[J]. Nat Commun, 2014, 5: 3284. DOI: 10.1038/ncomms4284.
[10]BASTIAN C, ZERIMECH S, NGUYEN H, et al. Aging astrocytes metabolically support aging axon function by proficiently regulating astrocyte-neuron lactate shuttle[J]. Exp Neurol, 2022, 357: 114173. DOI: 10.1016/j.expneurol.2022.114173.
[11]VAN HALL G. Lactate kinetics in human tissues at rest and during exercise[J]. Acta Physiol (Oxf), 2010, 199(4): 499-508. DOI: 10.1111/j.1748-1716.2010.02122.x.
[12]JHA MK, MORRISON BM. Lactate transporters mediate glia-neuron metabolic crosstalk in homeostasis and disease[J]. Front Cell Neurosci, 2020, 14: 589582. DOI: 10.3389/fncel.2020.589582.
[13]BOSOI CR, ROSE CF. Identifying the direct effects of ammonia on the brain[J]. Metab Brain Dis, 2009, 24(1): 95-102. DOI: 10.1007/s11011-008-9112-7.
[14]RAMA RAO KV, NORENBERG MD. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy[J]. Neurochem Int, 2012, 60(7): 697-706. DOI: 10.1016/j.neuint.2011.09.007.
[15]KALA G, HERTZ L. Ammonia effects on pyruvate/lactate production in astrocytes-interaction with glutamate[J]. Neurochem Int, 2005, 47(1-2): 4-12. DOI: 10.1016/j.neuint.2005.04.001.
[16]LERCHUNDI R, FERNNDEZ-MONCADA I, CONTRERAS-BAEZA Y, et al. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting[J]. Proc Natl Acad Sci U S A, 2015, 112(35): 11090-11095. DOI: 10.1073/pnas.1508259112.
[17]QIN ZW, LIU JT, FAN XH, et al. Relationship between intestinal flora and hepatic encephalopathy[J].? Chin J Gastroenter Hepatol, 2021, 30(1): 34-37. DOI: 10.3969/j.issn.1006-5709.2021.01.008.
秦子文, 劉晶濤, 范曉紅, 等. 腸道菌群與肝性腦病的關(guān)系[J]. 胃腸病學(xué)和肝病學(xué)雜志, 2021, 30(1): 34-37. DOI: 10.3969/j.issn.1006-5709.2021.01.008.
[18]BEARD E, LENGACHER S, DIAS S, et al. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives[J]. Front Physiol, 2021, 12: 825816. DOI: 10.3389/fphys.2021.825816.
[19]LOMNETH R, MEDRANO S, GRUENSTEIN EI. The role of transmembrane pH gradients in the lactic acid induced swelling of astrocytes[J]. Brain Res, 1990, 523(1): 69-77. DOI: 10.1016/0006-8993(90)91636-u.
[20]ANDERSSON AK, ADERMARK L, PERSSON M, et al. Lactate contributes to ammonia-mediated astroglial dysfunction during hyperammonemia[J]. Neurochem Res, 2009, 34(3): 556-565. DOI: 10.1007/s11064-008-9819-1.
[21]LIU PF, BAO J. Changes of intestinal flora and serum inflammatory factor levels of patients with subclinical hepatic encephalopathy and the intervention effect of probiotics[J]. Chin J Microecol, 2020, 32(2): 180-182, 6. DOI: 10.13381/j.cnki.cjm.202002012.
柳萍飛, 包健. 亞臨床肝性腦病患者腸道菌群和血清炎癥因子水平變化及益生菌的干預(yù)作用[J]. 中國微生態(tài)學(xué)雜志, 2020, 32(2): 180-182, 6. DOI: 10.13381/j.cnki.cjm.202002012.
[22]XIE NW, LU J, HE JQ, et al. IL-6, IL-10, TNF in patients with HBV-ACLF hepatic encephalopathy- α Horizontal expression and significance[J]. Chongqing Med, 2017, 46(9): 1268-1271. DOI: 10.3969/j.issn.1671-8348.2017.09.038.
謝能文, 爐軍, 何金秋, 等. HBV-ACLF肝性腦病患者IL-6、IL-10、TNF-α水平表達及意義[J]. 重慶醫(yī)學(xué), 2017, 46(9): 1268-1271. DOI: 10.3969/j.issn.1671-8348.2017.09.038.
[23]MANZHALII E, VIRCHENKO O, FALALYEYEVA T, et al. Hepatic Encephalopathy Aggravated by Systemic Inflammation[J]. Dig Dis, 2019, 37(6): 509-517. DOI: 10.1159/000500717.
[24]ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol, 2021, 74(3): 670-685. DOI: 10.1016/j.jhep.2020.11.048.
[25]HUANG X, HUSSAIN B, CHANG J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms[J]. CNS Neurosci Ther, 2021, 27(1): 36-47. DOI: 10.1111/cns.13569.
[26]AGUSTI A, HERNNDEZ-RABAZA V, BALZANO T, et al. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy[J]. CNS Neurosci Ther, 2017, 23(5): 386-394. DOI: 10.1111/cns.12688.
[27]RATTER JM, ROOIJACKERS H, HOOIVELD GJ, et al. In vitro and in vivo effects of lactate on metabolism and cytokine production of Human primary PBMCs and monocytes[J]. Front Immunol, 2018, 9: 2564. DOI: 10.3389/fimmu.2018.02564.
[28]DALSGAARD MK, QUISTORFF B, DANIELSEN ER, et al. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain[J]. J Physiol, 2004, 554(Pt 2): 571-578. DOI: 10.1113/jphysiol.2003.055053.
[29]GERHART DZ, ENERSON BE, ZHDANKINA OY, et al. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats[J]. Am J Physiol, 1997, 273(1 Pt 1): E207-E213. DOI: 10.1152/ajpendo.1997.273.1.E207.
[30]BERGERSEN LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction[J]. J Cereb Blood Flow Metab, 2015, 35(2): 176-185. DOI: 10.1038/jcbfm.2014.206.
[31]TOFTENG F, LARSEN FS. Monitoring extracellular concentrations of lactate, glutamate, and glycerol by in vivo microdialysis in the brain during liver transplantation in acute liver failure[J]. Liver Transpl, 2002, 8(3): 302-305. DOI: 10.1053/jlts.2002.32283.
[32]SALMINA AB, KUVACHEVA NV, MORGUN AV, et al. Glycolysis-mediated control of blood-brain barrier development and function[J]. Int J Biochem Cell Biol, 2015, 64: 174-184. DOI: 10.1016/j.biocel.2015.04.005.
[33]WANG J, CUI YX, YU ZX, et al. Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis[J]. Cell Stem Cell, 2019, 25(6): 754-767. DOI: 10.1016/j.stem.2019.09.009.
[34]REX A, BERT B, FINK H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis[J]. Physiol Behav, 2009, 98(4): 467-473. DOI: 10.1016/j.physbeh.2009.07.015.
[35]ERLICHMAN JS, HEWITT A, DAMON TL, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis[J]. J Neurosci, 2008, 28(19): 4888-4896. DOI: 10.1523/JNEUROSCI.5430-07.2008.
[36]GORDON GR, CHOI HB, RUNGTA RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles[J]. Nature, 2008, 456(7223): 745-749. DOI: 10.1038/nature07525.
[37]OHBUCHI T, SATO K, SUZUKI H, et al. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus[J]. J Physiol, 2010, 588(Pt 12): 2147-2162. DOI: 10.1113/jphysiol.2010.187625.
[38]BERGERSEN LH, GJEDDE A. Is lactate a volume transmitter of metabolic states of the brain?[J]. Front Neuroenergetics, 2012, 4: 5. DOI: 10.3389/fnene.2012.00005.
[39]YANG S, LIU K, YANG L, et al. Value of lactate level in predicting the short-term prognosis of patients with acute-on-chronic hepatitis B liver failure[J]. J Clin Hepatol, 2022, 38(7): 1482-1488. DOI: 10.3969/j.issn.1001-5256.2022.07.007.
楊爍, 劉坤, 楊蘭, 等. 乳酸水平對HBV相關(guān)慢加急性肝衰竭患者短期預(yù)后的預(yù)測價值[J]. 臨床肝膽病雜志, 2022, 38(7): 1482-1488. DOI: 10.3969/j.issn.1001-5256.2022.07.007.
[40]WALSH TS, MCLELLAN S, MACKENZIE SJ, et al. Hyperlactatemia and pulmonary lactate production in patients with fulminant hepatic failure[J]. Chest, 1999, 116(2): 471-476. DOI: 10.1378/chest.116.2.471.
[41]ENGELMANN C, CLRIA J, SZABO G, et al. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction[J]. J Hepatol, 2021, 75(Suppl 1): S49-S66. DOI: 10.1016/j.jhep.2021.01.002.
[42]CHATAURET N, ZWINGMANN C, ROSE C, et al. Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study[J]. Gastroenterology, 2003, 125(3): 815-824. DOI: 10.1016/s0016-5085(03)01054-0.
[43]BOSOI CR, ZWINGMANN C, MARIN H, et al. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease[J]. J Hepatol, 2014, 60(3): 554-560. DOI: 10.1016/j.jhep.2013.10.011.
[44]DIENEL GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression[J]. Neurosci Lett, 2017, 637: 18-25. DOI: 10.1016/j.neulet.2015.02.052.
[45]CHATAURET N, ROSE C, BUTTERWORTH RF. Mild hypothermia in the prevention of brain edema in acute liver failure: mechanisms and clinical prospects[J]. Metab Brain Dis, 2002, 17(4): 445-451. DOI: 10.1023/a:1021982523691.
[46]SHANGRAW RE, WINTER R, HROMCO J, et al. Amelioration of lactic acidosis with dichloroacetate during liver transplantation in humans[J]. Anesthesiology, 1994, 81(5): 1127-1138. DOI: 10.1097/00000542-199411000-00006.
收稿日期:
2022-09-25;錄用日期:2022-11-14
本文編輯:王亞南
引證本文:
LIU YQ, CHEN M, TANG LY, et al.
Research advances in brain lactate level and hepatic encephalopathy
[J]. J Clin Hepatol, 2023, 39(7): 1728-1733.
劉玉琴, 陳密, 唐蘭燕,? 等.
腦乳酸水平與肝性腦病關(guān)系的研究進展
[J]. 臨床肝膽病雜志, 2023, 39(7): 1728-1733.