王濤 王權(quán) 宋立華 段學(xué)章
摘要:
肝癌是世界范圍重大的公共衛(wèi)生疾病。近來隨著高通量測序及基因編輯技術(shù)的進步,腸道微生物群通過“肝-腸軸”途徑在肝癌發(fā)生、進展及轉(zhuǎn)移過程中的生物學(xué)機制被進一步揭示,特別是發(fā)現(xiàn)革蘭陰性細菌外膜脂多糖可動員下游一系列致癌相關(guān)免疫級聯(lián)反應(yīng)。本文從腸道環(huán)境改變與肝癌發(fā)生的關(guān)系、脂多糖免疫調(diào)控、臨床前治療研究等方面,對腸道微生物脂多糖在肝癌發(fā)生發(fā)展中的可能作用機制進行了綜述。
關(guān)鍵詞:肝腫瘤; 胃腸道微生物組; 脂多糖類; 細菌
基金項目:
國家自然科學(xué)基金青年項目(82003211)
Role of lipopolysaccharide in the development and progression of liver cancer
WANG Tao1, WANG Quan1, SONG Lihua2, DUAN Xuezhang1. (1. Department of Medical Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; 2. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China)
Corresponding author:
DUAN Xuezhang, duanxuezhang2006@163.com (ORCID:0000-0002-1941-9317)
Abstract:
Liver cancer is an important public health issue worldwide.? With the improvements in high-throughput sequencing and gene editing techniques in recent years, studies have further revealed the biological mechanism of intestinal microflora in the development, progression, and metastasis of liver cancer via the gut-liver axis, and in particular, it has been found that lipopolysaccharide, a component of the outer membrane of gram-negative bacteria, can cause downstream immune cascade reactions. This article reviews the possible mechanism of action of intestinal microflora lipopolysaccharide in the development and progression of liver cancer from the aspects of the association between intestinal environmental changes and liver cancer, immunoregulation by lipopolysaccharide, and preclinical treatment.
Key words:Liver Neoplasms; Gastrointestinal Microbiome; Lipopolysaccharides; Bacteria
Research funding:Youth Program of National Natural Science Foundation of China(82003211)
肝癌是一種由多種因素導(dǎo)致的肝細胞或肝內(nèi)膽管上皮細胞癌變所形成的惡性腫瘤,是我國及世界范圍內(nèi)重大的公共衛(wèi)生疾病。2020年全球統(tǒng)計數(shù)據(jù)[1]顯示,肝癌新發(fā)病例數(shù)在全球常見惡性腫瘤中排名第六位,是全球第三大癌癥死亡病因。腸道微生物群是與人體共生的微生態(tài)系統(tǒng),由細菌、真菌、古細菌及病毒組成,攜帶的遺傳信息約為人類基因組的100倍以上,承擔(dān)協(xié)助消化、膽汁酸循環(huán)、調(diào)節(jié)免疫等多重生理功能,又稱為“被遺忘的器官”。近年來,多項研究證實腸道微生物特別是腸道細菌參與肝癌的形成、進展、轉(zhuǎn)歸及治療過程并起重要生物學(xué)作用[2-3]。革蘭陰性細菌獨特的外膜結(jié)構(gòu)——脂多糖(lipopolysaccharide, LPS)大多由核心糖、Kdo2-類脂A(Kdo2-Lipid A)、O-抗原三部分構(gòu)成,其中Lipid A是主要成分[4]。LPS作為重要的毒力因子與保護性抗原,在多種病理狀態(tài)下可伴隨細菌突破腸黏膜屏障入血進入門靜脈系統(tǒng),通過“肝-腸軸”代謝途徑參與肝細胞的固有免疫及適應(yīng)性免疫反應(yīng),并在多種病理微環(huán)境下通過免疫炎癥損傷機制促進肝硬化進展及肝細胞癌的形成,是本領(lǐng)域的研究熱點。
深入研究腸道細菌LPS參與肝癌發(fā)生及進展的生物學(xué)過程,有助于進一步揭示腸道細菌潛在的致癌機制,篩選新一代可用于肝癌臨床二級預(yù)防的生物學(xué)靶點。本文針對LPS在原發(fā)性肝癌發(fā)生、進展與轉(zhuǎn)歸過程中的生物學(xué)功能及致病機制做了進一步分析,為下一步針對LPS靶點的肝癌防治研究提供借鑒。
1 腸道微生物的多態(tài)性變化及腸道屏障功能的減弱是LPS致癌的病理微環(huán)境
1.1 腸道微生物多態(tài)性改變促進肝癌的發(fā)生 近年來,腸道細菌參與包括肝癌在內(nèi)的多種消化道腫瘤致病過程,已被廣泛認可[5-6],一方面因為高通量測序及宏基因組學(xué)技術(shù)的廣泛推廣,進一步實現(xiàn)了從基因水平上探究肝癌腸道菌群多態(tài)性。例如,應(yīng)用16s rDNA測序技術(shù)對比分析不同階段肝癌、肝硬化及健康人腸道菌群,發(fā)現(xiàn)肝癌組中擬桿菌門的豐度值較對照組明顯降低,而路氏球菌卻顯著升高達100倍,這提示包括腸球菌、變形桿菌在內(nèi)的多種細菌具備作為肝癌無創(chuàng)診斷學(xué)標(biāo)志物的潛力[7]。同時提示伴隨肝功能惡化進展,韋榮球菌屬同甲胎蛋白呈現(xiàn)正相關(guān)而與罕見小桿菌負相關(guān),這表明不同階段菌群的失調(diào)性變化很可能是促使肝硬化向肝癌轉(zhuǎn)化的重要因素之一[8]。另一方面,受腸道微生物體外培養(yǎng)技術(shù)限制,目前可分離培養(yǎng)的腸道微生物占比尚不足30%,因此臨床應(yīng)用研究進展主要集中在腸道菌群重建方面。在動物模型中,糞便微生物群移植(fecal microbiota transplant, FMT)可重建酒精性肝病患者腸道擬桿菌屬缺失,治療脂肪性肝炎、艱難梭菌感染等[9-10]。在臨床研究中,重建腸道菌群可影響PD-1抑制劑對肝癌患者的療效[11],而且可降低致癌相關(guān)炎性因子IL-6及LPS結(jié)合蛋白的表達[12]。研究[13-14]表明,目前廣泛應(yīng)用于臨床的益生菌不僅有助于調(diào)節(jié)腸道菌群多態(tài)性,嗜乳酸桿菌(L.acidophilus ATCC 4356)表面多糖還可通過抑制多糖相關(guān)固有免疫反應(yīng)TLR2/STAT-3/P38-MAPK途徑從而降低早期致癌風(fēng)險,是潛在的肝癌二級預(yù)防用藥[13-14]。
1.2 LPS是肝臟炎癥損傷及再生修復(fù)過程中重要的誘導(dǎo)因子 生理情況下,腸道微生物群與機體處于穩(wěn)態(tài)平衡,極少量LPS可突破腸黏膜屏障入血或淋巴管并與高密度脂蛋白HDL3及乳糜微粒相結(jié)合從而最終被肝臟清除,同時該過程并不顯著引起肝臟固有細胞及Kupffer細胞的免疫炎癥反應(yīng)[15]。一方面,上述LPS的體循環(huán)過程可造成持久溫和的全身炎性反應(yīng),研究表明LPS可促進肝臟前體蛋白轉(zhuǎn)化酶PCSK9的合成來干預(yù)肝臟脂質(zhì)代謝,上調(diào)的PCSK9水平可與肝細胞表面低密度脂蛋白膽固醇(LDL-C)的受體相結(jié)合來抑制LDL-C的消耗,從而促進動脈粥樣硬化及脂肪肝的形成。同時高脂血癥及脂肪肝的發(fā)生可進一步增加腸黏膜通透性,通過肝腸循環(huán)途徑增加腸源性內(nèi)毒素血癥的風(fēng)險[16-17]。另一方面,研究發(fā)現(xiàn),一定程度的LPS暴露可對包括肝纖維化、肝癌在內(nèi)的肝損傷發(fā)揮正向的再生修復(fù)作用,LPS可通過誘導(dǎo)維持肝細胞的干性表型、促進分泌肝細胞營養(yǎng)因子及相關(guān)細胞因子等途徑減輕肝損傷促進肝細胞增殖修復(fù)[18]。然而,目前可定量干預(yù)腸道微生物L(fēng)PS的技術(shù)手段僅局限于口服益生菌制劑、抗生素等方法,針對肝癌組織微生物L(fēng)PS的多態(tài)性尚缺乏研究,而目前基于瘤內(nèi)微生物宏蛋白質(zhì)組學(xué)的研究大多集中分類于細菌門/屬,發(fā)現(xiàn)變形桿菌及厚壁菌作為癌組織微生物的優(yōu)勢菌群占比70%以上,同時門分類中革蘭陰性菌的彎曲菌、單胞菌顯著上調(diào)[19-20]。此類腫瘤組織中極少數(shù)代表性細菌的LPS多態(tài)性分布及免疫學(xué)機制值得深入研究。
1.3 腸道屏障功能的減弱是LPS內(nèi)毒素血癥及下游促癌炎癥反應(yīng)的重要條件 眾所周知,腸道屏障由包括腸堿性磷酸酶(intestinal alkaline phosphatase, IAP)、黏液層、腸上皮細胞及固有免疫層在內(nèi)的四部分構(gòu)成[21]。生理狀態(tài)下,肝臟通過門靜脈系統(tǒng)接受源于胃腸道75%的血供,同時在腸道屏障多重結(jié)構(gòu)的保護下,極少的腸道細菌及其病原相關(guān)模式分子(PAMP)通過體循環(huán)入肝臟。然而在肝癌及肝硬化等狀態(tài)下,IAP對腸道細菌LPS類脂A結(jié)構(gòu)的去磷酸化作用減弱[22],同時由于上皮細胞間緊密連接結(jié)構(gòu)的進一步破壞,未經(jīng)IAP去磷酸化作用減毒的LPS及其他 PAMP可順勢突破腸道屏障進入體循環(huán)毛細血管中與LPS結(jié)合蛋白及其他脂蛋白相結(jié)合,進而形成門靜脈LPS內(nèi)毒素血癥[21-23]。
根據(jù)Marshall在1998年提出的“肝-腸軸”理論,肝臟作為首個經(jīng)門靜脈接觸腸源細菌內(nèi)毒素及其他PAMP的消化腺,其Kupffer細胞、肝細胞及星狀細胞可被動員并激活下游一系列固有及適應(yīng)性免疫炎癥反應(yīng)從而損傷肝臟,同時肝臟炎性損傷可反向下調(diào)腸道的生理功能。近年來多項動物模型研究表明,上述慢性肝臟炎癥損傷-修復(fù)機制顯著促進了肝癌的發(fā)生,參與肝癌的進展過程[24]。然而,由于腸道革蘭陰性細菌體外培養(yǎng)技術(shù)限制、LPS致癌機制復(fù)雜等原因,目前基于臨床的菌群致癌機制研究有限,需要進一步深入探究。
2 LPS相關(guān)免疫反應(yīng)是腸道菌群致癌的核心機制
2.1 腸道細菌通過LPS-Toll樣受體(TLR)途徑引發(fā)下游炎癥反應(yīng),參與肝癌的發(fā)生與進展 在肝硬化、肝癌等病理情況下,多態(tài)性改變的腸道微生物群與減弱的腸屏障相互作用,使大量未經(jīng)IAP充分脫磷酸失活的LPS經(jīng)門靜脈入肝,并在CD14的輔助下通過Lipid A結(jié)構(gòu)與Kupffer細胞表面的TLR家族成員TLR4結(jié)合,通過髓樣分化初級反應(yīng)蛋白(myeloid differentiation primary-response protein 88, MyD-88)依賴及非依賴途徑激活下游NF-κB、STAT-3通路,從而刺激細胞因子如TNF-α、IL-1β、IL-6、IL-17等的產(chǎn)生,進而通過慢性炎癥損傷-修復(fù)機制促進肝癌的發(fā)生[24-25]。在動物模型中,經(jīng)化學(xué)法誘發(fā)的肝癌小鼠經(jīng)抗生素?zé)o菌化處理后,可明顯降低肝癌發(fā)生率及局部腫塊大小,并通過LPS-TLR4途徑下調(diào)多個細胞因子的表達,反向驗證LPS抑制細胞凋亡的同時降低細胞對活性氧(ROS)的敏感性,也說明了腸道細菌確實參與肝癌的發(fā)生過程[26]。不僅如此,研究[27]表明LPS-TLR4途徑深度參與晚期肝癌的轉(zhuǎn)歸過程,而在肝癌早期LPS主要通過MyD-88非依賴旁分泌方式,上調(diào)肝星狀細胞分泌表皮調(diào)節(jié)素從而促進肝癌的進展,說明腸道細菌LPS-TLR4途徑很可能是臨床晚期肝癌治療藥物的全新干預(yù)靶點。但遺憾的是,目前臨床針對腸道細菌LPS-TLR4途徑仍以間接性單用或聯(lián)合抗生素如利福昔明、多黏菌素B等干預(yù)治療為主,尚缺乏可用于人體的直接針對性靶向阻斷劑[28-30]。
2.2 細胞因子介導(dǎo)免疫信號通路是LPS介導(dǎo)肝癌進展和轉(zhuǎn)移的核心分子途徑 LPS-TLR4激活下游NF-κB通路產(chǎn)生的多種細胞因子具有不同的信號功能,依據(jù)經(jīng)典的“多重打擊”理論,細胞因子IL-1β介導(dǎo)的效應(yīng)細胞對肝細胞的免疫損傷及TNF-α與對肝細胞的直接殺傷作用,均被認為是固有免疫對肝細胞的第一重打擊[31]。然而肝細胞癌的發(fā)生及進展過程除上述免疫損傷外,還伴隨著長久的慢性再生-修復(fù)過程,例如IL-6可激活下游JAK/STAT-3途徑,通過失活半胱氨酸天冬氨酸蛋白酶(Caspases)、下調(diào)ROS來抑制Fas介導(dǎo)的細胞凋亡,從而發(fā)揮對肝細胞的再生修復(fù)作用[32-33]。不僅如此,在晚期肝癌的小鼠模型中,LPS-TLR4途徑被證實可上調(diào)表皮生長因子(EGF)家族成員肝臟絲裂原的產(chǎn)生,從而動員EGFR、HER2受體參與晚期肝癌的進展過程[27]。另外,隨著肝癌進展至不同階段,腫瘤微環(huán)境的變化伴隨不同的免疫反應(yīng),LPS-TLR4途徑的激活可動員巨噬細胞分泌IL-10及趨化因子CCL22,CCL22可正向募集調(diào)節(jié)性T淋巴細胞(FOXP3+Treg)向腫瘤細胞聚集,同時IL-10負向調(diào)節(jié)腫瘤細胞對TNF-α、IL-2等的敏感性,而上述變化的微環(huán)境加速了腫瘤細胞的免疫逃逸,進而形成肝內(nèi)轉(zhuǎn)移[34-35]。
3 針對“LPS-TLR4”途徑的干預(yù)是肝癌“靶向治療”的全新發(fā)展方向之一
因腸道菌群基因組龐大及分子水平研究技術(shù)限制,傳統(tǒng)針對肝癌腸道細菌LPS的抗腫瘤治療方案大多是以抗生素、FMT及益生菌為代表,通過平衡菌群多態(tài)性、修復(fù)腸屏障功能來改善門靜脈內(nèi)毒素血癥,從而間接下調(diào)包含TLR4在內(nèi)LPS配體介導(dǎo)的下游炎癥反應(yīng)。近年來隨著高通量測序、基因編輯及分子靶向技術(shù)的進展,研究者[36]發(fā)現(xiàn)CRISPR技術(shù)已在治療酒精性肝損傷獲益方面被證實遠大于傳統(tǒng)FMT,具備極大潛力用于治療肝癌免疫性損傷。隨著LPS的合成通路逐漸被研究者揭開,發(fā)現(xiàn)LpxC是Lipd A合成通路中第一個關(guān)鍵酶,合成可強效抑制LpxC酶的新型化合物分子LPC-011等從而實現(xiàn)化學(xué)法敲除LPS,為下一步在動物模型上研究LPS在肝癌進展、轉(zhuǎn)歸過程中的免疫學(xué)作用及LPS在局部腫瘤內(nèi)外微環(huán)境中的生物學(xué)作用提供了全新的技術(shù)工具[37]。另一方面,研究者針對LPS受體TLR4設(shè)計了小分子化合物TAK-242,能夠在不影響LPS與巨噬細胞結(jié)合的情況下抑制下游多種細胞因子及一氧化氮(NO)的產(chǎn)生,是潛在可用于治療進展型肝癌的候選靶向藥物,同時為進一步研究細胞因子炎癥反應(yīng)在癌癥不同階段的損傷-修復(fù)機制提供新思路[38-39]。除上述人工合成小分子外,據(jù)報道一類天然海洋真菌提取吲哚生物堿——新棘菊素A(Neoechinulin A)可劑量依賴性抑制IκB-α的磷酸化降解從而抑制LPS-TLR4途徑下游NF-κB及p38 MAPK通路,下調(diào)致癌相關(guān)性炎癥反應(yīng)[40-41]。目前,新棘菊素A已被證實可有效抑制神經(jīng)性炎癥反應(yīng),但在包括肝癌在內(nèi)的惡性腫瘤中的抑癌機制仍缺乏進一步研究,很可能是一種針對LPS-TLR4/NF-κB通路的潛在新型靶向抗腫瘤藥物[40]。隨著細菌LPS致癌機制的揭示,未來基于腸道細菌LPS-TLR4通路的“靶向”藥物具有極大的發(fā)展?jié)摿ΓS著脂蛋白結(jié)合藥物轉(zhuǎn)運系統(tǒng)的成熟,未來基于LPS-TLR4靶點的藥物遞送系統(tǒng)可更加精準(zhǔn)的發(fā)揮抗腫瘤作用,是臨床“靶向”精準(zhǔn)治療的熱門發(fā)展方向[42]。
4 結(jié)語及展望
近年來隨著肝癌致病機制不斷被揭示,明確了腸道微生物在肝癌致病過程中具有重要的生物學(xué)地位,很可能是除病毒性肝炎、酒精/非酒精性脂肪肝、糖尿病及其他代謝綜合征之外的另一大關(guān)鍵性危險因素[43];發(fā)現(xiàn)了腸道微生物多態(tài)性分析可作為肝癌早期篩查的無創(chuàng)性生物標(biāo)志物[6];證明了腸道細菌LPS相關(guān)性炎癥反應(yīng)參與肝癌的發(fā)生、進展及轉(zhuǎn)歸過程(圖1)。目前肝癌非手術(shù)治療手段有限,以免疫檢查點抑制劑、酪氨酸激酶受體拮抗劑及表皮生長因子受體拮抗劑為代表的系統(tǒng)性治療藥物面臨基因突變耐藥、對應(yīng)腫瘤分期嚴(yán)格等限制條件下,因此研制新型作用于LPS-TLR4靶點的抗腫瘤藥物尤為重要。
需要指出的是,雖然TLR4是細菌LPS激動的主要受體,但仍不排除其他Toll受體家族成員被LPS激動引發(fā)旁路致癌途徑,并且不同細菌屬的LPS結(jié)構(gòu)不盡相同[24],特定代表性細菌如大腸埃希菌(E. coli)
應(yīng)致癌的具體機制尚不明確,仍需進一步研究。另一方面,除革蘭陰性菌外,腸道革蘭陽性菌的胞壁酸結(jié)構(gòu)是TLR2的配體[13],可與膽汁酸的初-次級代謝過程協(xié)同造成肝細胞DNA的損傷,形成肝星狀細胞衰老相關(guān)分泌表型,而促進肝癌的進展和轉(zhuǎn)移[13-44]。
綜上所述,現(xiàn)有腸道細菌LPS與肝癌致病機制研究主要集中在動物模型,對臨床應(yīng)用研究有限。下一步,以下幾方面將是今后臨床研究的重要方向:(1)提取特定代表性細菌外膜結(jié)構(gòu)組分并體內(nèi)驗證其交叉致癌效應(yīng);(2)研制LPS作為潛在免疫佐劑的藥物靶向遞送系統(tǒng);(3)針對性合成或提取高效的靶點抑制劑。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:王濤負責(zé)收集數(shù)據(jù),撰寫論文;王權(quán)負責(zé)資料整理;宋立華負責(zé)修改論文;段學(xué)章指導(dǎo)撰寫文章,提供寫作思路,修改文章并最終定稿。
參考文獻:
[1]SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]CULLIN N, AZEVEDO ANTUNES C, STRAUSSMAN R, et al. Microbiome and cancer[J]. Cancer Cell, 2021, 39(10): 1317-1341. DOI: 10.1016/j.ccell.2021.08.006.
[3]BARTOLINI I, RISALITI M, TUCCI R, et al. Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment[J]. World J Gastrointest Oncol, 2021, 13(11): 1616-1631. DOI: 10.4251/wjgo.v13.i11.1616.
[4]RANF S. Immune sensing of lipopolysaccharide in plants and animals: Same but different[J]. PLoS Pathog, 2016, 12(6): e1005596. DOI: 10.1371/journal.ppat.1005596.
[5]WENG MT, CHIU YT, WEI PY, et al. Microbiota and gastrointestinal cancer[J]. J Formos Med Assoc, 2019, 118(Suppl 1): S32-S41. DOI: 10.1016/j.jfma.2019.01.002.
[6]SCHWABE RF, GRETEN TF. Gut microbiome in HCC-mechanisms, diagnosis and therapy[J]. J Hepatol, 2020, 72(2): 230-238. DOI: 10.1016/j.jhep.2019.08.016.
[7]REN Z, LI A, JIANG J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6): 1014-1023. DOI: 10.1136/gutjnl-2017-315084.
[8]ZHANG L, WU YN, CHEN T, et al. Relationship between intestinal microbial dysbiosis and primary liver cancer[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(2): 149-157. DOI: 10.1016/j.hbpd.2019.01.002.
[9]FERRERE G, WRZOSEK L, CAILLEUX F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice[J]. J Hepatol, 2017, 66(4): 806-815. DOI: 10.1016/j.jhep.2016.11.008.
[10]KELLY CR, KHORUTS A, STALEY C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: A randomized trial[J]. Ann Intern Med, 2016, 165(9): 609-616. DOI: 10.7326/M16-0271.
[11]MAO J, WANG D, LONG J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9(12): e003334. DOI: 10.1136/jitc-2021-003334.
[12]MEIGHANI A, ALIMIRAH M, RAMESH M, et al. Fecal microbiota transplantation for clostridioides difficile infection in patients with chronic liver disease[J]. Int J Hepatol, 2020, 2020: 1874570. DOI: 10.1155/2020/1874570.
[13]BUTEL MJ. Probiotics, gut microbiota and health[J]. Med Mal Infect, 2014, 44(1): 1-8. DOI: 10.1016/j.medmal.2013.10.002.
[14]KHEDR O, EL-SONBATY SM, MOAWED F, et al. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DEN-induced hepatocarcinogenesis in rats[J]. Nutr Cancer, 2022, 74(3): 1037-1047. DOI: 10.1080/01635581.2021.1934490.
[15]WANG H, REDDY ST, FOGELMAN AM. The role of gut-derived oxidized lipids and bacterial lipopolysaccharide in systemic inflammation and atherosclerosis[J]. Curr Opin Lipidol, 2022, 33(5): 277-282. DOI: 10.1097/MOL.0000000000000841.
[16]SUN C, WANG Z, HU L, et al. Targets of statins intervention in LDL-C metabolism: Gut microbiota[J]. Front Cardiovasc Med, 2022, 9: 972603. DOI: 10.3389/fcvm.2022.972603.
[17]FEMIN R, FEMIN G, CAVEZZI A, et al. PCSK9 inhibition, LDL and lipopolysaccharides: a complex and “dangerous” relationship[J]. Int Angiol, 2021, 40(3): 248-260. DOI: 10.23736/S0392-9590.21.04632-0.
[18]ZHENG Z, WANG B. The gut-liver axis in health and disease: The role of gut microbiota-derived signals in liver injury and regeneration[J]. Front Immunol, 2021, 12: 775526. DOI: 10.3389/fimmu.2021.775526.
[19]ZHOU Y, ZHENG T, CHEN H, et al. Microbial intervention as a novel target in treatment of non-alcoholic fatty liver disease progression[J]. Cell Physiol Biochem, 2018, 51(5): 2123-2135. DOI: 10.1159/000495830.
[20]GAO Q, ZHU H, DONG L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(2): 561-577.e22. DOI: 10.1016/j.cell.2019.08.052.
[21]GHOSH SS, WANG J, YANNIE PJ, et al. Intestinal barrier dysfunction, LPS translocation, and disease development[J]. J Endocr Soc, 2020, 4(2): bvz039. DOI: 10.1210/jendso/bvz039.
[22]BENTALA H, VERWEIJ WR, HUIZINGA-VAN DER VLAG A, et al. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide[J]. Shock, 2002, 18(6): 561-566. DOI: 10.1097/00024382-200212000-00013.
[23]SCHROMM AB, BRANDENBURG K, LOPPNOW H, et al. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity[J]. J Immunol, 1998, 161(10): 5464-5471. DOI:
[24]LI T, WAN B, HUANG J, et al. Comparison of gene expression in hepatocellular carcinoma, liver development, and liver regeneration[J]. Mol Genet Genomics, 2010, 283(5): 485-492. DOI: 10.1007/s00438-010-0530-y.
[25]LUEDDE T, SCHWABE RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108-118. DOI: 10.1038/nrgastro.2010.213.
[26]YU LX, YAN HX, LIU Q, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents[J]. Hepatology, 2010, 52(4): 1322-1333. DOI: 10.1002/hep.23845.
[27]DAPITO DH, MENCIN A, GWAK GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]. Cancer Cell, 2012, 21(4): 504-516. DOI: 10.1016/j.ccr.2012.02.007.
[28]CARACENI P, VARGAS V, SOL E, et al. The use of rifaximin in patients with cirrhosis[J]. Hepatology, 2021, 74(3): 1660-1673. DOI: 10.1002/hep.31708.
[29]HAN X, LUO Z, WANG W, et al. Efficacy and safety of rifaximin versus placebo or other active drugs in critical ill patients with hepatic encephalopathy[J]. Front Pharmacol, 2021, 12: 696065. DOI: 10.3389/fphar.2021.696065.
[30]MA C, HAN M, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5913. DOI: 10.1126/science.aan5931.
[31]PONZIANI FR, NICOLETTI A, GASBARRINI A, et al. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma[J]. Ther Adv Med Oncol, 2019, 11: 1758835919848184. DOI: 10.1177/1758835919848184.
[32]JUNG IH, CHOI JH, CHUNG YY, et al. Predominant activation of JAK/STAT3 pathway by interleukin-6 is implicated in hepatocarcinogenesis[J]. Neoplasia, 2015, 17(7): 586-597. DOI: 10.1016/j.neo.2015.07.005.
[33]TAUB R. Hepatoprotection via the IL-6/Stat3 pathway[J]. J Clin Invest, 2003, 112(7): 978-980. DOI: 10.1172/JCI19974.
[34]YANG J, ZHANG JX, WANG H, et al. Hepatocellular carcinoma and macrophage interaction induced tumor immunosuppression via Treg requires TLR4 signaling[J]. World J Gastroenterol, 2012, 18(23): 2938-2947. DOI: 10.3748/wjg.v18.i23.2938.
[35]ZENG L, OCONNOR C, ZHANG J, et al. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines[J]. Cytokine, 2010, 49(3): 294-302. DOI: 10.1016/j.cyto.2009.11.015.
[36]YU L, WANG L, YI H, et al. Beneficial effects of LRP6-CRISPR on prevention of alcohol-related liver injury surpassed fecal microbiota transplant in a rat model[J]. Gut Microbes, 2020, 11(4): 1015-1029. DOI: 10.1080/19490976.2020.1736457.
[37]WANG T, YU Y, LIANG X, et al. Lipid a has significance for optimal growth of coxiella burnetii in macrophage-like THP-1 cells and to a lesser extent in axenic media and non-phagocytic cells[J]. Front Cell Infect Microbiol, 2018, 8: 192. DOI: 10.3389/fcimb.2018.00192.
[38]SHA T, SUNAMOTO M, KITAZAKI T, et al. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model[J]. Eur J Pharmacol, 2007, 571(2-3): 231-239. DOI: 10.1016/j.ejphar.2007.06.027.
[39]HORIOKA K, TANAKA H, ISOZAKI S, et al. Acute colchicine poisoning causes endotoxemia via the destruction of intestinal barrier function: The curative effect of endotoxin prevention in a murine model[J]. Dig Dis Sci, 2020, 65(1): 132-140. DOI: 10.1007/s10620-019-05729-w.
[40]MITRA S, ANAND U, SANYAL R, et al. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases[J]. Biomed Pharmacother, 2022, 145: 112378. DOI: 10.1016/j.biopha.2021.112378.
[41]KIM KS, CUI X, LEE DS, et al. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages[J]. Molecules, 2013, 18(11): 13245-13259. DOI: 10.3390/molecules181113245.
[42]BUSATTO S, WALKER SA, GRAYSON W, et al. Lipoprotein-based drug delivery[J]. Adv Drug Deliv Rev, 2020, 159: 377-390. DOI: 10.1016/j.addr.2020.08.003.
[43]LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
[44]YOSHIMOTO S, LOO TM, ATARASHI K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456): 97-101. DOI: 10.1038/nature12347.
收稿日期:
2022-10-11;錄用日期:2022-11-14
本文編輯:王亞南
引證本文:
WANG T, WANG Q, SONG LH, et al. Role of lipopolysaccharide in the development and progression of liver cancer
[J]. J Clin Hepatol, 2023, 39(7): 1734-1739.
王濤, 王權(quán), 宋立華,? 等.
脂多糖在肝癌發(fā)生發(fā)展中的作用[J]. 臨床肝膽病雜志, 2023, 39(7): 1734-1739.