收稿日期:2022-02-23
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51675265);淮安市自然科學(xué)研究計(jì)劃(HAB202226)
通信作者:張宇翔(1991—),男,博士、講師,主要從事環(huán)境能量收集方面的研究。yxzhang@hyit.edu.cn
DOI:10.19912/j.0254-0096.tynxb.2022-0196 文章編號(hào):0254-0096(2023)06-0024-06
摘 要:針對(duì)多浮體波浪能發(fā)電裝置,提出一種將Halbach永磁陣列與無鐵芯結(jié)構(gòu)相結(jié)合的電磁換能器結(jié)構(gòu),使波浪能可直接轉(zhuǎn)換為電能。隨后提出一種針對(duì)該電磁換能器的改進(jìn)等效磁路模型,根據(jù)電磁換能器的最大阻尼系數(shù)對(duì)電磁換能器進(jìn)行結(jié)構(gòu)優(yōu)化。將改進(jìn)等效磁路模型的計(jì)算結(jié)果與通過仿真軟件得到的結(jié)果進(jìn)行對(duì)比,驗(yàn)證等效磁路模型的有效性。對(duì)處于實(shí)驗(yàn)室條件下的電磁換能器進(jìn)行結(jié)構(gòu)優(yōu)化后,制作電磁換能器的樣機(jī),并搭建試驗(yàn)測(cè)試平臺(tái),對(duì)樣機(jī)進(jìn)行性能測(cè)試。試驗(yàn)結(jié)果表明:樣機(jī)的繞組電壓能達(dá)到理論值的為75%,Halbach永磁結(jié)構(gòu)換能器樣機(jī)在振幅20 mm、頻率6 Hz的條件下,不同位置的兩個(gè)繞組的電壓峰值分別為32.33和27.98 V,電壓有效值分別為15.00和16.50 V,其能量采集功率為49.72 W。
關(guān)鍵詞:波浪能;直接能量轉(zhuǎn)換;電磁換能器;Halbach陣列;無鐵芯
中圖分類號(hào):P743.2" " " " " " " " " " " " " " " 文獻(xiàn)標(biāo)志碼:A
0 引 言
如何妥善解決能源需求問題是保障社會(huì)發(fā)展與穩(wěn)定的前提[1]。當(dāng)前能源的獲取主要依靠化石燃料,然而化石燃料燃燒過程中會(huì)排放大量的氮氧化物、硫化物等有害氣體,導(dǎo)致酸雨、霧霾等環(huán)境問題[2]。隨著社會(huì)和經(jīng)濟(jì)的發(fā)展,可再生能源的開發(fā)已成為當(dāng)前國(guó)內(nèi)外專家學(xué)者的研究熱點(diǎn)[3]。太陽能、風(fēng)能和海洋能等新能源可從自然環(huán)境中獲?。?],如果能用這些能源逐步取代化石能源,將極大緩解目前出現(xiàn)的環(huán)境問題[5],而波浪能因?yàn)槠浞植紡V泛具有很大的優(yōu)勢(shì)[6-8]。
目前國(guó)內(nèi)外學(xué)者在波浪能發(fā)電領(lǐng)域研究中已取得很多成果。Calheiros-Cabral等[9]提出一種結(jié)合振蕩水柱和多水庫(kù)系統(tǒng)的波浪能轉(zhuǎn)換裝置,以葡萄牙北部防波堤為案例進(jìn)行研究,估計(jì)開發(fā)的波浪能轉(zhuǎn)換裝置可提供萊克斯港港口約50%的電力。Erselcan等[10]對(duì)點(diǎn)吸收器型波浪能轉(zhuǎn)換器進(jìn)行參數(shù)優(yōu)化研究,研究并討論浮子幾何形狀、質(zhì)量和尺寸以及換能系統(tǒng)的參數(shù)對(duì)轉(zhuǎn)換波浪量的影響。趙青等[11]設(shè)計(jì)一種浮力擺波浪能發(fā)電裝置,探究擺板的運(yùn)動(dòng)特性以及波浪參數(shù)對(duì)與浮力擺波浪能發(fā)電裝置的影響。顧煜炯等[12]研究基于液壓系統(tǒng)的振蕩浮子波浪能發(fā)電裝置,證明了該裝置能量轉(zhuǎn)換效率高,可平穩(wěn)運(yùn)行,同時(shí)兼?zhèn)浣Y(jié)構(gòu)簡(jiǎn)單、成本低等優(yōu)點(diǎn)。王項(xiàng)南等[13]提出完整的波浪能發(fā)電裝置標(biāo)準(zhǔn)化測(cè)試系統(tǒng),測(cè)試內(nèi)容包括裝置的準(zhǔn)備、測(cè)試、數(shù)據(jù)處理、功率特性分析等階段。張宇翔等[14]提出以蛇形波浪能收集裝置為代表的多種多浮體直接式波浪能發(fā)電裝置,蛇形波浪能收集裝置通過電磁換能器將波浪能直接轉(zhuǎn)換為電能,簡(jiǎn)化能量轉(zhuǎn)換步驟提高轉(zhuǎn)換效率,取得了較好的效果。
本文將電磁換能器應(yīng)用于多浮體波浪能發(fā)電裝置中,使其可直接將波浪能發(fā)電裝置的機(jī)械能轉(zhuǎn)化為電能。同時(shí)針對(duì)傳統(tǒng)電磁換能器結(jié)構(gòu)復(fù)雜、裝配難、磁場(chǎng)強(qiáng)度不夠高等缺點(diǎn),設(shè)計(jì)一種Halbach永磁陣列結(jié)構(gòu)無鐵芯電磁換能器結(jié)構(gòu),其可簡(jiǎn)化電磁換能器結(jié)構(gòu)并易于裝配,增強(qiáng)電磁換能器的能量轉(zhuǎn)換能力。
1 多浮體直接式波浪能發(fā)電裝置的設(shè)計(jì)
本文的研究對(duì)象為多浮體直接式波浪能轉(zhuǎn)換裝置。筏式波浪能轉(zhuǎn)換裝置大多采用液壓式的能量轉(zhuǎn)換裝置,需將裝置的機(jī)械能先轉(zhuǎn)換為液壓能,隨后再轉(zhuǎn)換為電能,這使得能量的轉(zhuǎn)換步驟較多、轉(zhuǎn)換效率較低。用電磁換能器取代液壓式的換能器可將機(jī)械能直接轉(zhuǎn)換為電能。多浮體直接式波浪能轉(zhuǎn)換裝置由多節(jié)浮筒和電磁換能器組成,如圖1所示。
浮筒通過鉸鏈鏈接并首尾相連,電磁換能器位于浮筒之間,兩浮筒之間有兩個(gè)電磁換能器。兩相鄰的浮筒隨波浪的運(yùn)動(dòng)而發(fā)生相對(duì)運(yùn)動(dòng),從而驅(qū)動(dòng)電磁換能器。
為了簡(jiǎn)化模型,本文研究由于線性水波引起浮筒的運(yùn)動(dòng),包括縱蕩、垂蕩和縱搖運(yùn)動(dòng)。多浮體波浪能轉(zhuǎn)換裝置的幾何形狀和笛卡爾坐標(biāo)系,如圖2所示。由于本文僅考慮二維問題,所以假定矩形浮筒在[y]方向上是無限的。共有[N]個(gè)浮筒,故定義第[n]個(gè)浮筒的長(zhǎng)度為[an],第[n]個(gè)浮筒的吃水深度為[dn],第[n]個(gè)浮筒和第[n+1]個(gè)浮筒的間距為[Dn]。
由于多浮體波浪能轉(zhuǎn)換裝置在微幅波作用下,每個(gè)浮筒的運(yùn)動(dòng)幅度均較小,所以空間速度勢(shì)[φ]由入射波空間速度勢(shì)[φI]、繞射波空間速度勢(shì)[φD]以及輻射波空間速度勢(shì)[φnR,p]組成,有如下關(guān)系[15]:
[φ=φI+φD-iωn=1Np=13XnpφnR,p] (1)
式中:[ω]——波浪的頻率;[p]——自由度,[p=1~3],分別代表浮筒的縱蕩、垂蕩和縱搖運(yùn)動(dòng);[Xnp]——第[n]個(gè)浮筒在[p]自由度運(yùn)動(dòng)的復(fù)數(shù)振幅;[φnR,p]——第[n]個(gè)浮筒在[p]自由度做單位速度幅值振動(dòng)時(shí)所對(duì)應(yīng)的輻射波空間速度勢(shì)。
對(duì)于多浮筒波浪能收集裝置的動(dòng)力問題,求得各浮筒所受的波浪激勵(lì)力及水動(dòng)力系數(shù),每個(gè)浮筒運(yùn)動(dòng)的復(fù)數(shù)響應(yīng)幅值由運(yùn)動(dòng)方程即可求得:
[-ω2M+Ma-iωC+CPTO+KATJAJ0XFJ=Fe0] (2)
式中:[M]和[Ma]——多浮筒波浪能收集裝置的質(zhì)量矩陣和附加質(zhì)量矩陣;[C]——輻射阻尼矩陣;[CPTO]——換能系統(tǒng)的阻尼矩陣;[K]——靜水剛度矩陣;[AJ]——裝置的連接矩陣;[X]——位移響應(yīng)幅值列向量;[FJ]——連接處傳遞的作用力/力矩列向量;[Fe]——波浪激勵(lì)力列向量。
在規(guī)則波的作用下,二維多浮體波浪能轉(zhuǎn)換裝置換能系統(tǒng)的平均波能俘獲功率為:
[P=12ω2n=1n=N-1cnXn+1,3-Xn,32] (3)
單波寬的入射波能流[Pin]為:
[Pin=ωρgA24k1+2khsinh2kh] (4)
多浮體裝置的平均波能俘獲效率[η]為:
[η=PPin] (5)
將浮筒的幾何參數(shù)進(jìn)行無量綱化,取多浮體波浪能收集裝置的前兩節(jié)筏體作為研究對(duì)象,當(dāng)每一節(jié)筏體的長(zhǎng)度相等均為[a]時(shí)[16]:
[d=da],[D=Da],[c=cPTOgdρga4] (6)
式中:[d]——無量綱吃水深度;[D]——無量綱浮筒間距;[c]——無量綱線性阻尼系數(shù);[cPTO]——電磁換能器的阻尼系數(shù)。
當(dāng)[d]=1、[D]=0.05時(shí),波能俘能效率在無量綱波數(shù)[ka=3.5],無量綱線性阻尼系數(shù)[c]=0.008附近存在峰值,所以在這種條件組合下,取無量綱阻尼系數(shù)[c]=0.008,多浮體波浪能收集裝置的波能俘獲效率最高。
2 Halbach永磁陣列結(jié)構(gòu)無鐵芯電磁換能器結(jié)構(gòu)的設(shè)計(jì)及參數(shù)優(yōu)化
電磁換能器的傳動(dòng)結(jié)構(gòu)較簡(jiǎn)單,可直接將裝置的機(jī)械能轉(zhuǎn)化為電能,且運(yùn)行時(shí)能量損耗小。一般的電磁換能器采用類似于直線電機(jī)的結(jié)構(gòu),中間有磁鐵和鐵芯,兩者相互吸引,所以其組裝過程繁瑣,同時(shí)磁鐵與鐵芯有齒槽效應(yīng),兩者的相對(duì)運(yùn)動(dòng)過程不夠線性。將應(yīng)用于波浪能發(fā)電裝置中的電磁換能器采用無鐵芯結(jié)構(gòu),可有效簡(jiǎn)化電磁換能器的結(jié)構(gòu),便于其在波浪能發(fā)電領(lǐng)域的應(yīng)用。
2.1 電磁換能器結(jié)構(gòu)的設(shè)計(jì)
為了將電磁換能器適配于多浮體波浪能轉(zhuǎn)換裝置,設(shè)計(jì)無鐵芯電磁換能器作為波浪能發(fā)電裝置的換能裝置,其設(shè)計(jì)示意圖為圖3所示。該電磁換能器采用無鐵芯設(shè)計(jì),相比于傳統(tǒng)有鐵芯設(shè)計(jì),具有組裝方便、安全;能量轉(zhuǎn)換效率高;結(jié)構(gòu)簡(jiǎn)單、無齒槽效應(yīng),可使電磁換能器的運(yùn)行更加平穩(wěn)等優(yōu)點(diǎn)。與此同時(shí),該電磁換能器中的永磁體采用Halbach永磁陣列結(jié)構(gòu)。Halbach永磁陣列具有增強(qiáng)單邊磁場(chǎng)的能力,采用Halbach永磁陣列結(jié)構(gòu)的電磁換能器可使線圈所處的磁場(chǎng)強(qiáng)度增加。
2.2 Halbach永磁陣列結(jié)構(gòu)改進(jìn)等效磁路模型及參數(shù)優(yōu)化
建立電磁換能器及其改進(jìn)等效磁路模型,如圖4所示。對(duì)Halbach永磁陣列結(jié)構(gòu)電磁換能器的磁路分析過程中,為了方便計(jì)算,在每個(gè)永磁體的軸向與徑向存在中性面,永磁體的磁感線不穿過中性面;定子外殼同樣采用高磁導(dǎo)率材料,忽略定子外殼與動(dòng)子導(dǎo)桿的磁阻。圖4中的電磁換能器相鄰的4個(gè)永磁體中存在3個(gè)磁路,由磁路基爾霍夫第二定律得到:
[Hcτma=Brμrμ0τma=Rma1+2Rmr1+2RgΦg1=2Rmr3+Rma2Φg3] (7)
[2Hcrmo-rmi=2Brμrμ0rmo-rmi=2Rmr2+2RgΦg2] (8)
式中:[Hc]——永磁體的磁場(chǎng)強(qiáng)度;[τma]——軸向永磁體厚度;[Br]——釹鐵硼永磁體的剩磁強(qiáng)度,[Br=1.31 T;][μr]——永磁體的相對(duì)磁導(dǎo)率,[μr=1.1;][μ0]——真空磁導(dǎo)率;[Rma1]——軸向永磁體中性面以上軸向的磁阻;[Rmr1]——徑向永磁體軸向中性面以上徑向的磁阻;[Rg]——?dú)庀洞抛?;[Φg]——線圈的氣隙磁通;[Rmr3]——徑向永磁體軸向中性面以下徑向的磁阻;[Rma2]——軸向永磁體中性面以下軸向的磁阻;[Rmr2]——徑向永磁體軸向徑向的磁阻;[rmo]——永磁體外半徑;[rmi]——永磁體內(nèi)半徑。
假設(shè)軸向永磁體的中性面位于永磁體的軸向中間位置,該結(jié)構(gòu)中磁力線通過永磁體對(duì)應(yīng)氣隙的圓柱面面積為:
[Sg=π2rco+rmoτ-τma] (9)
磁力線通過軸向永磁體的截面積為:
[Sma1=πrmo2-rmo+rmi22] (10)
磁力線通過徑向永磁體的截面積為:
[Smr1=π34rmo+14rmiτmr] (11)
[Smr2=πrmo+rmi2τmr] (12)
氣隙磁阻為:
[Rg=rco-rmoπμ0rco+rmo2τmr] (13)
軸向永磁體的磁阻為:
[Rma1=τmaμrμ0πrmo2-rmo+rmi22] (14)
徑向永磁體的磁阻為:
[Rmr1=2rmo-rmiπμrμ03rmo+rmiτmr] (15)
[Rmr2=rmo-rmiπμrμ0rmo+rmi2τmr] (16)
氣隙磁通[Φg]的表達(dá)式為:
[Φg=Φg1+Φg2] (17)
為了進(jìn)一步對(duì)磁通量進(jìn)行計(jì)算,定義Halbach永磁陣列結(jié)構(gòu)中徑向充磁永磁體厚度與極長(zhǎng)的比為[α],永磁體與線圈徑向尺寸的比為[β]。
[α=1-τmaτ] (18)
[β=rmo-rmirco-rmi] (19)
根據(jù)電磁換能器的原理,在線圈短接狀態(tài)下其阻尼系數(shù)可達(dá)到最大。在理論計(jì)算與對(duì)比中暫時(shí)忽略導(dǎo)線的密度和線圈間距對(duì)最大阻尼系數(shù)影響,假設(shè)在短路狀態(tài)下線圈為整塊金屬環(huán)狀導(dǎo)體。同時(shí)假設(shè)徑向磁感應(yīng)強(qiáng)度[Bg]在線圈空間內(nèi)均勻分布,所以電磁換能器的最大阻尼系數(shù)[c]可表示為:
[c=1ρΓBg2dΓ=2rco-rciSgBg2ρ] (20)
假設(shè)Halbach永磁陣列結(jié)構(gòu)的永磁體極長(zhǎng)[τ=0.2 m],永磁體內(nèi)半徑[rmi=0.02 m],線圈外半徑[rco=0.15 m],即可得到不同[α]與[β]組合條件下的氣隙磁通[Φg]。當(dāng)[β]一定時(shí),約在[α=0.8]處出現(xiàn)拐點(diǎn)。令永磁體與線圈間隙為0.001 m,單線圈最大阻尼系數(shù)[c]約在[α=0.65]和[β=0.70]處取得極大值。
3 電磁換能器的有限元分析
對(duì)不同[α]條件下電磁換能器建模時(shí),先假定[β=0.6]。使用仿真軟件COMSOL Multiphysics 5.3建立電磁換能器的有限元模型。假設(shè)間隙[rci-rmo=0.001] m。電磁換能器的線圈選擇直徑[d=2]mm的漆包線,單線圈匝數(shù)可近似表示為:
[N=π23·SSw=Sd2] (21)
式中:[S]——線圈部分截面積;[Sw]——漆包線截面積。
假設(shè)相對(duì)運(yùn)動(dòng)的速度為0.1 m/s,圖5a為不同[α]條件下電磁換能器的單線圈電壓峰值[Vpeak]與電壓有效值[VRMS]的變化曲線。從圖5a可看出,在[α=0.4]處電壓峰值[Vpeak]達(dá)到最大值,在[α=0.6]處電壓有效值[VRMS]達(dá)到最大值,電壓有效值[VRMS]為36.08 V,此時(shí)開路電壓峰值[Vpeak]為49.29 V。隨后,令[α=0.6],對(duì)不同[β]條件下電磁換能器徑向建模,結(jié)果如圖5b所示。
綜合分析可發(fā)現(xiàn),當(dāng)相對(duì)運(yùn)動(dòng)速度一定時(shí),滿足[α=0.6]、[β=0.6]條件的電磁換能器的單線圈[Vpeak]與[VRMS]最大。這與通過等效磁路模型的計(jì)算而得到的結(jié)果基本吻合,證明了等效磁路模型的準(zhǔn)確性。將經(jīng)過改進(jìn)的等效磁路模型與有限元分析的結(jié)果進(jìn)行對(duì)比,與有限元分析的結(jié)果基本相符。與未改進(jìn)前的等效磁路模型進(jìn)行對(duì)比,在文獻(xiàn)[17]中,未改進(jìn)前等效磁路模型的優(yōu)化結(jié)果為[α=0.7],[β=0.7],顯然改進(jìn)后的等效磁路模型與有限元分析的結(jié)果更為貼近,證明了改進(jìn)后等效磁路模型的有效性。電磁換能器的最大阻尼系數(shù)公式為:
[cPTO=Pmaxv2=2nVRMS2nRintv2] (22)
式中:[Pmax]——線圈短接時(shí)電磁換能器內(nèi)部能量耗散功率;[v]——電磁換能器的動(dòng)子與定子的相對(duì)運(yùn)動(dòng)速度;[n]——繞組中線圈數(shù)量;[Rint]——單線圈的內(nèi)阻。
令[a=20],[d]=1,[D]=0.05時(shí),波能俘能效率在[ka=3.5,][c]=0.008時(shí)存在峰值,此時(shí)[cPTO]約為1.1×105 Ns/m。此時(shí),取線圈數(shù)量為4,電磁換能器的最大阻尼系數(shù)可達(dá)3.7×105 Ns/m,可滿足多浮體波浪能發(fā)電裝置的設(shè)計(jì)需求。
4 電磁換能器樣機(jī)的制作與試驗(yàn)驗(yàn)證
由于試驗(yàn)條件的限制,需對(duì)研究的電磁換能器進(jìn)行縮小處理,制作可放置于試驗(yàn)平臺(tái)上適合的電磁換能器樣機(jī)。研究中建立的試驗(yàn)平臺(tái)主要組成部分為:電磁換能器樣機(jī)、用于固定電磁換能器樣機(jī)固定架、振動(dòng)平臺(tái)(蘇試DC-100-15)、示波器(Tektronix MDO3012)。利用等效磁路模型,令電磁換能器的外半徑為40 mm,永磁體內(nèi)半徑為5 mm,永磁體極長(zhǎng)為20 mm,定子與動(dòng)子間隙為1 mm,計(jì)算不同[α]與[β]條件下的電磁換能器樣機(jī)的最大阻尼系數(shù)[c],當(dāng)[α=0.5,][β=0.6]時(shí),最大阻尼系數(shù)[c]達(dá)到最大,此時(shí)單線圈最大阻尼系數(shù)為66.1 Ns/m。根據(jù)等效磁路模型優(yōu)化的結(jié)果,計(jì)算得到電磁換能器樣機(jī)的參數(shù),如表1所示。
樣機(jī)的實(shí)物圖如圖6a所示。使用釹鐵硼N42作為電磁換能器中永磁體的材料,外殼使用鐵質(zhì)材料,線圈基座采用樹脂材料,同時(shí)考慮到裝配的問題,動(dòng)子導(dǎo)桿采用鋁制材料。將振動(dòng)臺(tái)的振動(dòng)頻率設(shè)置為2~6 Hz,振幅設(shè)置為2~20 mm,此時(shí)樣機(jī)的動(dòng)子與定子相對(duì)運(yùn)動(dòng)速度與在真實(shí)波浪作用下的相對(duì)運(yùn)動(dòng)速度相似,以此來模擬樣機(jī)在實(shí)際波浪中的運(yùn)動(dòng)情況。
首先,將樣機(jī)安裝在振動(dòng)臺(tái)上,將振動(dòng)臺(tái)的頻率調(diào)為2 Hz,振幅設(shè)置為18 mm,分別得到樣機(jī)繞組的開路電壓波形圖,如圖7所示。由圖7可看出,樣機(jī)的繞組電壓波形接近于正弦信號(hào),但因?yàn)槌跏嫉奈恢貌煌?,不同相位的線圈電壓波形稍顯不同。樣機(jī)的繞組電壓峰值分別為9.50和8.20 V,電壓有效值分別為4.60和5.04 V。經(jīng)仿真計(jì)算,樣機(jī)繞組的理論電壓峰值分別為12.57和10.84 V,理論電壓有效值分別為6.03和6.73 V,樣機(jī)的繞組電壓有效值試驗(yàn)結(jié)果分別達(dá)到理論值的76.29%和74.89%。
隨后,在振動(dòng)臺(tái)不同幅值的激勵(lì)下,探討開路電壓與運(yùn)動(dòng)幅值的關(guān)系。將振動(dòng)臺(tái)的頻率調(diào)為2 Hz,振幅分別設(shè)置為2.5、5.0、7.5、10.0、12.5、15.0、17.5、20.0 mm,分別得到樣機(jī)在不同振幅條件下的繞組電壓的有效值。同時(shí),利用仿真軟件得到樣機(jī)在不同振幅下的理論繞組電壓有效值,并與樣機(jī)的試驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖8所示。從圖8可得,試驗(yàn)結(jié)果可達(dá)到理論值的約75%。樣機(jī)在頻率為2 Hz、振幅為15 mm的條件下,不同對(duì)應(yīng)位置的兩個(gè)線圈繞組的電壓峰值分別為8.08和6.43 V,電壓有效值分別為3.82和4.21 V。假設(shè)線圈的內(nèi)阻忽略不計(jì),繞組外接負(fù)載為10 Ω,可估算出在理想情況下,電磁換能器在振幅為15 mm,頻率為2 Hz的條件下,其能量采集功率為3.23 W。當(dāng)線圈短接時(shí),樣機(jī)的阻尼系數(shù)可達(dá)到最大。繞組內(nèi)阻為5 Ω,根據(jù)線圈電壓,可估算出線圈短接時(shí)樣機(jī)的耗散功率為6.46 W,得到此時(shí)樣機(jī)的最大阻尼系數(shù)為448.84 Ns/m。
在振動(dòng)臺(tái)不同幅值的激勵(lì)下,探討繞組的開路電壓與運(yùn)動(dòng)幅值的關(guān)系。將振動(dòng)臺(tái)的振幅設(shè)置為20 mm,頻率分別設(shè)置為2、3、4、5、6 Hz,得到樣機(jī)在不同頻率條件下的繞組電壓,如圖9所示。根據(jù)電壓的有效值分別計(jì)算出相應(yīng)頻率下的最大能量采集功率。樣機(jī)在振幅為20 mm、頻率為2 Hz的條件下,不同對(duì)應(yīng)位置的兩個(gè)繞組的電壓峰值分別為10.78和9.43 V,電壓有效值分別為5.22和5.48 V,其最大能量采集功率為5.74 W。樣機(jī)在振幅為20 mm、頻率為6 Hz的條件
下,不同位置的兩個(gè)繞組的電壓峰值分別為32.33和27.98 V,電壓有效值分別為15.00和16.50 V,其能量采集功率為49.72 W。
5 結(jié) 論
本文提出一種將Halbach永磁陣列與無鐵芯結(jié)構(gòu)相結(jié)合的電磁換能器結(jié)構(gòu),并將其與多浮體直接式波浪能發(fā)電裝置結(jié)合起來。提出一種針對(duì)該電磁換能器的改進(jìn)等效磁路模型,根據(jù)最大阻尼系數(shù)對(duì)電磁換能器進(jìn)行結(jié)構(gòu)優(yōu)化,并對(duì)模型計(jì)算結(jié)果進(jìn)行驗(yàn)證。通過制作的電磁換能器樣機(jī),對(duì)樣機(jī)進(jìn)行測(cè)試試驗(yàn),證明了改進(jìn)等效磁路模型的有效性,并驗(yàn)證了該電磁換能器用于多浮體直接式波浪能發(fā)電裝置中的可行性。
[參考文獻(xiàn)]
[1] QIU S Q, LIU K, WANG D J, et al. A comprehensive review of ocean wave energy research and development in China[J]." Renewable" and" sustainable" energy" reviews, 2019, 113: 109271.
[2] MAHMOODI K, GHASSEMI H, RAZMINIA A. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset[J]. Energy, 2019, 187: 115991.
[3] JANZEN R, DAVIS M, KUMAR A. Greenhouse gas emission abatement potential and associated costs of integrating renewable and low carbon energy technologies into" "the" "Canadian" "oil" "sands[J]." "Journal" "of" "cleaner production, 2020, 272: 122820.
[4] PEREZ-COLLAZO C, PEMBERTON R, GREAVES D, et al. Monopile-mounted wave energy converter for a hybrid wind-wave system[J]. Energy conversion and management, 2019, 199: 111971.
[5] ZANOUS S P, SHAFAGHAT R, ALAMIAN R, et al. Feasibility study of wave energy harvesting along the southern coast and islands of Iran[J]. Renewable energy, 2019, 135: 502-514.
[6] OLIVEIRA-PINTO" S," ROSA-SANTOS" P," TAVEIRA-PINTO F. Electricity supply to offshore oil and gas platforms from renewable ocean wave energy: overview and" "case" "study" analysis[J]." Energy" conversion" and management, 2019, 186: 556-569.
[7] XU S, WANG S, SOARES C G. Review of mooring design for" floating" "wave" energy" converters[J]." Renewable" and sustainable energy reviews, 2019, 111: 595-621.
[8] PANG Y K, CHEN S E, CHU Y H, et al. Matryoshka-inspired hierarchically structured triboelectric nanogenerators" "for" "wave" energy" harvesting[J]." "Nano" "energy, 2019, 66: 104131.
[9] CALHEIROS-CABRAL" "T," "CLEMENTE" "D," "ROSA-SANTOS P, et al. Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter[J]. Energy, 2020, 213: 118845.
[10] ERSELCAN ? ?, KüKNER A. A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the" "Black" "Sea[J]." Ocean" "engineering," "2020," "218: 108275.
[11] 趙青, 唐友剛, 曲志森, 等. 非坐底式浮力擺波浪能裝置運(yùn)動(dòng)的特性試驗(yàn)[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2018, 39(2): 254-260.
ZHAO Q, TANG Y G, QU Z S, et al. Experimental study of" motion" behaviors" for" non-bottom-hinged" flap" wave-energy" "converter[J]." "Journal" "of" "Harbin" "Engineering University, 2018, 39(2): 254-260.
[12] 顧煜炯, 謝典. 一種振蕩浮子式波浪能發(fā)電裝置的實(shí)驗(yàn)研究[J]. 太陽能學(xué)報(bào), 2017, 38(2): 551-557.
GU Y J, XIE D. Experimental research of oscillation float type" wave" "energy" "power" "generation" "device[J]." "Acta energiae solaris sinica, 2017, 38(2): 551-557.
[13] 王項(xiàng)南, 俞彥輝, 夏海南. 波浪能發(fā)電裝置功率特性現(xiàn)場(chǎng)測(cè)試分析方法研究[J]. 儀器儀表學(xué)報(bào), 2019, 40(1): 70-76.
WANG X N, YU Y H, XIA H N. Research on power characteristic field test analysis method of wave energy generation" " device[J]." "Chinese" " journal" " of" " scientific instrument, 2019, 40(1): 70-76.
[14] ZHANG Y X, CHEN R W, LIU C, et al. Structural optimisation based on a snake-like wave energy convertor with magnetoelectric transducer[J]. IET renewable power generation, 2020, 14(14): 2703-2711.
[15] ZHENG S M, ZHANG Y H, ZHANG Y L, et al. Numerical study on the dynamics of a two-raft wave energy conversion" device[J]." Journal" of" fluids" and" structures, 2015, 58: 271-290.
[16] 鄭思明. 筏式波浪能海水淡化裝置的水動(dòng)力性能研究[D]. 北京: 清華大學(xué), 2016.
ZHENG S M. Study on hydrodynamic characteristics of the raft-type wave powered desalination device[D]. Beijing: Tsinghua University, 2016.
[17] ZHANG Y X, CHEN R W, LIU C, et al. Design and performance tests of a snake-like wave energy converter[J]. International journal of applied electromagnetics and mechanics, 2020, 63(2): 327-342.
DESIGN AND TEST OF MAGNETOELECTRIC GENERATOR OF
WAVE ENERGY CONVERTOR
Zhang Yuxiang1,Chen Renwen2,Wang Liping2,Zhou Hongbiao1,Shen Qian1
(1. Faculty of Automation, Huaiyin Institute of Technology, Huai’an 223003, China;
2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China)
Abstract:An magnetoelectric generator combining Halbach permanent magnet array with a coreless structure is proposed for the multi-buoy Wave Energy Convertor (WEC), enabling direct conversion of wave energy into electrical energy. An improved equivalent magnetic circuit model is proposed for this magnetoelectric generator, and the structure of the magnetoelectric generator is optimized according to the maximum damping factor. The calculation results of the improved equivalent magnetic circuit model are compared with the results obtained through simulation software to verify the validity of the improved equivalent magnetic circuit model. After optimizing the structure of the electromagnetic transducer under laboratory conditions, a prototype of the magnetoelectric transducer was built and an experimental test rig was set up to test the performance of the prototype. The test results show that the voltage of the prototype is approximately 75% of the theoretical value. The peak voltages of the two windings at different positions of the prototype are 32.33 V and 27.98 V respectively at an amplitude of 20 mm and a frequency of 6 Hz, and an RMS value of 15.00 V and 16.50 V respectively. Its energy harvesting power is 49.72 W.
Keywords:wave power; direct energy conversion; magnetoelectric generators; Halbach array; coreless