[摘要] 目的 探討芝麻素(SSM)是否通過(guò)磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)/核因子-紅細(xì)胞樣2相關(guān)因子2(Nrf2)信號(hào)通路對(duì)氧糖剝奪(OGD)損傷的大鼠皮質(zhì)神經(jīng)元發(fā)揮神經(jīng)保護(hù)作用。
方法 原代培養(yǎng)SD大鼠大腦皮質(zhì)神經(jīng)元8 d后,構(gòu)建體外腦缺血模型。采用CCK-8法檢測(cè)不同濃度SSM對(duì)神經(jīng)元存活率的影響,采用免疫印跡法檢測(cè)最適作用濃度SSM處理后磷酸化絲氨酸/蘇氨酸激酶(p-Akt)、Akt、Nrf2、血紅素氧化酶-1(HO-1)蛋白表達(dá)水平。
結(jié)果 與Control組相比,OGD組神經(jīng)元存活率下降,不同濃度的SSM處理均可增加OGD損傷后神經(jīng)元的存活率(F=35.93,Plt;0.01),以25 μmol/L的SSM作用最明顯。各組氧化應(yīng)激相關(guān)蛋白p-Akt、Nrf2、HO-1表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=23.47~32.21,Plt;0.01)。與OGD組相比,OGD+SSM組p-Akt、Nrf2、HO-1蛋白表達(dá)量均顯著上調(diào)(Plt;0.05);與OGD+SSM組相比,OGD+SSM+LY294002組p-Akt、Nrf2、HO-1蛋白上調(diào)均被抑制(Plt;0.05)。各組Akt比較差異無(wú)顯著性(Pgt;0.05)。
結(jié)論 SSM通過(guò)激活PI3K/Akt/Nrf2信號(hào)通路,提高OGD損傷后神經(jīng)元的存活率,發(fā)揮神經(jīng)保護(hù)作用。
[關(guān)鍵詞] 芝麻脂素;大腦皮質(zhì);神經(jīng)元;腦缺血;神經(jīng)保護(hù)
[中圖分類號(hào)] R338.2
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2023)06-0791-05
doi:10.11712/jms.2096-5532.2023.59.189
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20231230.1152.001;2024-01-03 10:07:27
EFFECT OF SESAMIN ON CORTICAL NEURON INJURY INDUCED BY OXYGEN-GLUCOSE DEPRIVATION IN RATS AND RELATED MECHANISM
CHEN Shujun, HE Jialin, WAN Qi
(Institute of Neuroregeneration amp; Neurorehabilitation, Qing-
dao University, Qingdao 266071, China)
; [ABSTRACT]ObjectiveTo investigate whether sesamin (SSM) exerts a neuroprotective effect on rat cortical neurons with oxygen-glucose deprivation (OGD) injury through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway.
MethodsPrimary cortical neurons of Sprague-Dawley rats were cultured for 8 days to construct an in vitro model of cerebral ischemia. CCK-8 assay was used to observe the effect of different concentrations of SSM on the viability of neurons, and Western blotting was used to measure the protein expression levels of phosphorylated Akt (p-Akt), Akt, Nrf2, and heme oxygenase-1 (HO-1) after treatment with the optimal concentration of SSM.
ResultsCompared with the Control group, the OGD group had a significant reduction in the viability of neurons, and SSM treatment at different concentrations could increase the viability of neurons after OGD injury (F=35.93,Plt;0.01), with the most obvious effect at the concentration of 25 μmol/L. There were significant differences between groups in the expression levels of the oxidative stress-rela-
ted proteins p-Akt, Nrf2, and HO-1 (F=23.47-32.21,Plt;0.01). Compared with the OGD group, the OGD+SSM group had significantly upregulated protein expression of p-Akt, Nrf2, and HO-1 (Plt;0.05), and compared with the OGD+SSM group, the OGD+SSM+LY294002 group had inhibited upregulation of p-Akt, Nrf2, and HO-1 proteins (Plt;0.05). There was no significant difference in Akt between groups (Pgt;0.05).
ConclusionSSM plays a neuroprotective role by activating the PI3K/Akt/Nrf2 signaling pathway and increasing the viability of neurons after OGD injury.
[KEY WORDS]sesamin; cerebral cortex; neurons; brain ischemia; neuroprotection
缺血性腦卒中是世界范圍內(nèi)致死和致殘的主要原因之一[1]。其最常見(jiàn)的發(fā)病機(jī)制是大腦中動(dòng)脈短暫性閉塞,再通后活性氧(ROS)自由基過(guò)量生成,通過(guò)氧化應(yīng)激造成不同程度的腦損傷[2]。因此,具有抗氧化性質(zhì)的化合物可以減輕由氧化應(yīng)激引起的腦損傷[3]。芝麻素(SSM)是一種抗氧化劑,具有抗氧化和抗炎的作用,它通過(guò)減輕氧化應(yīng)激和抑制神經(jīng)炎癥來(lái)提供神經(jīng)保護(hù)[4-7]。磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信號(hào)通路在調(diào)控氧化應(yīng)激中發(fā)揮重要作用,許多化合物可能通過(guò)上調(diào)磷酸化絲氨酸/蘇氨酸激酶(p-Akt)來(lái)減輕缺血性損傷[8-9]。核因子-紅細(xì)胞樣2相關(guān)因子2(Nrf2)是Akt發(fā)揮神經(jīng)保護(hù)作用的下游關(guān)鍵因子并參與調(diào)節(jié)氧化應(yīng)激,調(diào)節(jié)ROS和抗氧化基因的表達(dá)[10-11]。Nrf2被激活后,轉(zhuǎn)位到細(xì)胞核,啟動(dòng)血紅素氧化酶-1(HO-1)等多種抗氧化酶的轉(zhuǎn)錄,從而減輕氧化應(yīng)激損傷[12-13]。目前仍然不清楚SSM能否通過(guò)調(diào)控PI3K/Akt/Nrf2信號(hào)通路發(fā)揮神經(jīng)保護(hù)作用。本研究通過(guò)制備大鼠皮質(zhì)神經(jīng)元氧糖剝奪(OGD)模型對(duì)此進(jìn)行探討,以期為腦卒中提供一種潛在的治療策略。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物 孕18 d的健康成年雌性SD大鼠,由濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司提供,動(dòng)物合格證號(hào)SCXK(魯)20190003,飼養(yǎng)于青島大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動(dòng)物中心。本實(shí)驗(yàn)經(jīng)青島大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.1.2 實(shí)驗(yàn)試劑 Neurobasal Medium、多聚賴氨酸(10×)、glutaMax(100×)、2.5 g/L胰蛋白酶溶液、B-27 Supplement均購(gòu)自Gibco公司;胎牛血清購(gòu)自四季青公司;青霉素-鏈霉素(100×)購(gòu)自武漢普諾賽生命科技有限公司;Nrf2抗體、HO-1抗體均購(gòu)自Abcam公司;β-actin抗體、p-Akt抗體、Akt抗體均購(gòu)自CST公司;兔二抗、鼠二抗均購(gòu)自武漢科瑞生物技術(shù)有限公司;DMEM高糖培養(yǎng)液、苯甲基磺酰氟(0.1 mol/L)、蛋白磷酸酶抑制劑混合物(100×)、D-Hanks溶液、磷酸鹽緩沖液、SSM均購(gòu)自北京索萊寶科技有限公司;二甲基亞砜(DMSO)購(gòu)自美國(guó)Sigma公司;RIPA裂解液購(gòu)自北京普利萊基因技術(shù)有限公司;CCK-8試劑盒購(gòu)自北京博奧森生物技術(shù)有限公司;LY294002購(gòu)自MCE公司,先使用DMSO溶解后再用培養(yǎng)液稀釋至工作濃度(DMSO體積分?jǐn)?shù)≤0.001);ECL發(fā)光液購(gòu)自美國(guó)Milipore公司。
1.2 實(shí)驗(yàn)方法
1.2.1 原代神經(jīng)元培養(yǎng) 準(zhǔn)備10 cm培養(yǎng)皿若干,倒入D-Hanks溶液后置于冰盒上備用。用異氟烷氣體麻醉健康SD大鼠(孕18 d),以體積分?jǐn)?shù)0.75乙醇消毒后脫頸處死,在無(wú)菌環(huán)境中取出胎鼠并置于備好的培養(yǎng)皿中,在顯微鏡下剝離胎鼠大腦皮質(zhì)后暫存于含DMEM培養(yǎng)液的15 mL離心管中。全部剝離結(jié)束后,將離心管置于離心機(jī)中,以1 000 r/min離心5 min,取出離心管,吸棄上清,加入0.5 g/L胰蛋白酶溶液1 mL,吹打均勻后置于37 ℃培養(yǎng)箱中消化20 min,然后按1∶1的比例加入含體積分?jǐn)?shù)0.10胎牛血清的DMEM培養(yǎng)液終止消化?;旌弦航?jīng)70 μm細(xì)胞濾網(wǎng)過(guò)濾后以1 000 r/min離心10 min,吸棄上清,加入神經(jīng)元培養(yǎng)液,反復(fù)緩慢吹打,待均勻懸浮后進(jìn)行細(xì)胞計(jì)數(shù)。最后將細(xì)胞接種于提前6 h用稀釋的多聚賴氨酸(1×)包被的孔板中,此后每間隔3 d更換1次神經(jīng)元培養(yǎng)液。神經(jīng)元培養(yǎng)液按照Neurobasal Medium∶B-27 Supplement(50×)∶青霉素-鏈霉素雙抗(100×)∶glutaMax(100×)=100∶2∶1∶1的比例配制。細(xì)胞48孔板接種密度為3×105/cm2,6孔板接種密度為20×105/cm2。
1.2.2 實(shí)驗(yàn)分組 為了探討不同濃度SSM對(duì)OGD損傷神經(jīng)元存活率的影響,實(shí)驗(yàn)分為Control組、OGD組、OGD+不同濃度(1、5、25、50、75 μmol/L)SSM組。為了探討最適濃度SSM對(duì)OGD損傷神經(jīng)元p-Akt、Akt、Nrf2、HO-1蛋白表達(dá)的影響,實(shí)驗(yàn)分為Control組(A組)、OGD組(B組)、OGD+SSM組(C組)、OGD+SSM+LY294002組(D組),25 μmol/L SSM和20 μmol/L LY294002在復(fù)氧時(shí)加入。
1.2.3 OGD損傷模型制備 提取的原代神經(jīng)元培養(yǎng)8 d后進(jìn)行OGD損傷模型制備,制備方法參照相關(guān)文獻(xiàn)[14]。Control組神經(jīng)元加入含糖細(xì)胞外液后置于37 ℃正常培養(yǎng)箱中培養(yǎng),OGD組及其他處理組神經(jīng)元加入等體積無(wú)糖細(xì)胞外液后置于厭氧箱(溫度37 ℃,含體積分?jǐn)?shù)0.01 O2+體積分?jǐn)?shù)0.94 N2+體積分?jǐn)?shù)0.05 CO2)中進(jìn)行培養(yǎng),1.5 h后均更換為正常神經(jīng)元培養(yǎng)液并轉(zhuǎn)移至正常培養(yǎng)箱中復(fù)糖復(fù)氧6 h。
1.2.4 CCK-8法檢測(cè)神經(jīng)元存活率 復(fù)糖復(fù)氧時(shí)加入不同濃度(1、5、25、50、75 μmol/L)SSM,24 h后檢測(cè)神經(jīng)元的存活率,更換神經(jīng)元培養(yǎng)液并加入10%體積的CCK-8溶液,37 ℃避光孵育2~4 h,用酶標(biāo)儀測(cè)定450 nm波長(zhǎng)下的吸光度,以此反映細(xì)胞存活率。
1.2.5 免疫印跡法檢測(cè)氧化應(yīng)激相關(guān)蛋白的表達(dá)
各組在復(fù)糖復(fù)氧6 h時(shí)提取細(xì)胞蛋白,所有操作均在冰上進(jìn)行。用RIPA裂解液裂解細(xì)胞后將其刮取至離心管中,在4 ℃下以12 000 r/min離心10~15 min,取上清,采用BCA法測(cè)定蛋白濃度,用裂解液和上樣緩沖液配平,100 ℃預(yù)變性10 min,冷卻后于-80 ℃保存。配制100 g/L的10孔SDS聚丙烯酰胺凝膠,電泳分離每孔8 μg的蛋白,以300 mA、90 min濕轉(zhuǎn)至PVDF膜上。膜用含50 g/L脫脂牛奶的TBST溶液室溫封閉2 h,加一抗4 ℃孵育過(guò)夜,所用一抗包括p-Akt抗體、Akt抗體、β-actin抗體、Nrf2抗體、HO-1抗體(均1∶2 000稀釋)。次日以TBST溶液洗滌3次,每次10 min,加二抗室溫孵育1 h后重復(fù)洗滌3次,用ECL發(fā)光液顯影。相同或相近分子量的蛋白經(jīng)膜洗脫再生后重新孵育。用Image J軟件定量分析蛋白條帶的灰度值,蛋白的表達(dá)水平以目的蛋白與內(nèi)參蛋白的比值表示。實(shí)驗(yàn)重復(fù)3次。
1.3 統(tǒng)計(jì)學(xué)處理
應(yīng)用GraphPad Prism 9.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量數(shù)據(jù)以±s表示,多組比較采用單因素方差分析,組間兩兩比較采用Tukey檢驗(yàn)。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)" 果
2.1 不同濃度SSM對(duì)OGD損傷神經(jīng)元存活率的影響
Control組、OGD組以及OGD+不同濃度(1、5、25、50、75 μmol/L)SSM組的神經(jīng)元存活率分別為(90.62±4.73)%、(46.63±3.72)%、(57.64±6.97)%、(60.90±6.63)%、(65.12±6.73)%、(57.53±
4.68)%和(58.55±4.64)%(n=6)。與Control組相比,OGD組神經(jīng)元存活率下降,不同濃度的SSM處理均可增加OGD損傷后神經(jīng)元的存活率(F=35.93,Plt;0.01),其中以25 μmol/L的SSM作用最明顯。
2.2 SSM對(duì)OGD損傷后神經(jīng)元氧化應(yīng)激相關(guān)蛋白表達(dá)的影響
免疫印跡法檢測(cè)結(jié)果顯示,各組氧化應(yīng)激相關(guān)蛋白p-Akt、Nrf2、HO-1的表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=23.47~32.21,Plt;0.01)。與OGD組相比較,OGD+SSM組p-Akt、Nrf2、HO-1蛋白的表達(dá)量均顯著上調(diào)(Plt;0.05);與OGD+SSM組相比較,OGD+SSM+LY294002組p-Akt、Nrf2、HO-1蛋白上調(diào)均被抑制(Plt;0.05)。各組Akt比較差異無(wú)顯著性(Pgt;0.05)。見(jiàn)圖1、表1。
3 討" 論
卒中占全球死亡人數(shù)的9%,是繼缺血性心臟各組p-Akt、Nrf2、HO-1表達(dá)比較,F(xiàn)=23.47~32.21,Plt;0.01。與A組相比較,*Plt;0.05,**Plt;0.01;與B組比較,△Plt;0.05,△△Plt;0.01;與C組比較,#Plt;0.05,##Plt;0.01。
病之后的第二大死因,其特點(diǎn)是致死率和致殘率高[15]。目前卒中的治療方法有限,有效和安全的藥物仍有待開(kāi)發(fā)[16]。從機(jī)制上來(lái)講,卒中涉及能量衰竭[17]、鈣超載[18]、興奮性氨基酸毒性[19]、線粒體損傷[20]、氧化應(yīng)激和炎癥反應(yīng)等多種復(fù)雜的病理生理過(guò)程。
氧化應(yīng)激被認(rèn)為是缺血性腦損傷發(fā)病的關(guān)鍵機(jī)制之一,并伴隨著凋亡、炎癥等其他病理變化[21]。
近年來(lái),氧化應(yīng)激被認(rèn)為是ROS增加與機(jī)體抗氧化保護(hù)系統(tǒng)失平衡,越來(lái)越多的研究結(jié)果表明,抑制氧化應(yīng)激有助于控制疾病的進(jìn)展[22-23]。在正常的生理?xiàng)l件下,Nrf2與細(xì)胞質(zhì)中的天然抑制劑Kelch樣ECH關(guān)聯(lián)蛋白1結(jié)合,以保持活性的穩(wěn)定性[24]。PI3K/Akt信號(hào)通路被激活會(huì)導(dǎo)致Kelch樣ECH關(guān)聯(lián)蛋白1釋放并激活Nrf2,隨后,激活的Nrf2移位到細(xì)胞核,結(jié)合啟動(dòng)子區(qū)的抗氧化反應(yīng)元件序列,啟動(dòng)包括HO-1和NQO1在內(nèi)的抗氧化基因的轉(zhuǎn)錄[25-26],轉(zhuǎn)錄生成的抗氧化分子通過(guò)各種酶催化反應(yīng)保護(hù)細(xì)胞免受氧化應(yīng)激損害[27]。
SSM以其抗氧化和抗炎特性而聞名[28],可通過(guò)抑制炎癥和氧化應(yīng)激改善大鼠腎毒性[29-30],通過(guò)抑制ROS誘導(dǎo)的成骨細(xì)胞凋亡保護(hù)股骨頭從而避免發(fā)生骨壞死[31],通過(guò)降低離子鈣結(jié)合適配器分子1、環(huán)氧合酶2等炎癥和氧化應(yīng)激標(biāo)記物在缺血性腦損傷小鼠模型中發(fā)揮神經(jīng)保護(hù)作用[32]。本研究旨在探討SSM在大鼠皮質(zhì)神經(jīng)元OGD損傷中是否具有神經(jīng)保護(hù)作用。結(jié)果顯示,與Control組相比較,OGD損傷顯著降低了神經(jīng)元存活率,而不同濃度的SSM均能夠提高OGD損傷后的神經(jīng)元存活率,并在25 μmol/L時(shí)達(dá)到峰值,驗(yàn)證了SSM的神經(jīng)保護(hù)作用。近期有研究顯示,在潰瘍性結(jié)腸炎中,給予SSM后,小鼠結(jié)腸組織的相關(guān)癥狀得到顯著改善,并且觀察到激活的Akt和增強(qiáng)的Nrf2信號(hào),表明該保護(hù)作用與Akt/Nrf2信號(hào)通路有關(guān)[33]。PI3K/Akt信號(hào)通路激活后可以調(diào)節(jié)神經(jīng)退行性疾病、卒中等多種疾?。?4],并且在氧化應(yīng)激中發(fā)揮重要作用[35]。Nrf2在調(diào)控ROS中起關(guān)鍵作用,能夠維持氧化還原穩(wěn)態(tài),也是治療卒中和炎癥相關(guān)疾病的潛在靶點(diǎn)[36-37]。在腦卒中的機(jī)制研究中,已證實(shí)有多種藥物通過(guò)介導(dǎo)PI3K/Akt/Nrf2信號(hào)通路保護(hù)神經(jīng)元免受氧化應(yīng)激損傷[38-40]。本研究采用P13K/Akt信號(hào)通路抑制劑LY294002來(lái)探討SSM是否也能通過(guò)上述通路發(fā)揮神經(jīng)保護(hù)作用。結(jié)果顯示,SSM能夠上調(diào)OGD損傷后p-Akt以及Nrf2蛋白的表達(dá),進(jìn)而促進(jìn)下游抗氧化蛋白HO-1的表達(dá),隨著LY294002抑制Akt的磷酸化,Nrf2的激活也被抑制。這表明SSM的神經(jīng)保護(hù)作用依賴于PI3K/Akt/Nrf2信號(hào)通路。
綜上,在大鼠皮質(zhì)神經(jīng)元OGD損傷中SSM可以通過(guò)介導(dǎo)PI3K/Akt/Nrf2信號(hào)通路發(fā)揮神經(jīng)保護(hù)作用,這為缺血性腦損傷的治療開(kāi)辟了新的視角,提供了潛在的治療策略。但本研究未探討單獨(dú)給予SSM是否影響p-Akt、Akt、Nrf2、HO-1的表達(dá),同時(shí)本研究?jī)H初步探討了SSM在細(xì)胞層面的作用及可能的信號(hào)機(jī)制,未進(jìn)一步檢測(cè)NQO1等其他氧化應(yīng)激蛋白的變化趨勢(shì),這些不足有待在今后的研究中加以改進(jìn)。
[參考文獻(xiàn)]
[1]BOESE A C, LEE J P, HAMBLIN M H. Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke[J]. Experimental Neurology, 2020,331:113323.
[2]RODRIGO R, FERNNDEZ-GAJARDO R, GUTIRREZ R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities[J]. CNS amp; Neurological Disorders Drug Targets, 2013,12(5):698-714.
[3]WU J X, LI Q, WANG X Y, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway[J]. PLoS One, 2013,8(3):e59843.
[4]FAN D, YANG Z, LIU F Y, et al. Sesamin protects against cardiac remodeling via Sirt3/ROS pathway[J]. Cellular Phy-
siology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2017,44(6):2212-2227.
[5]HOU R C, WU C C, YANG C H, et al. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia[J]. Neuroscience Letters, 2004,367(1):10-13.
[6]HOU R C, HUANG H M, TZEN J T, et al. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells[J]. Journal of Neuroscience Research, 2003,74(1):123-133.
[7]MANOCHKUMAR J, DOSS C P, EL-SEEDI H R, et al. The neuroprotective potential of carotenoids in vitro and in vivo[J]. Phytomedicine, 2021,91:153676.
[8]ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. Journal of Advanced Research, 2021,34:43-63.
[9]ZHAO H, SAPOLSKY R M, STEINBERG G K. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke[J]. Molecular Neuro-
biology, 2006,34(3):249-269.
[10]SUN X J, CHEN L, HE Z Y. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease[J]. Current Drug Metabolism, 2019,20(4):301-304.
[11]SHIH A Y, JOHNSON D A, WONG G, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2003,23(8):3394-3406.
[12]KOBAYASHI A, OHTA T, YAMAMOTO M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes[J]. Methods in Enzymo-
logy, 2004,378:273-286.
[13]MOTOHASHI H, YAMAMOTO M. Nrf2-Keap1 defines a physiologically important stress response mechanism[J]. Trends in Molecular Medicine, 2004,10(11):549-557.
[14]ZHAO L P, JI C, LU P H, et al. Oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal cell death involves mitochondrial cyclophilin-D/P53 signaling axis[J]. Neurochemical Research, 2013,38(4):705-713.
[15]MACIEJCZYK M, BIELAS M, ZALEWSKA A, et al. Sali-
vary biomarkers of oxidative stress and inflammation in stroke
patients: from basic research to clinical practice[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:5545330.
[16]YUAN J C, LI L L, YANG Q H, et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived reactive oxygen species responsive and inflammation-resolving nanotherapies[J]. ACS Nano, 2021,15(10):16076-16094.
[17]LIU B W, ZHAO T T, LI Y Y, et al. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia[J]." Phytotherapy Research, 2022,36(5):2223-2235.
[18]ZHANG Y Y, YANG X Y, LIU H Q, et al. The weakened interaction between HECTD4 and GluN2B in ischemic stroke promotes calcium overload and brain injury through a mechanism involving the decrease of GluN2B and MALT1 ubiquitination[J]." Molecular Neurobiology, 2023,60(3):1563-1579.
[19]VERMA M, LIZAMA B N, CHU C T. Excitotoxicity, cal-
cium and mitochondria: a triad in synaptic neurodegeneration[J]." Translational Neurodegeneration, 2022,11(1):3.
[20]CHEN L, CHEN S, YANG X F, et al. Antioxidants atte-
nuate mitochondrial oxidative damage through the Nrf2 pathway: a promising therapeutic strategy for stroke[J]." Journal of Neuroscience Research, 2023,101(8):1275-1288.
[21]CRACK P J, TAYLOR J M. Reactive oxygen species and the modulation of stroke[J]. Free Radical Biology and Medicine, 2005,38(11):1433-1444.
[22]ALIEV G, PRIYADARSHINI M, REDDY V P, et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease[J]. Current Medicinal Chemistry, 2014,21(19):2208-2217.
[23]QI J H, DONG F X. The relevant targets of anti-oxidative stress: a review[J]." Journal of Drug Targeting, 2021,29(7):677-686.
[24]ALFIERI A, SRIVASTAVA S, SIOW R C, et al. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke[J]. The Journal of Physiology, 2011,589(17):4125-4136.
[25]SHELTON L M, PARK B K, COPPLE I M. Role of Nrf2 in protection against acute kidney injury[J]. Kidney Internatio-
nal, 2013,84(6):1090-1095.
[26]JIANG S, DENG C, LV J J, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke[J]. Molecular Neurobiology, 2017,54(2):1440-1455.
[27]YU C, XIAO J H. The Keap1-Nrf2 system: amediator between oxidative stress and aging[J]." Oxidative Medicine and Cellular Longevity, 2021,2021:6635460.
[28]MAJDALAWIEH A F, YOUSEF S M, ABU-YOUSEF I A, et al. Immunomodulatory and anti-inflammatory effects of se-
samin: mechanisms of action and future directions[J]." Critical Reviews in Food Scienceand Nutrition, 2022,62(18):5081-5112.
[29]ALI B H, SALAM S A, SULEIMANI Y A, et al. Ameliorative effect of sesamin in cisplatin-induced nephrotoxicity in rats by suppressing inflammation, oxidative/nitrosative stress, and cellular damage[J]. Physiological Research, 2020,69(1):61-72.
[30]ALSHAHRANI S, ALI THUBAB H M, ALI ZAERI A M, et al. The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats[J]." International Journal of Molecular Sciences, 2022,23(19):11615.
[31]DENG S, ZHOU J L, FANG H S, et al. Sesamin protects the femoral head from osteonecrosis by inhibiting ROS-induced osteoblast apoptosis in rat model[J]. Frontiers in Physiology, 2018,9:1787.
[32]AHMAD S, ELSHERBINY N M, HAQUE R, et al. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke[J]. Neurotoxicology, 2014,45:100-110.
[33]BAI X P, GOU X L, CAI P H, et al. Sesamin enhances Nrf2-mediated protective defense against oxidative stress and inflammation in colitis via AKT and ERK activation[J]. Oxidative Medicine and Cellular Longevity, 2019,2019:2432416.
[34]LONG H Z, CHENG Y, ZHOU Z W, et al. PI3K/AKT signal pathway: atarget of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease[J]." Frontiersin Pharmacology, 2021,12:648636.
[35]GU C Y, ZHANG Q K, LI Y J, et al. The PI3K/AKT pathway-the potential key mechanisms of traditional Chinese medicine for stroke[J]. Frontiers in Medicine, 2022,9:900809.
[36]ZHANG R R, XU M X, WANG Y, et al. Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke[J]. Molecular Neurobiology, 2017,54(8):6006-6017.
[37]LIAO S, WU J N, LIU R M, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation[J]. Redox Biology, 2020,36:101644.
[38]ZHANG W, SONG J K, YAN R, et al. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling[J]. Acta Pharmacologica Sinica, 2018,39(8):1259-1272.
[39]HU S N, WU Y L, ZHAO B, et al. Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/akt/Nrf2 antioxidant signaling pathway[J]. Molecules, 2018,23(11):2781.
[40]LIU Q, JIN Z Q, XU Z L, et al. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo[J]. Cell Stress amp; Chaperones, 2019,24(2):441-452.
(本文編輯 馬偉平)