張振博 賈春蘭,2 任佰朝,2 劉 鵬 趙 斌 張吉旺,2,*
氮磷配施對(duì)夏玉米產(chǎn)量和葉片衰老特性的影響
張振博1賈春蘭1,2任佰朝1,2劉 鵬1趙 斌1張吉旺1,2,*
1山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 / 作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 山東泰安 271018;2山東省玉米技術(shù)創(chuàng)新中心, 山東萊州 261400
氮和磷作為玉米生長(zhǎng)發(fā)育的必需營(yíng)養(yǎng)元素, 對(duì)玉米產(chǎn)量的提高具有重要影響。本試驗(yàn)以登海111 (Denghai 111, DH111)為供試材料, 在2020年和2021年分別設(shè)置11個(gè)氮磷配施處理和15個(gè)氮磷配施處理來(lái)探究氮磷配施對(duì)夏玉米葉片衰老特性和產(chǎn)量形成的影響。結(jié)果表明: 在相同施磷水平下, 隨著施氮量增加, 夏玉米的葉面積指數(shù)(leaf area index, LAI)、葉綠素相對(duì)含量(SPAD值)、抗氧化酶活性(超氧物歧化酶(superoxide dismutase, SOD)、過(guò)氧化物酶(peroxidase, POD)和過(guò)氧化氫酶(catalase, CAT)呈現(xiàn)先增加后降低的趨勢(shì), 丙二醛(malondialdehyde, MDA)含量呈現(xiàn)先降低后增加的趨勢(shì), 產(chǎn)量呈現(xiàn)先增加后降低的趨勢(shì)。在N0~N2條件下, 隨施磷量增加, LAI、SPAD值、抗氧化酶活性呈現(xiàn)增加趨勢(shì), MDA含量呈現(xiàn)降低趨勢(shì), 產(chǎn)量呈增加趨勢(shì); 而在N3與N4條件下, 隨施磷量增加, LAI、SPAD值、抗氧化酶活性呈現(xiàn)先增加后降低的趨勢(shì), MDA含量呈現(xiàn)先降低后增加的趨勢(shì), 產(chǎn)量呈現(xiàn)先增加后降低趨勢(shì)。在2020年, N3 P1處理相較于N2 P3處理產(chǎn)量增加2.55%; 2021年, N3 P1處理相較于N3 P0處理、N2 P2處理產(chǎn)量分別提高7.36%、3.31%。本試驗(yàn)條件下, 合理氮磷配施(180 kg N hm–2、60 kg P hm–2)通過(guò)提高玉米生育后期抗氧化酶活性, 降低MDA含量, 維持較高的葉面積指數(shù)與SPAD值, 提高玉米穗粒數(shù)與千粒重, 進(jìn)而增加產(chǎn)量。
夏玉米; 氮磷配施; 產(chǎn)量; 葉片衰老
玉米作為我國(guó)第一大糧食作物, 其產(chǎn)量的高低對(duì)于保障我國(guó)糧食安全具有重要意義[1]。自化肥誕生以來(lái), 施肥是增加作物產(chǎn)量最主要的方法[2-3]。在長(zhǎng)時(shí)間內(nèi), 作物產(chǎn)量隨化肥施用量的增加而增加。但隨著土壤養(yǎng)分含量的不斷累積, 以華北平原小麥-玉米輪作體系多年多點(diǎn)(> 500)的調(diào)查結(jié)果為例, 作物生育期內(nèi)0~90 cm土壤剖面硝態(tài)氮含量平均高于200 kg hm–2 [4-5]。作物產(chǎn)量并未隨化肥的高投入呈現(xiàn)相應(yīng)的增加趨勢(shì), 甚至出現(xiàn)作物產(chǎn)量降低的現(xiàn)象, 同時(shí), 肥料的高投入會(huì)帶來(lái)嚴(yán)重的環(huán)境問(wèn)題[6-7]。自2015年國(guó)家提出化肥農(nóng)藥零增長(zhǎng)的政策, 我國(guó)農(nóng)業(yè)氮磷鉀肥用量逐年遞減[8], 其中氮磷肥占氮磷鉀肥減少量的80%以上[9]。因此, 如何通過(guò)合理的氮磷配施在保障玉米產(chǎn)量的同時(shí)降低氮磷肥的施用量是現(xiàn)在生產(chǎn)中亟待解決的問(wèn)題。
氮磷配施一方面可以在保障作物氮素供應(yīng)的同時(shí)減少硝態(tài)氮的淋溶, 提高氮肥利用效率; 另一方面可以促進(jìn)土壤中磷素的活化, 提高土壤中可供給能力的速效磷含量, 提高土壤的供磷能力[10-13]。此外, 合理的氮磷配施可以提高玉米的凈光合速率(n)、蒸騰速率(r)、水分利用效率(water use efficiency, WUE)及氣孔導(dǎo)度(s)等光合指標(biāo), 增加干物質(zhì)積累, 最終促進(jìn)產(chǎn)量提高[13-15]。前人研究多集中氮磷配施如何提高玉米氮磷元素利用和提高光合能力方面, 而對(duì)影響玉米葉片后期衰老的研究較少。
花粒期是玉米進(jìn)行干物質(zhì)積累的重要時(shí)期, 也是籽粒產(chǎn)量形成的關(guān)鍵時(shí)期[16]?;F谌~片過(guò)早衰老會(huì)導(dǎo)致玉米籽粒灌漿不足, 產(chǎn)量下降[17-18]。植物生育后期葉片衰老的主要原因是抗氧化酶活性降低,細(xì)胞間活性氧的產(chǎn)生與清除機(jī)制遭到破壞, 細(xì)胞活性氧積累過(guò)多, 膜脂過(guò)氧化程度加深, MDA含量增加[19-20]。前人研究表明, 超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)和過(guò)氧化物酶(POD)是植物重要的抗氧化保護(hù)酶[21-22], 其含量的高低除了受基因型影響外[23], 還受播期、施氮量、灌溉量等栽培措施影響和化控試劑的調(diào)控[24-27]。因此, 本試驗(yàn)通過(guò)設(shè)置不同氮磷配施處理探討合理氮磷配施對(duì)夏玉米葉片衰老特性和產(chǎn)量形成的影響, 以期為明確合理氮磷配施影響夏玉米產(chǎn)量形成的生理機(jī)制提供科學(xué)依據(jù)。
2020—2021年, 本試驗(yàn)在泰安市岱岳區(qū)大汶口試驗(yàn)田進(jìn)行, 試驗(yàn)區(qū)域土壤類型為棕壤土, 氣候類型為溫帶大陸性半濕潤(rùn)季風(fēng)氣候。播前0~20 cm 深度土壤養(yǎng)分含量如下: 有機(jī)質(zhì)23.30 g kg–1、全氮2.81 g kg–1、全磷2.27 g kg–1、堿解氮104.60 mg kg–1、有效磷(P2O5) 84.23mg kg–1、速效鉀190.82 mg kg–1。試驗(yàn)采用裂區(qū)設(shè)計(jì), 主區(qū)為施磷量, 副區(qū)為施氮量。在2020—2021年, 選用登海111 (Denghai 111, DH111)為供試材料, 設(shè)置5個(gè)施氮量: 0 kg hm–2(N0)、60 kg hm–2(N1)、120 kg hm–2(N2)、180 kg hm–2(N3)、240 kg hm–2(N4)。2020年設(shè)置2個(gè)施磷量: 低磷為60 kg hm–2(P1)、高磷為180 kg hm–2(P3); 以不施氮、磷肥(N0 P0)為產(chǎn)量對(duì)照, 共11個(gè)處理。2021年設(shè)置3個(gè)施磷量: 不施磷(P0)、低磷為60 kg hm2(P1)、高磷120 kg hm–2(P2), 共15個(gè)處理。施鉀量為67.5 kg hm–2。氮肥(尿素, 含氮量46%)在播前施入40%、在小喇叭口期施入60%。磷肥(過(guò)磷酸鈣, 含磷量12%)和鉀肥(氯化鉀, 含鉀量為60%)全部在播前以基肥施入。
2020年, 于6月17日播種, 10月3號(hào)收獲, 小區(qū)面積為36 m2; 2021年, 于6月20日播種, 10月4號(hào)收獲, 小區(qū)面積為30 m2。種植密度均為67,500株 hm–2, 每個(gè)處理重復(fù)均為3次。大田管理參照高產(chǎn)田生產(chǎn)標(biāo)準(zhǔn)進(jìn)行管理, 且冬季種植冬小麥。
1.2.1 葉面積指數(shù)(leaf area index, LAI) 分別于抽雄期(VT)、乳熟期(R3)、成熟期(R6), 每處理選擇10株有代表性的植株, 測(cè)定葉面積。
單葉葉面積(cm2)=葉長(zhǎng)(cm)×葉寬(cm)×0.75;
LAI=(單株葉面積×每個(gè)小區(qū)的植株數(shù))/小區(qū)面積。
1.2.2 功能葉片相對(duì)葉綠素含量(SPAD值) 分別于VT、R3、R6時(shí)期, 上午09:00—12:00在每個(gè)小區(qū)選取10株生長(zhǎng)一致的植株使用SPAD-502便攜式葉綠素儀(Soil-plant Analysis Development Section, Minolta Camera Co.,日本)測(cè)定穗位葉SPAD值, 測(cè)定時(shí)避開(kāi)主葉脈。
1.2.3 葉片衰老特性 分別于VT、R3、R6時(shí)期, 選取各處理長(zhǎng)勢(shì)均勻一致植株5株, 取其穗位葉的中部位置, 保存于–40℃冰箱。液氮研磨成粉末, 參照Giannopolitis等[28]方法采用氮藍(lán)四唑法測(cè)定超氧化物歧化酶(SOD)活性, 采用硫代巴比妥酸法測(cè)定丙二醛(MDA)含量; 參照Durner等[29]方法采用紫外吸收法測(cè)定過(guò)氧化氫酶(CAT)活性; 參照Hammerschmid等[30]方法采用比色法測(cè)定過(guò)氧化物酶(POD)活性。
1.2.4 產(chǎn)量 每個(gè)小區(qū)連續(xù)收取中間3行具有代表性的30個(gè)果穗自然風(fēng)干、脫粒計(jì)產(chǎn)(按14%標(biāo)準(zhǔn)含水量折算產(chǎn)量)。
使用Microsoft Excel 2016軟件進(jìn)行數(shù)據(jù)整理; 采用SPSS 21.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析; 整理的數(shù)據(jù)用SigmaPlot 10.0作圖。
由表1可知, 氮磷配施對(duì)產(chǎn)量影響顯著, 氮磷交互作用顯著。相同施磷量條件, 夏玉米產(chǎn)量隨著施氮量的增加呈現(xiàn)先增加后降低的趨勢(shì)。不施磷與低磷條件下, N3產(chǎn)量最高。N3 P1處理在2021年相較于N3 P0處理產(chǎn)量提高7.36%。高磷條件下, N2產(chǎn)量最高, 出現(xiàn)氮峰偏移現(xiàn)象。N3 P1處理在2020年相較于N2 P3處理的產(chǎn)量增加2.55%; 在2021年相較于N2 P2處理的產(chǎn)量增加3.31%。DH111在N3 P1處理獲得最高產(chǎn)量, 2年結(jié)果基本一致。
由表1可知, 氮磷配施對(duì)穗粒數(shù)與千粒重影響顯著, 氮磷交互作用顯著, 而對(duì)公頃穗數(shù)影響不顯著。相同施磷量條件, 夏玉米穗粒數(shù)與千粒重隨著施氮量的增加基本呈現(xiàn)先增加后降低的趨勢(shì)。不施磷與低磷條件下, 穗粒數(shù)與千粒重在N3最高。N3 P1處理在2021年相較于N3 P0處理公頃穗數(shù)、穗粒數(shù)、千粒重分別增加1.53%、0.81%、4.92%。高磷條件下, 穗粒數(shù)與千粒重相較于低磷呈現(xiàn)N0到N2增加, N3與N4降低的趨勢(shì), 在N2最高, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的公頃穗數(shù)、千粒重分別增加2.66%、1.17%, 穗粒數(shù)降低1.28%; 在2021年相較于N2 P2處理分別增加2.05%、1.66%, 穗粒數(shù)降低0.26%。
由圖1和表2可知, 氮磷配施對(duì)葉面積指數(shù)影響顯著。相同施磷量條件, 夏玉米葉面積指數(shù)隨著施氮量的增加基本呈現(xiàn)先增加后平穩(wěn)的趨勢(shì)。不施磷和低磷條件下, 葉面積指數(shù)在VT到R6時(shí)期于N3達(dá)到最高, N3與N4沒(méi)有顯著性差異。N3 P1處理在2021年相較于N3 P0處理的葉面積指數(shù)在VT、R3、R6時(shí)期分別提高1.68%、2.70%、12.95%。高磷條件下, 葉面積指數(shù)相較于低磷條件在VT到R6時(shí)期并沒(méi)有顯著增加, N3與N4呈現(xiàn)降低趨勢(shì), 于N2達(dá)到最高, N2與N3、N4不存在顯著性差異, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的葉面積指數(shù)在VT、R3、R6時(shí)期分別提高1.87%、1.41%、0.15%; 在2021年相較于N2 P2處理的葉面積指數(shù)在VT、R3、R6時(shí)期分別提高4.53%、2.92%、15.38%。
表1 氮磷配施對(duì)夏玉米產(chǎn)量與產(chǎn)量構(gòu)成因素的影響(2020–2021)
(續(xù)表1)
N0: 不施氮; N1: 施氮量為60 kg hm–2; N2: 施氮量為120 kg hm–2; N3: 施氮量為180 kg hm–2; N4: 施氮量為240 kg hm–2; P0: 不施磷; P1: 施磷量為60 kg hm–2; P2: 施磷量為120 kg hm–2; P3: 施磷量為180 kg hm–2; 表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著; 同一列中不同小寫字母的值在5%概率水平差異顯著。
N0: no nitrogen application; N1: N application rate of 60 kg hm–2; N2: N application rate of 120 kg hm–2; N3: N application rate of 180 kg hm–2; N4: N application rate of 240 kg hm–2;P0: no phosphorus application; P1: P application rate of 60 kg hm–2; P2: P application rate of 120 kg hm–2; P3: P application rate of 180 kg hm–2. ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively. Different lowercase letters in the same column are significantly different at the 5% probability level.
表2 氮磷配施對(duì)夏玉米葉面積指數(shù)影響的方差分析
表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
由圖2和表3可知, 氮磷配施對(duì)SPAD值影響顯著。相同施磷量條件, 夏玉米SPAD值隨著施氮量的增加基本呈現(xiàn)先增后減的趨勢(shì)。不施磷和低磷條件下, SPAD值在VT到R6時(shí)期于N3達(dá)到最高, 在VT到R3時(shí)期N3與N4沒(méi)有顯著性差異。N3 P1處理在2021年相較于N3 P0處理的SPAD值在VT、R3、R6時(shí)期分別提高5.14%、2.31%、10.81%。高磷條件下, SPAD值相較于低磷條件在VT到R6時(shí)期并沒(méi)有顯著增加, 在R3到R6時(shí)期的N3與N4呈現(xiàn)降低趨勢(shì), VT時(shí)期于N3達(dá)到最高, N2與N3不存在顯著性差異, R3到R6時(shí)期于N2達(dá)到最高, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的SPAD值除在VT時(shí)期降低0.78%外, 在R3、R6時(shí)期分別提高0.29%、14.05%; 在2021年相較于N2 P2處理的SPAD值在VT、R3、R6時(shí)期分別提高4.14%、2.39%、22.92%。
圖1 氮磷配施對(duì)夏玉米葉面積指數(shù)的影響(2020–2021)
N0: 不施氮; N1: 施氮量為60 kg hm–2; N2: 施氮量為120 kg hm–2; N3: 施氮量為180 kg hm–2; N4: 施氮量為240 kg hm–2; P0: 不施磷; P1: 施磷量為60 kg hm–2; P2: 施磷量為120 kg hm–2; P3: 施磷量為180 kg hm–2; VT、R3和R6分別代表抽雄期、乳熟期、和成熟期; 不同小寫字母的值在5%概率水平差異顯著。
N0: no nitrogen application; N1: N application rate of 60 kg hm–2; N2: N application rate of 120 kg hm–2; N3: N application rate of 180 kg hm–2; N4: N application rate of 240 kg hm–2;P0: no phosphorus application; P1: P application rate of 60 kg hm–2; P2: P application rate of 120 kg hm–2; P3: P application rate of 180 kg hm–2; VT, R3, and R6 represent tassel stage, milk stage, and maturity stages, respectively. Different lowercase letters indicate significantly different at the 5% probability level.
圖2 氮磷配施對(duì)夏玉米SPAD值的影響(2020–2021)
處理同圖1; SPAD代表葉綠素相對(duì)含量。Treatments are the same as those given in Fig. 1; SPAD: the relative chlorophyll content.
表3 氮磷配施對(duì)夏玉米SPAD值影響的方差分析
處理同表2。表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
Treatments are the same as those given in Table 2.ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
2.4.1 氮磷配施對(duì)夏玉米SOD活性的影響 由圖3和表4可知, 氮磷配施對(duì)SOD活性影響顯著。相同施磷量條件, 夏玉米SOD活性隨著施氮量的增加基本呈現(xiàn)先增后減的趨勢(shì)。不施磷條件下, N3的SOD活性在VT到R6時(shí)期顯著高于N0; 低磷條件下, SOD活性在VT到R6時(shí)期于N3達(dá)到最高, VT與R3時(shí)期的N3與N4不存在顯著性差異。N3 P1處理在2021年相較于N3 P0處理的SOD活性在VT、R3、R6時(shí)期分別提高7.43%、10.70%、9.32%。高磷條件下, SOD活性相較于低磷在VT到R6時(shí)期并沒(méi)有顯著增加, 在R3到R6時(shí)期的N3與N4呈現(xiàn)降低趨勢(shì), VT到R3時(shí)期于N3達(dá)到最高, R3時(shí)期N2與N3不存在顯著性差異, R6時(shí)期于N2達(dá)到最高, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的SOD活性在VT、R3、R6時(shí)期分別提高3.97%、6.64%、4.08%; 在2021年相較于N2 P2處理的SOD活性在VT、R3、R6時(shí)期分別提高9.70%、8.52%、2.16%。
圖3 氮磷配施對(duì)夏玉米SOD活性的影響(2020–2021)
處理同圖1; SOD代表超氧化物歧化酶。Treatments are the same as those given in Fig. 1. SOD: superoxide dismutase
表4 氮磷配施對(duì)夏玉米SOD活性影響的方差分析
處理同表2。表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
Treatments are the same as those given in Table 2.ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
2.4.2 氮磷配施對(duì)夏玉米POD活性的影響 由圖4和表5可知, 氮磷配施對(duì)POD活性影響顯著。相同施磷量條件, 夏玉米POD活性隨著施氮量的增加基本呈現(xiàn)先增后減的趨勢(shì)。不施磷條件下, N3的POD活性在VT到R6時(shí)期顯著高于N0; 低磷條件下, POD活性在VT到R6時(shí)期于N3達(dá)到最高, N3與N4不存在顯著性差異。N3 P1處理在2021年相較于N3 P0處理的POD活性在VT、R3、R6時(shí)期分別提高12.25%、8.73%、20.64%。高磷條件下, POD活性相較于低磷在VT到R6時(shí)期并沒(méi)有顯著增加, 在R3時(shí)期的N3與N4呈現(xiàn)降低趨勢(shì), VT時(shí)期于N4達(dá)到最高, N3與N4不存在顯著性差異, 2020年R3到R6時(shí)期于N3達(dá)到最高, 2021年R3到R6時(shí)期于N2達(dá)到最高, R6時(shí)期的N2與N3不存在顯著性差異。N3 P1處理在2020年相較于N2 P3處理的POD活性在VT、R6時(shí)期分別降低1.78%、0.64%, 在R3時(shí)期提高13.24%; 在2021年相較于N2 P2處理的POD活性在VT、R3、R6時(shí)期分別提高12.66%、7.90%、0.69%。
2.4.3 氮磷配施對(duì)夏玉米CAT活性的影響 由圖5和表6可知, 氮磷配施對(duì)CAT活性影響顯著。相同施磷量條件, 夏玉米CAT活性隨著施氮量的增加基本呈現(xiàn)先增后減的趨勢(shì)。不施磷條件下, N3的CAT活性在VT到R6時(shí)期顯著高于N0; 低磷條件下, CAT活性在VT到R6時(shí)期于N3達(dá)到最高, VT時(shí)期的N3與N4不存在顯著性差異。N3 P1處理在2021年相較于N3 P0處理的CAT活性在VT、R3、R6時(shí)期分別提高26.59%、22.89%、16.86%。高磷條件下, CAT活性相較于低磷在VT到R6時(shí)期并沒(méi)有顯著增加, 在R3時(shí)期的N3與N4呈現(xiàn)降低趨勢(shì), VT到R3時(shí)期于N3達(dá)到最高, R6時(shí)期于N2達(dá)到最高, N2與N3不存在顯著性差異, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的CAT活性在VT、R3、R6時(shí)期分別提高5.96%、10.79%、8.43%; 在2021年相較于N2 P2處理的CAT活性在VT、R3、R6時(shí)期分別提高31.87%、14.94%、12.17%。
圖4 氮磷配施對(duì)夏玉米POD活性的影響(2020–2021)
處理同圖1; POD代表過(guò)氧化物酶。Treatments are the same as those given in Fig. 1; POD: peroxidase.
表5 氮磷配施對(duì)夏玉米POD活性影響的方差分析
處理同表2。表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
Treatments are the same as those given in Table 2.ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
圖5 氮磷配施對(duì)夏玉米CAT活性的影響(2020–2021)
處理同圖1; CAT代表過(guò)氧化氫酶。Treatments are the same as those given in Fig. 1; CAT: catalase.
表6 氮磷配施對(duì)夏玉米CAT活性影響的方差分析
處理同表2。表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
Treatments are the same as those given in Table 2.ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
2.4.4 氮磷配施對(duì)夏玉米MDA含量的影響 由圖6和表7可知, 氮磷配施對(duì)MDA含量影響顯著。相同施磷量條件, 夏玉米MDA含量隨著施氮量的增加基本呈現(xiàn)先減后增的趨勢(shì)。不施磷條件下, N3的MDA含量在VT到R6時(shí)期顯著低于N0; 低磷條件下, MDA含量在VT到R6時(shí)期于N3達(dá)到最低, VT時(shí)期的N3與N4不存在顯著性差異。N3 P1處理在2021年相較于N3 P0處理的MDA含量在VT、R3、R6時(shí)期分別降低18.13%、23.59%、18.75%。高磷條件下, MDA含量相較于低磷在VT到R6時(shí)期并沒(méi)有顯著減少, 在R3到R6時(shí)期的N3與N4呈現(xiàn)增加趨勢(shì), VT時(shí)期于N3達(dá)到最低, R3到R6時(shí)期于N2達(dá)到最低, N2與N3不存在顯著性差異, 2年結(jié)果基本一致。N3 P1處理在2020年相較于N2 P3處理的MDA含量在VT、R3、R6時(shí)期分別降低41.06%、9.34%、6.27%; 在2021年相較于N2 P2處理的MDA含量在VT、R3、R6時(shí)期分別降低30.34%、9.47%、9.01%。
圖6 氮磷配施對(duì)夏玉米MDA含量的影響(2020–2021)
處理同圖1; MDA代表丙二醛。Treatments are the same as those given in Fig. 1; MDA: malondialdehyde.
表7 氮磷配施對(duì)夏玉米MDA含量影響的方差分析
處理同表2。表中數(shù)據(jù)后ns、*和**分別表示無(wú)相關(guān)性、相關(guān)性在5%和1%概率水平差異顯著。
Treatments are the same as those given in Table 2.ns: no correlation.*and**indicate significant difference in the correlation at the 5% and 1% probability levels, respectively.
由表8可知, 產(chǎn)量與公頃穗數(shù)、千粒重、葉面積指數(shù)、SPAD值、SOD活性、CAT活性呈現(xiàn)極顯著正相關(guān), 與MDA含量呈現(xiàn)顯著負(fù)相關(guān); 公頃穗數(shù)與穗粒數(shù)、葉面積指數(shù)、SPAD值、CAT活性呈現(xiàn)極顯著正相關(guān), 與SOD活性、POD活性呈現(xiàn)顯著正相關(guān), 與MDA含量呈現(xiàn)顯著負(fù)相關(guān); 穗粒數(shù)與SPAD值、SOD活性、POD活性、CAT活性呈現(xiàn)極顯著正相關(guān), 與MDA含量呈現(xiàn)極顯著負(fù)相關(guān), 與千粒重呈現(xiàn)顯著負(fù)相關(guān); 千粒重與葉面積指數(shù)呈現(xiàn)極顯著正相關(guān), 與SPAD值呈現(xiàn)顯著正相關(guān); 葉面積指數(shù)與SPAD值、SOD活性、CAT活性呈現(xiàn)顯著正相關(guān), 與POD活性呈現(xiàn)顯著正相關(guān), 與MDA含量呈現(xiàn)顯著負(fù)相關(guān); SPAD值與SOD活性、POD活性、CAT活性呈現(xiàn)顯著正相關(guān), 與MDA含量呈現(xiàn)顯著負(fù)相關(guān)。
SPAD、SOD、POD、CAT和MDA分別代表葉綠素相對(duì)含量、超氧化物歧化酶、過(guò)氧化物酶、過(guò)氧化氫酶和丙二醛含量; 表中數(shù)據(jù)后*和**分別表示相關(guān)性在1%和5%概率水平差異顯著。
SPAD, SOD, POD, CAT, and MDA representthe relative chlorophyll content, superoxide dismutase, peroxidase, catalase, and malondialdehyde, respectively.*and**indicate significant correlation at the 5% and 1% probability levels, respectively.
氮、磷作為玉米主要吸收的兩大營(yíng)養(yǎng)元素, 對(duì)玉米產(chǎn)量具有顯著影響[31-32]。不合理的氮肥或磷肥的用量均會(huì)降低玉米產(chǎn)量[33-35], 合理的氮磷配施可以顯著提高玉米產(chǎn)量[14]。但是關(guān)于氮磷配施如何通過(guò)影響產(chǎn)量構(gòu)成因素, 進(jìn)而影響玉米產(chǎn)量的報(bào)道不一致。隨氮、磷肥施入量的增加, 玉米的穗數(shù)、穗粒數(shù)與千粒重均呈現(xiàn)先增加后降低的趨勢(shì)[36-37]; 也有研究表明, 氮、磷肥施入量的增加僅對(duì)穗粒數(shù)影響顯著, 對(duì)穗數(shù)、千粒重影響不顯著[38-39]。本試驗(yàn)表明, 隨著氮磷施入量的增加, 玉米產(chǎn)量呈現(xiàn)先增加后降低的趨勢(shì)。過(guò)高的氮磷施入相較于合理的氮磷配施(N3 P1)處理并沒(méi)有顯著提高玉米產(chǎn)量。較高磷肥施入會(huì)出現(xiàn)氮峰偏移現(xiàn)象, N2產(chǎn)量與N3產(chǎn)量差異不顯著, 但產(chǎn)量低于合理氮磷配施處理。相較于其他處理, 合理的氮磷配施(N3 P1)處理主要是通過(guò)增加穗粒數(shù)與千粒重, 進(jìn)而提高玉米產(chǎn)量。
玉米葉面積指數(shù)與葉綠素含量的變化可以作為玉米光合能力的高低的直接反映[26,40]。對(duì)于禾本科作物而言, 生育后期的光合作用直接影響著籽粒產(chǎn)量的形成[41]。花粒期玉米葉面積指數(shù)與SPAD值的快速下降, 光合能力降低, 導(dǎo)致干物質(zhì)積累量不足, 干物質(zhì)轉(zhuǎn)移到籽粒中的量減少, 粒重降低, 玉米產(chǎn)量下降[42-43]。在一定范圍內(nèi), 玉米葉面積指數(shù)和SPAD值隨施氮量的增加而增加, 而過(guò)量施氮會(huì)使生育后期葉面積指數(shù)和葉綠素含量迅速下降, 葉片早衰[44-45]。也有研究報(bào)道過(guò)量施氮, 葉面積指數(shù)和凈光合速率變化不顯著[46]。施磷相較于不施磷處理, 會(huì)顯著增加葉片后期的葉面積指數(shù)和SPAD值。缺磷條件下, 植物葉肉細(xì)胞磷濃度降低, 光合磷酸化水平下降, ATP合成受阻, 光合能力下降, 葉面積指數(shù)與SPAD值大幅下降[47-48]。合理的氮磷配施會(huì)提高作物葉面積指數(shù)和功能葉片SPAD值, 延長(zhǎng)灌漿后期單株光合面積, 具有較高的光合生產(chǎn)能力[15,37,49]。本試驗(yàn)表明, 隨著氮磷施入量的增加, 玉米生育后期的葉面積指數(shù)和SPAD值呈現(xiàn)先增加后降低的趨勢(shì)。過(guò)量的氮肥施入并沒(méi)有顯著提高玉米生育后期的葉面積指數(shù)與SPAD值; 過(guò)量的磷肥投入會(huì)在低氮條件下提高生育后期的葉面積指數(shù)與SPAD值, 高氮條件下降低生育后期的葉面積指數(shù)與SPAD值。但高磷條件下N2的葉面積指數(shù)與SPAD值低于合理的氮磷配施(N3 P1)處理。合理的氮磷配施(N3 P1)能夠在玉米生育后期保持較高的葉面積指數(shù)與SPAD值, 而產(chǎn)量與玉米生育后期葉面積指數(shù)、SPAD值呈顯著正相關(guān)。
花粒期, 玉米由營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)并進(jìn)階段轉(zhuǎn)入生殖生長(zhǎng)階段, 莖葉等營(yíng)養(yǎng)器官基本停止生長(zhǎng), 進(jìn)入衰老階段[50]。玉米生育后期的葉片光合能力受葉片衰老快慢影響[51]。當(dāng)莖葉營(yíng)養(yǎng)器官衰老過(guò)快, 葉面積指數(shù)與SPAD值降低, 光合能力快速下降, 光合產(chǎn)物積累不足, 光合產(chǎn)物轉(zhuǎn)移到籽粒不足, 產(chǎn)量將降低20%~30%[52]。植物進(jìn)入衰老階段, 植物體內(nèi)的超氧自由基、H2O2和MDA含量增加[18,53]。SOD、POD、CAT作為植物主要的抗氧化酶, 其較高的活性可以保持超氧自由基和H2O2產(chǎn)生與清除機(jī)制的平衡, 降低MDA的含量[54]。SOD作為清除活性氧的第一道防線, 催化超氧化物的歧化反應(yīng), 產(chǎn)生H2O2和氧氣[22]。CAT可以將迅速將H2O2分解為H2O和氧氣[55]。而對(duì)于POD的作用的研究, 前人認(rèn)為POD在衰老前期可以清除H2O2, 防止衰老, 而在生育后期可能會(huì)參與活性氧的產(chǎn)生[56]。適宜的氮肥用量會(huì)增強(qiáng)植株抗氧化酶活性, 增強(qiáng)對(duì)活性氧的清除能力, 降低MDA含量, 增加生育后期葉面積指數(shù)和SPAD值, 延緩植株衰老[57]。過(guò)量施磷會(huì)使植株保護(hù)性酶活性降低, MDA含量增加, 葉面積指數(shù)、SPAD值下降, 葉片早衰[58-59]。不合理的施氮磷肥會(huì)打亂玉米植株體內(nèi)活性氧代謝, 葉片抗氧化酶含量降低, 膜脂過(guò)氧化程度加劇, 加速葉片衰老, 降低生育后期光合速率, 最終玉米產(chǎn)量降低[60-61]。本試驗(yàn)表明, 隨著氮磷施入量的增加, 抗氧化酶活性呈現(xiàn)先增加后降低的趨勢(shì), MDA含量呈現(xiàn)先降低后增加的趨勢(shì)。過(guò)量的氮磷施入處理在VT時(shí)期與合理氮磷配施處理差異不大, 但隨著生育期的推進(jìn), 在R3到R6時(shí)期抗氧化酶活性顯著下降, MDA含量顯著提高。相較于過(guò)量氮磷施入處理, 在較高施磷量的N2處理的抗氧化酶活性在生育后期顯著提高, 但仍低于合理氮磷配施處理。合理的氮磷配施(N3 P1)處理可以維持玉米生育后期較高的抗氧化酶活性, 降低MDA含量, 延緩植株葉片后期衰老, 促進(jìn)粒重增加、增加玉米產(chǎn)量。
本試驗(yàn)條件下, 合理氮磷配施(氮180 kg hm–2、磷60 kg hm–2)通過(guò)提高玉米生育后期抗氧化酶活性, 降低MDA含量, 維持較高的葉面積指數(shù)與SPAD值,提高玉米穗粒數(shù)與千粒重, 進(jìn)而增加產(chǎn)量。
[1] 喬遠(yuǎn), 楊歡, 雒金麟, 汪思嫻, 梁藍(lán)月, 陳新平, 張務(wù)帥. 西北地區(qū)玉米生產(chǎn)投入及生態(tài)環(huán)境風(fēng)險(xiǎn)評(píng)價(jià). 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55: 962–976. Qiao Y, Yang H, Luo J L, Wang S X, Liang L Y, Chen X P, Zhang W S. Inputs and ecological environment risks assessment of maize production in northwest China., 2022, 55: 962–976 (in Chinese with English abstract).
[2] Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize., 2002, 75: 161–169.
[3] Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis., 2006, 51: 399–408.
[4] 張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風(fēng). 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學(xué)報(bào), 2008, 45: 915–924. Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measuers for improvement., 2008, 45: 915–924 (in Chinese with English abstract).
[5] Liu X J, Zhang Y, Han W X, Tang A, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China., 2013, 494: 459–462.
[6] Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. Managing nitrogen for sustainable development., 2015, 528: 51–59.
[7] 蘇文楠, 解君, 韓娟, 劉鐵寧, 韓清芳. 夏玉米不同部位干物質(zhì)臨界氮濃度稀釋曲線的構(gòu)建及對(duì)產(chǎn)量的估計(jì). 作物學(xué)報(bào), 2021, 47: 530–545. Su W N, Xie J, Han J, Liu T N, Han Q F. Construction of critical nitrogen dilution curve based on dry matter in different organs of summer maize and estimation of grain yield., 2021, 47: 530–545 (in Chinese with English abstract).
[8] 金書(shū)秦, 張惠, 張哲晰, 劉洋. “十三五”化肥使用量零增長(zhǎng)行動(dòng)評(píng)估及政策展望. 環(huán)境保護(hù), 2022, 50(5): 31–36. Jin S Q, Zhang H, Zhang Z X, Liu Y. Evaluation and policy prospect of zero growth action of chemical fertilizer in the 13th five-year plan., 2022, 50(5): 31–36 (in Chinese).
[9] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 年度數(shù)據(jù). (2022-03-31) https://data.stats.gov.cn/easyquery.htm? cn=C01.National Bureau of Statistics of the People’s Republic of China. Annual data. (2022-03-31) https://data.stats.gov.cn/easyquery.htm? cn=C01 (in Chinese).
[10] 薛曉輝, 郝明德. 小麥氮磷肥長(zhǎng)期配施對(duì)土壤硝態(tài)氮淋溶的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42: 918–925. Xue X H, Hao M D. Nitrate-N leaching in 23-year winter wheat field combined with application of nitrogen and phosphorus., 2009, 42: 918–925 (in Chinese with English abstract).
[11] 焦亞鵬, 齊鵬, 王曉嬌, 姚一銘, 武均, 蔡立群, 張仁陟. 氮磷配施對(duì)黃土高原旱作農(nóng)業(yè)區(qū)典型農(nóng)田土壤無(wú)機(jī)磷形態(tài)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2020, 26: 1459–1472. Jiao Y P, Qi P, Wang X J, Yao Y M, Wu J, Cai L Q, Zhang R Z. Effects of nitrogen and phosphorus fertilization on inorganic phosphorus forms of typical farmland soil in the dry farming area of the Loess Plateau., 2020, 26: 1459–1472 (in Chinese with English abstract).
[12] 張?chǎng)? 邢玥, 劉照霞, 呂明露, 朱占玲, 姜遠(yuǎn)茂, 葛順?lè)? 氮磷配施對(duì)蘋果幼苗生長(zhǎng)、土壤無(wú)機(jī)磷形態(tài)和磷素利用的影響. 水土保持學(xué)報(bào), 2021, 35(4): 237–242.Zhang X, Xing Y, Liu Z X, Lyu M L, Zhu Z L, Jiang Y M, Ge S F. Effects of combined application of nitrogen and phosphorus fertilizer on apple rootstock seeding growth, soil inorganic phosphorus forms and phosphorus utilization., 2021, 35(4): 237–242 (in Chinese with English abstract).
[13] Schleuss P M, Widdig M, Heintz-Buschart A, Kirkman K, Spohn M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses.,2020, 101: e03003.
[14] 劉苗, 劉朋召, 師祖姣, 王小利, 王瑞, 李軍. 氮磷配施下夏玉米臨界氮濃度稀釋曲線的構(gòu)建與氮營(yíng)養(yǎng)診斷. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55: 932–947. Liu M, Liu P Z, Shi Z J, Wang X L, Wang R, Li J. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of summer maize under different nitrogen and phosphorus application rates., 2022, 55: 932–947 (in Chinese with English abstract).
[15] 李萍, 謝圣杰, 李明明, 賈亞濤, 馮萬(wàn)軍, 邢國(guó)芳. 氮磷配施對(duì)玉米‘良玉188’光合特性及產(chǎn)量的影響. 農(nóng)學(xué)學(xué)報(bào), 2020, 10(4): 14–20. Li P, Xie S J, Li M M, Jia Y T, Feng W J, Xing G F. Effects of combined application of nitrogen and phosphorus on photosynthetic characteristics and yield of maize variety ‘Liangyu 188’., 2020, 10(4): 14–20 (in Chinese with English abstract).
[16] Daniel P, Gilles L. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration., 1999, 216: 65–82.
[17] Tollenaar M, Daynard T B. Leaf senescence in short-season maize hybrids., 1978, 58: 869–874.
[18] 朱昆侖, 靳立斌, 董樹(shù)亭, 趙斌, 劉鵬, 張吉旺. 綜合農(nóng)藝管理對(duì)夏玉米葉片衰老特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47: 2949–2959. Zhu K L, Jin L B, Dong S T, Zhao B, Liu P, Zhang J W. Effects of integrated agronomic practices on leaf senescence physiological characteristics of summer maize., 2014, 47: 2949–2959 (in Chinese with English abstract).
[19] Foyer C H, Noctor G. Stress-triggered redox signalling: what’s in pROSpect?, 2016, 39: 951–964.
[20] 仇琳, 趙林姝, 謝永盾, 熊宏春, 古佳玉, 畢秀麗, 劉錄祥, 郭會(huì)君. 植物早衰研究進(jìn)展. 植物遺傳資源學(xué)報(bào), 2022, 23: 346–357. Qiu L, Zhao L S, Xie Y D, Xiong H C, Gu J Y, Bi X L, Liu L X, Guo H J. Advances in research on premature senescence in plants., 2022, 23: 346–357 (in Chinese with English abstract).
[21] Yordanova R Y, Christov K N, Popova L P. Antioxidative enzymes in barley plants subjected to soil flooding., 2004, 51: 93–101.
[22] 魏婧, 徐暢, 李可欣, 賀洪軍, 徐啟江. 超氧化物歧化酶的研究進(jìn)展與植物抗逆性. 植物生理學(xué)報(bào), 2020, 56: 2571–2584. Wei J, Xu C, Li K X, He H J, Xu Q J. Progress on superoxide dismutase and plant stress resistance., 2020, 56: 2571–2584 (in Chinese with English abstract).
[23] 魏海燕, 張洪程, 馬群, 戴其根, 霍中洋, 許軻, 張慶, 黃麗芬.不同氮肥吸收利用效率水稻基因型葉片衰老特性. 作物學(xué)報(bào), 2010, 36: 645–654. Wei H Y, Zhang H C, Ma Q, Dai Q G, Huo Z Y, Xu K, Zhang Q, Huang L F. Characteristics of leaf senescence in rice genotypes with different nitrogen use efficiencies., 2010, 36: 645–654 (in Chinese with English abstract).
[24] 陳靜, 任佰朝, 趙斌, 劉鵬, 張吉旺. 葉面噴施甜菜堿對(duì)不同播期夏玉米產(chǎn)量形成及抗氧化能力的調(diào)控. 作物學(xué)報(bào), 2022, 48: 1502–1515. Chen J, Ren B Z, Zhao B, Liu P, Zhang J W. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates., 2022, 48: 1502–1515 (in Chinese with English abstract).
[25] 侯鵬飛, 馬俊青, 趙鵬飛, 張歡玲, 趙會(huì)杰, 劉華山, 趙一丹, 汪月霞. 外源甜菜堿對(duì)干旱脅迫下小麥幼苗葉綠體抗氧化酶及基因表達(dá)的調(diào)節(jié). 作物學(xué)報(bào), 2013, 39: 1319–1324. Hou P F, Ma J Q, Zhao P F, Zhang H L, Zhao H J, Liu H S, Zhao Y D, Wang Y X. Effects of betaine on chloroplast protective enzymes andgene expression in wheat seedlings under drought stress., 2013, 39: 1319–1324 (in Chinese with English abstract).
[26] 李廣浩, 劉平平, 趙斌, 董樹(shù)亭, 劉鵬, 張吉旺, 田翠霞, 何在菊. 不同水分條件下控釋尿素對(duì)夏玉米產(chǎn)量和葉片衰老特性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28: 571–580. Li G H, Liu P P, Zhao B, Dong S T, Liu P, Zhang J W, Tian C X, He Z J. Effects of water conditions and controlled release urea on yield and leaf senescence physiological characteristics in summer maize., 2017, 28: 571–580 (in Chinese with English abstract).
[27] 劉光明, 趙燦, 蔣巖, 趙凌天, 廖平強(qiáng), 王維領(lǐng), 霍中洋. 施氮量對(duì)水稻源庫(kù)協(xié)同衰老特征的影響. 植物生理學(xué)報(bào), 2022, 58: 173–185. Liu G M, Zhao C, Jiang Y, Zhao L T, Liao P Q, Wang W L, Huo Z Y. Effects of nitrogen application on the synergistic senescence of rice source and sink., 2022, 58: 173–185 (in Chinese with English abstract).
[28] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants., 1977, 59: 309–314.
[29] Durner J, Klessing D F. Salicylic acid is a modulator of tobacco and mammalian catalases., 1996, 271: 28492–28502.
[30] Hammerschmidt R, Nuckles E M, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to., 1982, 20: 73–82.
[31] Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López- Arredondo D, Wissuwa M, Emmanuel D, Rouached H. Improving phosphorus use efficiency: a complex trait with emerging opportunities., 2017, 90: 868–885.
[32] Torres-Rodríguez J V, Salazar-Vidal M N, Montes R A C, Massange-Sánchez J A, Sawers R J H. Low nitrogen availability inhibits the phosphorus starvation response in maize (ssp.L.)., 2021, 21: 259.
[33] 劉朋召, 王旭敏, 寧芳, 雒文鶴, 張琦, 張?jiān)t, 李軍. 減量施氮對(duì)渭北旱地春玉米產(chǎn)量、氮素利用及土壤硝態(tài)氮含量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2020, 31: 2621–2629. Liu P Z, Wang X M, Ning F, Luo W H, Zhang Q, Zhang Y H, Li J. Effects of reduced nitrogen application on yield, nitrogen utilization of spring maize and soil nitrate content in Weibei dryland, Northwest China., 2020, 31: 2621–2629 (in Chinese with English abstract).
[34] 吉慶凱, 王棟, 楊文寶, 韓彥茹, 馬文奇, 魏靜. 長(zhǎng)期施磷對(duì)玉米-小麥輪作系統(tǒng)作物產(chǎn)量和磷素吸收及土壤磷積累的影響.應(yīng)用生態(tài)學(xué)報(bào), 2021, 32: 2469–2476. Ji Q K, Wang D, Yang W B, Han Y R, Ma W Q, Wei J. Effects of long-term phosphorus application on crop yield, phosphorus absorption, and soil phosphorus accumulation in maize-wheat rotation system., 2021, 32: 2469–2476 (in Chinese with English abstract).
[35] 張建軍, 黨翼, 趙剛, 王磊, 樊廷錄, 李尚中. 覆膜時(shí)期和施氮量對(duì)隴東旱塬玉米產(chǎn)量和水氮利用效率的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55: 479–490. Zhang J J, Dang Y, Zhao G, Wang L, Fan T L, Li S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in loess plateau of Eastern Gansu Province., 2022, 55: 479–490 (in Chinese with English abstract).
[36] 劉德平, 楊樹(shù)青, 史海濱, 杜曉峰, 孫玲玉, 常春龍, 李禎. 氮磷配施條件下作物產(chǎn)量及水肥利用效率. 生態(tài)學(xué)雜志, 2014, 33: 902–909. Liu D P, Yang S Q, Shi H B, Du X F, Sun L Y, Chang C L, Li Z. Crop yield and water-fertilizer utilization efficiency under combined application of nitrogen and phosphorous., 2014, 33: 902–909 (in Chinese with English abstract).
[37] 謝圣杰, 邢國(guó)芳, 賈亞濤, 苑乂川, 陳小雨. 氮磷配施對(duì)玉米葉片生長(zhǎng)及光合特性的影響. 山西農(nóng)業(yè)科學(xué), 2018, 46: 387–391. Xie S J, Xing G F, Jia Y T, Yuan Y C, Chen X Y. Effects of nitrogen combined with phosphorus fertilizer application on the leaf growth and photosynthetic characteristics of maize., 2018, 46: 387–391 (in Chinese with English abstract).
[38] 柴穎, 趙靚, 黃婷, 毛家雙, 張揚(yáng), 侯振安. 不同氮、磷配施對(duì)春玉米養(yǎng)分吸收和產(chǎn)量的影響. 新疆農(nóng)業(yè)科學(xué), 2015, 52: 444–449. Chai Y, Zhao J, Huang T, Mao J S, Zhang Y, Hou Z A. Effects of different combination ratios of N, P fertilizer on nutrient uptake of maize and yield., 2015, 52: 444–449 (in Chinese with English abstract).
[39] 曾瑾汐, 文熙宸, Muhammad A R, 陳國(guó)鵬, 陳誠(chéng), 彭霄, 馬艷瑋, 李麗, 官思成, 楊文鈺, 王小春. 氮磷配施對(duì)玉米-大豆套作模式下種間作用、玉米產(chǎn)量及干物質(zhì)積累與轉(zhuǎn)運(yùn)的影響. 草業(yè)學(xué)報(bào), 2017, 26(7): 166–176. Zeng J X, Wen X C, Muhammad A R, Chen G P, Chen C, Peng X, Ma Y W, Li L, Guan S C, Yang W Y, Wang X C. Effects of combined applications of nitrogen and phosphorus on interspecies interaction, yield, and dry matter accumulation and translocation in maize in a maize-soybean relay intercropping system., 2017, 26(7): 166–176 (in Chinese with English abstract).
[40] 張麗光, 李丹, 劉磊, 王蕾, 孫志梅, 彭正萍, 薛世川. 不同施肥種植模式對(duì)玉米光合特性、養(yǎng)分效率及產(chǎn)量性狀的影響. 水土保持學(xué)報(bào), 2013, 27(2): 115–119. Zhang L G, Li D, Liu L, Wang L, Sun Z M, Peng Z P, Xue S C. Effects of different fertilization and planting patterns on photosynthetic characters, nutrients efficiency and yield traits of maize., 2013, 27(2): 115–119 (in Chinese with English abstract).
[41] 孫雪芳, 丁在松, 侯海鵬, 葛均筑, 唐麗媛, 趙明. 不同春玉米品種花后光合物質(zhì)生產(chǎn)特點(diǎn)及碳氮含量變化. 作物學(xué)報(bào), 2013, 39: 1284–1292.Sun X F, Ding Z S, Hou H P, Ge J Z, Tang L Y, Zhao M. Post-Anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize., 2013, 39: 1284–1292 (in Chinese with English abstract).
[42] 趙偉, 徐錚, 高大鵬, 安振, 高輝遠(yuǎn), 張子山, 寧堂原, 李耕. 定向種植對(duì)夏玉米群體內(nèi)光環(huán)境及葉片光合性能的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30: 2707–2716. Zhao W, Xu Z, Gao D P, An Z, Gao H Y, Zhang Z S, Ning T Y, Li G. Effects of directional planting on light environment and leaf photosynthesis of summer maize population., 2019, 30: 2707–2716 (in Chinese with English abstract).
[43] 于寧寧, 張吉旺, 任佰朝, 趙斌, 劉鵬. 綜合農(nóng)藝管理對(duì)夏玉米葉片生長(zhǎng)發(fā)育及內(nèi)源激素含量的影響. 作物學(xué)報(bào), 2020, 46: 960–967. Yu N N, Zhang J W, Ren B Z, Zhao B, Liu P. Effect of integrated agronomic managements on leaf growth and endogenous hormone content of summer maize., 2020, 46: 960–967 (in Chinese with English abstract).
[44] 靳立斌, 張吉旺, 李波, 崔海巖, 董樹(shù)亭, 劉鵬, 趙斌. 高產(chǎn)高效夏玉米的冠層結(jié)構(gòu)及其光合特性. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46: 2430–2439. Jin L B, Zhang J W, Li B, Cui H Y, Dong S T, Liu P, Zhao B. Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize., 2013, 46: 2430–2439 (in Chinese with English abstract).
[45] 王進(jìn)斌, 謝軍紅, 李玲玲, Eunice E, 彭正凱, 鄧超超, 沈吉成, 頡健輝. 氮肥運(yùn)籌對(duì)隴中旱農(nóng)區(qū)玉米光合特性及產(chǎn)量的影響. 草業(yè)學(xué)報(bào), 2019, 28(1): 60–69. Wang J B, Xie J H, Li L L, Eunice E, Peng Z K, Deng C C, Shen J C, Xie J H. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China., 2019, 28(1): 60–69 (in Chinese with English abstract).
[46] 楚光紅, 章建新. 施氮量對(duì)滴灌超高產(chǎn)春玉米光合特性、產(chǎn)量及氮肥利用效率的影響. 玉米科學(xué), 2016, 24(1): 130–136. Chu G H, Zhang J X. Effects of nitrogen application on photosynthetic characteristics, yield and nitrogen use efficiency in drip irrigation of super high-yield spring maize., 2016, 24(1): 130–136 (in Chinese with English abstract).
[47] 潘曉華, 石慶華, 郭進(jìn)耀, 王永銳. 無(wú)機(jī)磷對(duì)植物葉片光合作用的影響及其機(jī)理的研究進(jìn)展. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 1997, 3: 201–208. Pan X H, Shi Q H, Guo J Y, Wang Y R. Advance in the study of effects of inorganic phosphate on plant leaf photosynthesis and its mechanism., 1997, 3: 201–208 (in Chinese with English abstract).
[48] 劉沖, 賈永紅, 張金汕, 孫鵬, 羅四維, 王歡, 李鵬, 石書(shū)兵. 播種方式和施磷對(duì)冬小麥群體結(jié)構(gòu)、光合特性和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2020, 31: 919–928. Liu C, Jia Y H, Zhang J S, Sun P, Luo S W, Wang H, Li P, Shi S B. Effects of seeding pattern and phosphorus application on population structure, photosynthetic characteristics and yield of winter wheat., 2020, 31: 919–928 (in Chinese with English abstract).
[49] 楊喬喬, 康建宏, 王佳. 氮磷鉀肥配施對(duì)春玉米迪卡517光合特性的影響. 浙江農(nóng)業(yè)科學(xué), 2021, 62: 1057–1062. Yang Q Q, Kang J H, Wang J. Different ratios of nitrogen, phosphorus and potassium fertilizer influenced photosynthetic characteristics of spring maize Deca 517., 2021, 62: 1057–1062 (in Chinese).
[50] 麻雪艷, 周廣勝. 基于光合產(chǎn)物動(dòng)態(tài)分配的玉米生物量模擬. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27: 2292–2300. Ma X Y, Zhou G S. Maize biomass simulation based on dynamic photosynthate allocation., 2016, 27: 2292–2300 (in Chinese with English abstract).
[51] 黃鑫慧, 任佰朝, 趙斌, 劉鵬, 張吉旺. 植酶Q9對(duì)大田遮陰夏玉米產(chǎn)量和衰老特性的調(diào)控作用. 應(yīng)用生態(tài)學(xué)報(bào), 2020, 31: 3433–3444. Huang X H, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of phytase Q9 on the yield and senescence characteristics of summer maize shaded in the field., 2020, 31: 3433–3444 (in Chinese with English abstract).
[52] 蒯本科. 植物衰老關(guān)乎器官發(fā)育和作物產(chǎn)量與品質(zhì)性狀的形成. 植物生理學(xué)報(bào), 2014, 50: 1265–1266. Kuai B K. Associations of green organ senescence with nascent organ development in plants and yield and quality component formations in crops., 2014, 50: 1265–1266 (in Chinese with English abstract).
[53] Dhindsa R S, Dhindsa P P, Reid D M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen., 1982, 56: 453–457.
[54] 尹永強(qiáng), 胡建斌, 鄧明軍. 植物葉片抗氧化系統(tǒng)及其對(duì)逆境脅迫的響應(yīng)研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2007, 23(1): 105–110. Yin Y Q, Hu J B, Deng M J. Latest development of antioxidant system and responses to stress in plant leaves., 2007, 23(1): 105–110 (in Chinese with English abstract).
[55] 呂艷艷, 金巖, 付三雄, 戚存扣. 不同耐淹油菜品種的耐淹性生理差異. 植物生理學(xué)報(bào), 2013, 49: 959–967. Lyu Y Y, Jin Y, Fu S X, Qi C K. Physiological differences of different waterlogging-resistantL. under waterlogging stress., 2013, 49: 959–967 (in Chinese with English abstract).
[56] 左進(jìn)華, 陳安均, 孫愛(ài)東, 羅云波, 朱本忠. 番茄果實(shí)成熟衰老相關(guān)因子研究進(jìn)展中國(guó)農(nóng)業(yè)科學(xué), 2010, 43: 2724–2734.Zuo J H, Chen A J, Sun A D, Luo Y B, Zhu B Z. Research progress on the factors related to tomato fruit ripening and senescence., 2010, 43: 2724–2734 (in Chinese with English abstract).
[57] 劉艷, 汪仁, 華利民, 解占軍. 施氮量對(duì)玉米生育后期葉片衰老與保護(hù)酶系統(tǒng)的影響. 玉米科學(xué), 2012, 20(2): 124–127. Liu Y, Wang R, Hua L M, Xie Z J. Effect of N application rates on leaf senescence and protective enzyme system at later stage of maize., 2012, 20(2): 124–127 (in Chinese with English abstract).
[58] Low P S, Merida J R. The oxidative burst in plant defense: Function and signal transduction., 2006, 96: 533–542.
[59] 曹高燚, 王晶, 杜錦, 牛巧龍, 蘇東偉, 田秀平. 施磷量對(duì)玉米產(chǎn)量及葉片部分酶活性的影響. 玉米科學(xué), 2017, 25(3): 117–122. Cao G Y, Wang J, Du J, Niu Q L, Su D W, Tian X P. Effects of phosphate fertilizer on yield and enzyme efficiency of leaves in spring maize., 2017, 25(3): 117–122 (in Chinese with English abstract).
[60] 戰(zhàn)秀梅, 韓曉日, 楊勁峰, 王帥, 高鳴, 趙立勇. 不同施肥處理對(duì)玉米生育后期葉片保護(hù)酶活性及膜脂過(guò)氧化作用的影響. 玉米科學(xué), 2007, 15(1): 123–127. Zhan X M, Han X R, Yang J F, Wang S, Gao M, Zhao L Y. Effect of different fertilizer supply of maize on protective enzyme activities and lipid peroxidation of leaves in latter stage., 2007, 15(1): 123–127 (in Chinese with English abstract).
[61] 王帥. 長(zhǎng)期不同施肥對(duì)玉米葉片光合作用及光系統(tǒng)功能的影響. 沈陽(yáng)農(nóng)業(yè)大學(xué)博士學(xué)位論文, 遼寧沈陽(yáng), 2014. Wang S. Effects of Long-Term Different Fertilization on Photosynthesis and Photosystem Function in Maize Leaves. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liao-ning, China, 2014 (in Chinese with English abstract).
Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize
ZHANG Zhen-Bo1, JIA Chun-Lan1,2, REN Bai-Zhao1,2, LIU Peng1, ZHAO Bin1, and ZHANG Ji-Wang1,2,*
1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;2Shandong Maize Technology Innovation Center, Laizhou 261400, Shandong, China
Nitrogen and phosphorus, as the essential nutrients for maize growth and development, play an important effect on maize yield. In this experiment, to investigate the effect of combined application of nitrogen and phosphorus on leaf senescence physiological and yield formation in summer maize, 11 combined applications of nitrogen and phosphorus treatments in 2020 and 15 combined applications of nitrogen and phosphorus treatments in 2021 were applied using Denhai 111 (DH111) as the test materials. The results showed that the leaf area index (LAI), the relative chlorophyll content (SPAD), and the antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] of summer maize increased first and then decreased, and the malondialdehyde (MDA) content decreased first and then increased with the increase of nitrogen application rate under the same phosphorus application conditions. Under N0–N2 conditions, with the increasing phosphorus application, LAI, SPAD value, and antioxidant enzyme activity had an increasing trend, MDA content showed a decreasing trend and yield showed an increasing trend, while with the increasing phosphorus application, LAI, SPAD value, and antioxidant enzyme activity showed an increasing trend and then a decreasing trend, MDA content showed a decreasing trend and then an increasing trend, and yield showed an increasing trend and then a decreasing trend in N3 and N4. In 2020, the N3 P1 treatment increased yields by 2.55% compared to the N2 P3 treatment. In 2021, the N3 P1 treatment increased yields by 7.36% and 3.31% compared to the N3 P0 and N2 P2 treatments, respectively. Under the experimental conditions, the reasonable combined application of nitrogen and phosphorus (180 kg N hm–2, 60 kg P hm–2) treatment can increase the activities of antioxidant enzymes at the later stage of fertility, reduce MDA content, maintain a high leaf area index and SPAD values, increase the number of grains per ear and 1000-grain weight, ultimately leading to higher maize yield.
summer maize; combined application of nitrogen and phosphorus; yield; leaf senescence physiological characteristics
10.3724/SP.J.1006.2023.23045
本研究由山東省農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新項(xiàng)目(SD2019ZZ013), 山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021LZGC014-2)和財(cái)政部和農(nóng)業(yè)農(nóng)村部國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-02-21)資助。
This study was supported by the Shandong Agricultural Application Technology Innovation Project (SD2019ZZ013), the Shandong Province Key Research and Development Program (2021LZGC014-2), and the China Agriculture Research System of MOF and MARA (CARS-02-21).
張吉旺, E-mail: jwzhang@sdau.edu.cn
E-mail: 1486693491@qq.com
2022-05-29;
2022-10-10;
2022-10-26.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20221025.1424.006.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).