王以諾 蔡施霞 李連弟 呂坤聚
[摘要] 目的
探討急性呼吸窘迫綜合征(ARDS)時(shí)骨髓間充質(zhì)干細(xì)胞(BMSC)旁分泌角質(zhì)細(xì)胞生長(zhǎng)因子(KGF)對(duì)脂多糖(LPS)損傷的肺泡上皮的修復(fù)作用,以及肺泡上皮細(xì)胞的晚期糖基化終末產(chǎn)物受體(RAGE)在BMSC旁分泌KGF修復(fù)LPS誘導(dǎo)的肺泡上皮損傷中的作用。
方法 建立LPS誘導(dǎo)的小鼠肺上皮細(xì)胞(MLE12)損傷模型以及體外BMSC與MLE12間接共培養(yǎng)模型。實(shí)驗(yàn)對(duì)象分為control、LPS、MSC-control、MSC-LPS、KGF及anti-RAGE組,培養(yǎng)1、7 d后,應(yīng)用蛋白質(zhì)印跡方法測(cè)定MLE12細(xì)胞中RAGE及閉鎖小帶蛋白-1(ZO-1)的含量,應(yīng)用酶聯(lián)免疫吸附試驗(yàn)方法測(cè)定細(xì)胞條件培養(yǎng)液中KGF及RAGE的含量。
結(jié)果 BMSC能增加LPS損傷肺上皮的ZO-1蛋白表達(dá)(F=172.40、146.80,P<0.01;t=14.91~67.40,P<0.05)。BMSC修復(fù)LPS損傷的肺上皮時(shí)條件培養(yǎng)液中KGF表達(dá)增加(F=45.51、2 359.00,P<0.01;t=14.87~73.25,P<0.05);MLE12細(xì)胞的RAGE表達(dá)增加,差異有統(tǒng)計(jì)學(xué)意義(F=49.90~275.60,P<0.01;t=11.02~57.84,P<0.05)。
結(jié)論 BMSC對(duì)LPS誘導(dǎo)的MLE12細(xì)胞損傷有修復(fù)作用,BMSC修復(fù)LPS誘導(dǎo)的MLE12細(xì)胞損傷可能有旁分泌KGF的參與并通過調(diào)節(jié)RAGE表達(dá)實(shí)現(xiàn)。
[關(guān)鍵詞] 間質(zhì)干細(xì)胞;呼吸窘迫綜合征;成纖維細(xì)胞生長(zhǎng)因子10;高級(jí)糖化終產(chǎn)物受體;脂多糖類
[中圖分類號(hào)] R329.24;R563.8
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2023)06-0796-06
doi:10.11712/jms.2096-5532.2023.59.196
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20240104.1607.007;2024-01-05 20:01:33
REPAIR EFFECT OF KERATINOCYTE GROWTH FACTOR SECRETED BY BONE MARROW MESENCHYMAL STEM CELLS THROUGH A PARACRINE MECHANISM ON LIPOPOLYSACCHARIDE-INDUCED MOUSE LUNG EPITHELIAL CELL DAMAGE
WANG Yinuo, CAI Shixia, LI Liandi, L Kunju
(Department of Respiratory Medicine, 971 Hospital of the Peoples Liberation Army of China, Qingdao 2660071, China)
; [ABSTRACT]ObjectiveTo investigate the repair effect of keratinocyte growth factor (KGF) secreted by bone marrow mesenchymal stem cells (BMSC) through a paracrine mechanism on lipopolysaccharide (LPS)-induced alveolar epithelial damage in acute respiratory distress syndrome (ARDS), as well as the role of receptor for advanced glycation end products (RAGE) from alveolar epithelial cells on the repair of LPS-induced alveolar epithelial damage by KGF secreted by BMSC.
MethodsMouse lung epithelial MLE12 cells were used to establish a model of LPS-induced damage, and an indirect co-culture model was established for BMSC and MLE12 in vitro. The subjects were divided into control group, LPS group, MSC-control group, MSC-LPS group, KGF group, and anti-RAGE group. After 1 and 7 days of culture, Western blot was used to measure the content of RAGE and zonula occluden-1 (ZO-1) in MLE12 cells, and ELISA was used to measure the content of KGF and RAGE in the conditioned medium of cells.
Results BMSC could increase the protein expression of ZO-1 in lung epithelium damaged by LPS (F=172.40,146.80,P<0.01; t=14.91-67.40,P<0.05). During the repair of lung epithelium damaged by LPS with BMSC, there were increases in the content of KGF in conditioned medium (F=45.51,2 359.00,P<0.01; t=14.87-73.25,P<0.05) and the expression of RAGE in MLE12 cells (F=49.90-275.60,P<0.01;t=11.02-57.84,P<0.05).
ConclusionBMSC can repair the damage of MLE12 cells induced by LPS, and KGF secreted by BMSC through a paracrine mechanism plays an important role in such repair and may help to achieve the repair effect by regulating the expression of RAGE.
[KEY WORDS]mesenchymal stem cells; respiratory distress syndrome; fibroblast growth factor 10; receptor for advanced glycation end products; lipopolysaccharides
急性肺損傷(ALI)/急性呼吸窘迫綜合征(ARDS)是指肺泡上皮及肺毛細(xì)血管內(nèi)皮彌漫性水腫損傷的危急重癥[1-2]。ALI/ARDS預(yù)后較差[3],膿毒癥是導(dǎo)致ALI/ARDS的常見原因,革蘭陰性桿菌中脂多糖(LPS)是導(dǎo)致感染的主要成分[4]。肺泡上皮細(xì)胞是ALI發(fā)生的靶細(xì)胞[5],上皮細(xì)胞可以內(nèi)吞LPS從而激活炎癥[6]。因此,研究LPS誘導(dǎo)的肺部上皮細(xì)胞損傷的再生修復(fù)是ALI/ARDS早期治療的新思路[7]。骨髓間充質(zhì)干細(xì)胞(BMSC)可能通過多種機(jī)制促進(jìn)肺損傷修復(fù)[8-10]。BMSC表達(dá)血清淀粉樣蛋白A1(SAA1)可以改善LPS誘導(dǎo)的肺損傷,分泌角質(zhì)細(xì)胞生長(zhǎng)因子(KGF)[11-12],降低內(nèi)毒素、炎癥因子水平[13-14]。晚期糖基化終末產(chǎn)物受體(RAGE)具有多種配體,應(yīng)用阻斷細(xì)胞表面RAGE的抗RAGE單抗或可溶性RAGE均有修復(fù)ALI/ARDS肺損傷的作用[15-16]。但目前BMSC旁分泌KGF對(duì)RAGE的調(diào)節(jié),以及對(duì)ALI/ARDS肺上皮細(xì)胞的保護(hù)作用尚未明確,本文對(duì)此進(jìn)行了實(shí)驗(yàn)研究,以期為ALI/ARDS治療提供新思路。現(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)細(xì)胞 小鼠肺上皮細(xì)胞MLE12和小鼠骨髓間充質(zhì)干細(xì)胞(mBMSC)均購(gòu)自美國(guó)模式培養(yǎng)物集存庫(kù)(ATCC)。本研究經(jīng)青島大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)倫理委員會(huì)批準(zhǔn)。
1.1.2 主要試劑 DMEM培養(yǎng)液、胎牛血清、DMEM/F12 1∶1培養(yǎng)液、雙抗(鏈霉素及青霉素溶液)和胰蛋白酶購(gòu)自美國(guó)GIBCO BRL公司;LPS購(gòu)自美國(guó)Sigma-Aldrich公司;小鼠角質(zhì)細(xì)胞生長(zhǎng)因子-7(KGF7)酶聯(lián)免疫試劑盒、小鼠默克可酶聯(lián)免疫試劑盒購(gòu)自中國(guó)Elabscience公司;抗小鼠RAGE多克隆抗體購(gòu)自美國(guó)R&D Systems公司;小鼠KGF購(gòu)自以色列ProSpec公司;RAGE抗體、閉鎖小帶蛋白-1(ZO-1)抗體購(gòu)自英國(guó)Abcam公司。MSC培養(yǎng)液是含體積分?jǐn)?shù)0.10胎牛血清和體積分?jǐn)?shù)0.01雙抗的DMEM/F12 1∶1培養(yǎng)液;MLE12培養(yǎng)液是含體積分?jǐn)?shù)0.02胎牛血清和體積分?jǐn)?shù)0.01雙抗的DMEM/F12 1∶1培養(yǎng)液。
1.2 實(shí)驗(yàn)方法
1.2.1 LPS誘導(dǎo)MLE12細(xì)胞損傷模型構(gòu)建 應(yīng)用胰蛋白酶消化MLE12細(xì)胞,調(diào)整細(xì)胞密度為1×107/L,然后向培養(yǎng)液中加入100 μg/L的LPS構(gòu)建MLE12細(xì)胞損傷模型[17],觀察MLE12細(xì)胞的形態(tài)、生長(zhǎng)情況及存活率。
1.2.2 mBMSC與MLE12細(xì)胞體外間接共培養(yǎng)實(shí)驗(yàn)?zāi)P蜆?gòu)建 分別將mBMSC細(xì)胞、MLE12細(xì)胞消化,并用不含血清的DMEM培養(yǎng)液重懸,調(diào)整兩種細(xì)胞密度均為1×107/L。將1.5 mL的mBMSC細(xì)胞懸液,接種在六孔板每孔底部的載玻片上,將六孔板放入37 ℃的CO2培養(yǎng)箱中孵育待細(xì)胞貼壁。然后在六孔板每孔中放入直徑24 mm、孔徑0.4 μm的Transwell小室,將1 mL MLE12細(xì)胞懸液接種在Transwell小室中與mBMSC細(xì)胞共培養(yǎng)。將六孔板放入37 ℃的CO2培養(yǎng)箱中孵育待細(xì)胞貼壁,然后加入LPS(100 μg/L)或等量的生理鹽水干預(yù)1 d或7 d。觀察細(xì)胞的形態(tài)、生長(zhǎng)情況及存活率。
1.2.3 實(shí)驗(yàn)分組 實(shí)驗(yàn)共分6組。control組:MLE12細(xì)胞單獨(dú)培養(yǎng),加入等量生理鹽水;LPS組:MLE12細(xì)胞加入LPS(100 μg/L)孵育;MSC-control組:MLE12細(xì)胞與MSC間接共培養(yǎng),加入等量生理鹽水;MSC-LPS組:MLE12細(xì)胞與MSC間接共培養(yǎng),加入LPS(100 μg/L)孵育;KGF組:MLE12細(xì)胞加入LPS(100 μg/L)孵育,同時(shí)加入KGF(10 μg/L);anti-RAGE組:MLE12細(xì)胞與MSC共培養(yǎng),加入LPS(100 μg/L)孵育,同時(shí)加入抗RAGE抗體(10 mg/L)。
1.2.4 酶聯(lián)免疫吸附試驗(yàn)(ELISA)和蛋白質(zhì)印跡(Western blot)法檢測(cè)蛋白表達(dá)水平 各組細(xì)胞接種在六孔板中,培養(yǎng)1、7 d后收集不同時(shí)間點(diǎn)的培養(yǎng)液,使用酶標(biāo)儀(Bio-Rad,美國(guó)),采用ELISA法測(cè)定各組細(xì)胞條件培養(yǎng)液中KGF及RAGE蛋白含量;收集各組以及小室下層的MLE12細(xì)胞,采用Western blot法測(cè)定MLE12細(xì)胞表面的RAGE(一抗1/1 000,acbam,批號(hào)ab216329)及ZO-1(一抗1/1 000,acbam,批號(hào)ab276131)蛋白含量,二抗均為山羊抗兔IgG(1/2 000,acbam,ab6721)。
1.3 統(tǒng)計(jì)分析
采用SPSS 17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料以±s表示,多組均數(shù)的比較采用單因素方差分析,組間兩兩比較采用Bonferroni法,每組內(nèi)7 d與1 d結(jié)果比較采用配對(duì)t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)? 果
2.1 BMSC對(duì)LPS損傷上皮細(xì)胞ZO-1蛋白表達(dá)的影響
單因素方差分析結(jié)果顯示,1 d時(shí)6組 ZO-1的
表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=172.40,P<0.001),兩
兩比較結(jié)果顯示,除control組與MSC-control組、
MSC-LPS組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余兩兩比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。7 d時(shí)6組 ZO-1的表達(dá)比較差異有統(tǒng)計(jì)學(xué)意義(F=146.80,P<0.001),兩兩比較結(jié)果顯示,除control組與LPS組、MSC-control組與MSC-LPS組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余兩兩比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。除anti-RAGE組下降外(t=9.34,P<0.05),7 d時(shí)其余各組ZO-1表達(dá)均較1 d時(shí)升高( t=14.91~67.40,P<0.05)。見圖1。
2.2 BMSC修復(fù)LPS損傷的肺上皮時(shí)條件培養(yǎng)液中KGF的表達(dá)
單因素方差分析結(jié)果顯示,1 d時(shí)6組的KGF表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=45.51,P<0.001),兩兩比較結(jié)果顯示,除MSC-LPS組與control組、LPS組比較以及control組與LPS組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余兩兩比較差異均有顯著性(P<0.05)。7 d時(shí),6組的KGF表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=2 359.00,P<0.001),任意兩組間差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。除control組外,7 d時(shí)其余各組KGF水平與1 d時(shí)比較差異均有統(tǒng)計(jì)學(xué)意義(t=14.87~73.25,P<0.05),control組、MSC-LPS組7 d時(shí)的KGF水平較1 d時(shí)下降。見圖2。
2.3 BMSC對(duì)LPS損傷MLE12細(xì)胞RAGE表達(dá)的影響
單因素方差分析,1 d時(shí)6組的RAGE表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=49.90,P<0.001),兩兩比較結(jié)果顯示,除MSC-control組與KGF組比較差異無(wú)顯著性(P>0.05)外,其余各組間比較差異均有顯著性(P<0.05)。7 d時(shí)6組的RAGE表達(dá)比較差異有顯著性(F=275.60,P<0.001),任意兩組間的差異均有顯著性(P<0.05)。除anti-RAGE組外,其余各組7 d時(shí)RAGE水平均較1 d時(shí)升高(t=17.20~57.84,P<0.05)。見圖3。
2.4 BMSC對(duì)LPS損傷MLE12細(xì)胞條件培養(yǎng)液中RAGE表達(dá)的影響
單因素方差分析顯示,1 d時(shí)6組的RAGE表達(dá)差異有統(tǒng)計(jì)學(xué)意義(F=233.00,P<0.001),兩兩比較結(jié)果顯示,除control組與MSC-control組、MSC-LPS組與anti-RAGE組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余各組間比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。7 d時(shí)6組RAGE表達(dá)水平差異有統(tǒng)計(jì)學(xué)意義(F=228.20,P<0.001),兩兩比較結(jié)果顯示,除control組與MSC-LPS組、control組與KGF組、MSC-LPS組與KGF組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余各組間比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。除LPS組外,其余各組7 d時(shí)RAGE水平與1 d時(shí)比較差異均有統(tǒng)計(jì)學(xué)意義(t=11.02~27.08,P<0.05),MSC-LPS組7 d時(shí)的RAGE水平較1 d時(shí)升高,其余各組RAGE水平均下降。見圖4。
3 討? 論
ALI/ARDS通過多種機(jī)制導(dǎo)致炎癥反應(yīng)失調(diào),且肺泡上皮及肺毛細(xì)血管內(nèi)皮彌漫性損傷,在重癥監(jiān)護(hù)危急重癥病人中的發(fā)病率為10%,病死率為40%[18]。HUANG等[19]報(bào)道,輕度和重度ARDS病人的患病率為9.7%和47.4%。該病目前尚無(wú)有效治療藥物,創(chuàng)新ARDS的治療方案迫在眉睫。維持肺泡上皮細(xì)胞的數(shù)量和功能,促進(jìn)受損肺泡上皮細(xì)胞的有效修復(fù)是ARDS治療的關(guān)鍵。其中,ALI/ARDS的毛細(xì)血管通透性改變主要是由于緊密連接的破壞,細(xì)胞緊密連接組成包括Claudin蛋白家族以及ZO-1。
WONG等[20]應(yīng)用MSC治療肺損傷模型動(dòng)物,發(fā)現(xiàn)MSC可定向遷移至肺上皮損傷部位,轉(zhuǎn)化為肺上皮細(xì)胞,參與損傷氣道的修復(fù)。肺上皮屏障破壞與緊密連接關(guān)鍵蛋白的表達(dá)降低有關(guān),其中ZO-1是構(gòu)成細(xì)胞緊密連接的重要組成部分,ZO-1蛋白水平降低提示細(xì)胞通透性增加,緊密連接受損。本研究結(jié)果顯示,MSC可以改善LPS誘導(dǎo)的損傷,提高ZO-1水平,在1 d時(shí)KGF、anti-RAGE對(duì)LPS損傷的肺上皮細(xì)胞有修復(fù)作用;7 d時(shí),MSC對(duì)LPS誘導(dǎo)的MLE12細(xì)胞損傷有修復(fù)作用,可修復(fù)受損細(xì)
胞ZO-1為主的緊密連接的細(xì)胞結(jié)構(gòu),在上皮細(xì)胞
損傷后期MSC修復(fù)作用減弱,甚至有加重細(xì)胞損傷的風(fēng)險(xiǎn),可能與修復(fù)相關(guān)的細(xì)胞因子分泌量不足、MSC惡性轉(zhuǎn)化有關(guān),MSC細(xì)胞與MLE12細(xì)胞之間的相互作用仍需要進(jìn)一步探討。KGF對(duì)LPS損傷的MLE12細(xì)胞具有更強(qiáng)的修復(fù)作用,anti-RAGE組ZO-1僅在1 d時(shí)具有顯著表達(dá)差異,隨著時(shí)間推移ZO-1表達(dá)平緩,推測(cè)抑制RAGE表達(dá)可能不是調(diào)節(jié)ZO-1的關(guān)鍵環(huán)節(jié)。
GALIACY等[21]證實(shí),KGF通過多種機(jī)制參與細(xì)胞移植和損傷保護(hù),對(duì)肺上皮修復(fù)有重要作用。GOOLAER等[22]研究發(fā)現(xiàn),KGF可上調(diào)肺上皮細(xì)胞中鈉通道的基因表達(dá),從而增強(qiáng)Na+-K+-ATP酶活性,改善肺泡液體轉(zhuǎn)運(yùn)能力,改變受損肺泡上皮屏障的通透性從而修復(fù)受損細(xì)胞。本研究結(jié)果提示:MSC旁分泌KGF可能需要時(shí)間累積,可能與細(xì)胞種板密度、細(xì)胞之間的相互作用相關(guān);anti-RAGE有利于分泌KGF從而發(fā)揮對(duì)肺上皮細(xì)胞的保護(hù)作用,而LPS刺激損傷肺上皮細(xì)胞的同時(shí),隨著時(shí)間增加可能也會(huì)影響MSC的旁分泌作用,從而降低KGF的分泌,對(duì)于MSC對(duì)KGF的調(diào)控存在正負(fù)調(diào)控,而其中anti-RAGE可促進(jìn)KGF表達(dá),可能參與肺保護(hù)作用;KGF可能參與LPS誘導(dǎo)的MLE12細(xì)胞損傷。SHAO等[23]發(fā)現(xiàn),經(jīng)KGF-2預(yù)處理后,油酸誘導(dǎo)的ALI大鼠中Claudin-5、ZO-1和血管內(nèi)皮鈣黏蛋白的表達(dá)增加,認(rèn)為KGF-2可通過維持肺微血管內(nèi)皮屏障來(lái)減輕油酸誘導(dǎo)的ALI[24],其作用機(jī)制與下調(diào)Wnt/β-catenin信號(hào)通路中Wnt5a、β-catenin和抗原呈遞細(xì)胞表達(dá)有關(guān)[23]。但也有研究結(jié)果表明,KGF對(duì)肺泡上皮細(xì)胞屏障功能的保護(hù)作用是由于增加頂端周圍的F-actin環(huán),通過調(diào)節(jié)肌動(dòng)蛋白骨架增強(qiáng)肺泡屏障功能,而在實(shí)驗(yàn)中沒有觀察到Claudin和ZO-1水平的顯著改變。
RAGE是具有多種配體的受體,與不同配體結(jié)合,激活的細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)途徑也不同[15]。RAGE的膜結(jié)合形式是炎癥、代謝功能障礙和血管損傷的關(guān)鍵媒介[25]。有研究表明,阻斷RAGE可以改善ALI的炎癥反應(yīng)[26]。抑制RAGE通過直接抑制肺泡上皮細(xì)胞的自噬凋亡來(lái)緩解LPS誘導(dǎo)的肺損傷[27]。但同時(shí),循環(huán)的可溶性形式的RAGE已被證明是一種誘餌受體,是RAGE的天然拮抗劑,可能對(duì)阻塞性氣道疾病的發(fā)展具有保護(hù)作用[26]。ZHANG等[28]發(fā)現(xiàn),重組小鼠可溶性RAGE表達(dá)增加,使RAGE信號(hào)傳遞受到抑制,減少炎癥因子釋放,從而降低肺通透性并減輕細(xì)胞凋亡水平,最終改善LPS誘導(dǎo)的小鼠ALI。本研究發(fā)現(xiàn),LPS誘導(dǎo)MLE12細(xì)胞炎癥后會(huì)導(dǎo)致RAGE表達(dá)減少,MSC具有更強(qiáng)的分泌RAGE的能力,KGF也會(huì)促進(jìn)RAGE分泌,anti-RAGE需要7 d后才可以達(dá)到抑制RAGE表達(dá)的效果;LPS損傷肺上皮細(xì)胞會(huì)導(dǎo)致培養(yǎng)液中RAGE含量降低,MSC可以增高RAGE含量,可以逆轉(zhuǎn)LPS誘導(dǎo)的炎癥反應(yīng),其機(jī)制可能與旁分泌KGF有關(guān)。在心肌梗死大鼠模型中發(fā)現(xiàn),MSC可以分泌可溶性晚期糖基化終末產(chǎn)物,可以減少心肌梗死面積以及改善心肌纖維化,MSC具有修復(fù)LPS誘導(dǎo)損傷的MLE12細(xì)胞的功能,是治療心肌梗死的潛在療法[29]。
綜上所述,BMSC通過旁分泌產(chǎn)生KGF,能早期減輕ALI/ARDS時(shí)肺泡上皮細(xì)胞的進(jìn)一步炎癥損傷,促進(jìn)上皮細(xì)胞增殖,減少上皮間質(zhì)轉(zhuǎn)分化,從而維持ALI/ARDS時(shí)肺泡上皮細(xì)胞的數(shù)量和功能,促進(jìn)肺泡上皮的修復(fù),上皮細(xì)胞的RAGE可能是該調(diào)節(jié)作用的關(guān)鍵分子。BMSC治療ALI/ARDS的機(jī)制還有待進(jìn)一步的研究來(lái)探討。
[參考文獻(xiàn)]
[1]MATTHAY M A, ZIMMERMAN G A, ESMON C, et al. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group[J].? American Journal of Respiratory and Critical Care Medicine, 2003,167(7):1027-1035.
[2]馬曉春,王辰,方強(qiáng),等. 急性肺損傷/急性呼吸窘迫綜合征診斷和治療指南(2006)[J]. 中國(guó)危重病急救醫(yī)學(xué), 2006(12):706-710.
[3]CROSS L J, MATTHAY M A. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury[J].? Cri-
tical Care Clinics, 2011,27(2):355-377.
[4]姜琴,張文凱. 脂多糖致急性肺損傷機(jī)制研究進(jìn)展及還原型谷胱甘肽保護(hù)作用[J]. 中華臨床醫(yī)師雜志(電子版),2017,11(4):645-649.
[5]王慧敏,蔡施霞,周震,等. lncRNA XIST靶向miR-150對(duì)LPS誘導(dǎo)的小鼠肺上皮MLE-12細(xì)胞凋亡和炎癥因子分泌的影響[J]. 西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2021,42(4):522-528.
[6]SCHROEDER T H, LEE M M, YACONO P W, et al. CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation[J].? Proceedings of the National Academy of Sciences of the United States of America, 2002,99(10):6907-6912.
[7]FRANK A J, THOMPSON B T. Pharmacological treatments for acute respiratory distress syndrome[J].? Current Opinion in Critical Care, 2010,16(1):62-68.
[8]SEGUIN A, BACCARI S, HOLDER-ESPINASSE M, et al.
Tracheal regeneration: evidence of bone marrow mesenchymal stem cell involvement[J].? The Journal of Thoracic and Cardiovascular Surgery, 2013,145(5):1297-1304.e2.
[9]MATTHAY M A, THOMPSON B T, READ E J, et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury[J].? Chest, 2010,138(4):965-972.
[10]LIU X, GAO C J, WANG Y, et al. BMSC-derived exosomes ameliorate LPS-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy[J].? Oxidative Medicine and Cellular Longevity, 2021,2021:9973457.
[11]MOLDES M, ZUO Y, MORRISON R F, et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis[J].? The Biochemical Journal, 2003,376(Pt 3):607-613.
[12]LI J W, HUANG S, WU Y, et al. Paracrine factors from mesenchymal stem cells: a proposed therapeutic tool for acute lung injury and acute respiratory distress syndrome[J].? International Wound Journal, 2014,11(2):114-121.
[13]LV Z, DUAN S X, ZHOU M, et al. Mouse bone marrow mesenchymal stem cells inhibit sepsis-induced lung injury in mice via exosomal SAA1[J].? Molecular Pharmaceutics, 2022,19(11):4254-4263.
[14]XIU G H, SUN J, LI X L, et al. The role of HMGB1 in BMSC transplantation for treating MODS in rats[J].? Cell and Tissue Research, 2018,373(2):395-406.
[15]CREAGH-BROWN B C, QUINLAN G J, EVANS T W, et al. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target[J]?? Intensive Care Medicine, 2010,36(10):1644-1656.
[16]LUTZ W, STETKIEWICZ J. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation[J].? International Journal of Occupational Medicine and Environmental Health, 2004,17(2):245-254.
[17]郎旭宇,王選桐,朱惠瑞,等. 冬凌草甲素對(duì)脂多糖誘導(dǎo)小鼠肺泡上皮細(xì)胞炎癥因子的抑制作用及其機(jī)制研究[J]. 中國(guó)藥物與臨床,2021,21(24):3949-3953.
[18]BATTAGLINI D, FAZZINI B, SILVA P L, et al. Challenges in ARDS definition, management, and identification of effective personalized therapies[J].? Journal of Clinical Medicine, 2023,12(4):1381.
[19]HUANG X, ZHANG R Y, FAN G H, et al. Incidence and outcomes of acute respiratory distress syndrome in intensive care units of mainland China: a multicentre prospective longitudinal study[J].? Critical Care, 2020,24(1):515.
[20]WONG A P, DUTLY A E, SACHER A, et al. Targeted cell replacement with bone marrow cells for airway epithelial regeneration[J].? American Journal of Physiology Lung Cellular and Molecular Physiology, 2007,293(3): L740-L752.
[21]GALIACY S, PLANUS E, LEPETIT H, et al. Keratinocyte growth factor promotes cell motility during alveolar epithelial repair in vitro[J].? Experimental Cell Research, 2003,283(2):215-229.
[22]GOOLAERTS A, PELLAN-RANDRIANARISON N, LAR-
GHERO J, et al. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury[J].? American Journal of Physiology Lung Cellular and Molecular Physiology, 2014,306(11): L975-L985.
[23]SHAO T H, CHEN N, WANG S H, et al. Keratinocyte growth factor-2 reduces inflammatory response to acute lung injury induced by oleic acid in rats by regulating key proteins of the Wnt/β-catenin signaling pathway[J].? Evidence-Based Complementary and Alternative Medicine: ECAM, 2020,2020:8350579.
[24]TENGHAO S, SHENMAO M, ZHAOJUN W, et al. Keratinocyte growth factor-2 is protective in oleic acid-induced acute lung injury in rats[J].? Evidence-Based Complementary and Alternative Medicine: ECAM, 2019,2019:9406580.
[25]HAIDER S H, OSKUEI A, CROWLEY G, et al. Receptor for advanced glycation end-products and environmental exposure related obstructive airways disease: a systematic review[J].? European Respiratory Review: an Official Journal of the European Respiratory Society, 2019,28(151):180096.
[26]JOHNSON L L, TEKABE Y, ZELONINA T, et al. Blocking RAGE expression after injury reduces inflammation in mouse model of acute lung injury[J].? Respiratory Research, 2023,24(1):21.
[27]XIONG X, DOU J Y, SHI J Y, et al. RAGE inhibition alle-
viates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells[J].? Respiratory Research, 2023,24(1):24.
[28]ZHANG H Y, TASAKA S, SHIRAISHI Y, et al. Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury[J].? American Journal of Respiratory and Critical Care Medicine, 2008,178(4):356-362.
[29]BAYARSAIKHAN D, BAYARSAIKHAN G, LEE J, et al. A study on the protective effect of sRAGE-MSCs in a rodent reperfusion model of myocardial infarction[J].? International Journal of Molecular Sciences, 2021,23(24):15630.
(本文編輯 周曉彬)