• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooling Technology for Thrust Chamber of LM-5B LOX/kerosene Engine

    2023-03-30 12:31:02HOURuifengLILongfeiLUGangCHENJianhua
    Aerospace China 2023年3期

    HOU Ruifeng,LI Longfei*,LU Gang,CHEN Jianhua

    Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion Institute,Xi’an 710100

    Abstract: The LM-5B launch vehicle has successfully completed four missions.Eight high-pressure staged combustion LOX/kerosene engines (YF-100) are equipped in the four boosters of the LM-5B,two in each booster.The YF-100 engine adopts various cooling techniques to ensure cooling,including a metal thermal barrier coating,multiple liquid film cooling slots,spiral milled regenerative cooling channels with high aspect ratio,a non-weld forming thrust chamber and an optimal cooling flow path design.In addition,the 480-ton LOX/kerosene engine for China’s future heavy-lift launch vehicle LM-9 will be larger in size,which makes it more difficult to be developed and will have more strict requirements in the cooling process.The main differences between the LM-5B and LM-5 are briefly described in this paper and the development process and working characteristics of YF-100 engines are introduced.The advantages and disadvantages of main cooling methods used in the thrust chambers of high-thrust liquid propellant engines are also described.Finally,the future challenges and countermeasures in cooling technology for China’s high-thrust LOX/kerosene engines and future reusable rocket engines are also presented.

    Key words: LM-5B,YF-100,staged combustion LOX/kerosene engine,thrust chamber,cooling technology

    1 INTRODUCTION

    The LM-5B is a new type of large launch vehicle developed from the heritage of the LM-5 carrier rocket with the concepts of seriation,modularization and combination.It is about 53.7 m long.As China’s first one-and-a-half-stage configuration large launch vehicle,it has been mainly used to launch spacecraft into low Earth orbit.

    The core stage of the LM-5B uses two YF-77 liquid oxygen/liquid hydrogen (LOX/LH2) rocket engines with 510 kN of thrust at sea level and can swing in two directions.Attached to the LM-5B core stage are four 3.35 m-diameter boosters,each with two YF-100 LOX/kerosene rocket engines arranged in dual-engine parallel mode.They each produce 120 t of thrust,providing 1200 kN of thrust at sea level.As a result,the LM-5B is currently China’s largest low Earth orbit launch vehicle[1].The YF-100 engine has the characteristics of non-toxic,high reliability and high performance.

    There are three major differences[1]between the LM-5B and LM-5 launch vehicles.Firstly,the LM-5B launch vehicle adopts a one-and-a-half-stage configuration,consisting of a core stage,4 boosters and a module nose cone.Secondly,in order to better meet the mission demands for launching the space station modules,the fairing of LM-5B is 20.5 m long,while the fairing of LM-5 is only 12.3 m long.Thirdly,the LM-5B is mainly used to launch large spacecrafts and modules into low Earth orbit,such as the core module and experimental module of the space station.Benefiting from improvements,the reliability of the LM-5B has been greatly improved.Table 1 shows the launch status of the LM-5B.

    Table 1 Launch missions of the LM-5B

    As China’s first basic rocket engine with 120 t thrust,the YF-100 engine adopts a staged combustion cycle technology,where it was necessary to resolve several key technical difficulties including developing high-pressure cooling technology for the thrust chamber.

    The YF-100 engines have been used in 9 practical engineering applications including the application in the LM-5 launch vehicle,which demonstrates that the cooling technology for YF-100 engines is very reliable.YF-100 engines adopted dual-engine parallel configuration as shown in Figure 1.Figure 2 shows YF-100 engines du-al-engine parallel configuration used in LM-5.

    Figure 1 YF-100 engines adopt dual-engine parallel configuration [2]

    Figure 2 YF-100 engines in dual-engine parallel configuration used in LM-5 [3]

    Table 2 shows the parameters of different rocket engines.

    Table 2 Comparison of different engine performance parameters

    2 DEVELOPMENT AND CHARACTERISTICS OF CHINA’S LOX/KEROSENE ENGINES

    The development of the YF-100 engines began 30 years ago,and can be divided into five phases[2-3]: scheme discussion,technology introduction and absorption,research on key technology,engineering development,and for engine application.

    In order to meet the future needs for the manned lunar landing,Mars exploration and further deep space exploration,the research and development of China’s heavy-lift launch vehicle has also been on the agenda.Compared to the 5 m-diameter LM-5,the larger-sized LM-9 heavy-lift launch vehicle with higher performance requirements is more difficult to be developed.The LM-9 is designed to produce a thrust of more than 3000 t,providing a carrying capacity to low Earth orbit of more than 100 t and to the Earth-moon transfer orbit of more than 50 t[4-8].

    In the process of upgrading the LOX/kerosene engine from the current 120 t thrust to 480 t thrust,the technical difficulty is geometrically increasing rather than simply scaling up.The increase of thrust greatly increases the propellant flow,thrust chamber pressure and heat flux.This brings great challenges in terms of structural design,thermal protection technology and heat transfer technology,and generates extremely high requirements for material properties,sealing processes and engine operational reliability.At present,the 480 t thrust LOX/kerosene engine has successfully completed testing through all its operational phases under realistic operating conditions[9].

    3 KEY COOLING TECHNOLOGIES FOR HIGH-PRESSURE THRUST CHAMBER

    The thrust chamber is a key component of the YF-100 engine,which needs to operate over a long duration at a high temperature of about 3500°C.It is very difficult to achieve perfect cooling in the thrust chambers of staged combustion rocket engines,with high pressure and high heat flux.Primitive regenerative cooling is unable to cope with the ablation problem caused by higher pressure in the chamber.Especially for engines using liquid oxygen/hydrocarbon propellant,which use fuel as the coolant (such as kerosene),the coking property of the fuel at high temperature will seriously deteriorate the heat transfer capacity in the regenerative cooling channel.This will negatively impact the heat dissipation performance.Figure 3 shows the liquid film cooling slot burned during its hot test.

    Figure 3 Burned liquid film cooling slot in the thrust chamber body

    In addition,the heat flux of the high-temperature gas also increases rapidly in the high-pressure environment.Due to these factors,under the dual action of the sharp increase of internal temperature and the associated reduced efficiency of external heat dis-sipation,local ablations occur in the thrust chamber,which causes unstable operation of the engine.In order to ensure the reliability of the cooling process,LOX/kerosene engines adopt a combination of various cooling methods,including metal thermal barrier coatings,multiple liquid film cooling slots,spiral milled regenerative cooling channels of high aspect ratio,non-weld formed thrust chambers and a reasonable cooling flow path design[2,10].

    3.1 Regenerative Cooling Technology

    Regenerative cooling is widely used in liquid propellant rocket engines.For regenerative cooling,the propellant is forced to flow close to the outside of the thrust chamber wall and then injected into the combustion chamber to participate in combustion process.The advantage of this cooling technology is that it can transfer heat dissipated from the wall back to the thrust chamber through the conduction of the regenerative coolant.This not only effectively protects the thrust chamber wall from being damaged by high temperature,maintaining it below the permitted temperature,but also reduces heat produced by combustion being lost to the outside environment[11].Figure 4 shows the schematic diagram of the flow of regenerative coolant.

    Figure 4 Flow of regenerative coolant [10]

    The process of calculating the convective heat transfer density between liquid-side wall and regenerative coolant can be obtained from the turbulent forced heat transfer formula for the tube.The calculation method of convection heat transfer coefficient is as follows:

    whereh1is convective heat transfer coefficient,Nuis Nussel number determined by Mikheyev’s modified formula,λis thermal conductivity of regenerative coolant,dis equivalent diameter of regenerative cooling channel.

    On the basis of original simple vertical flow regenerative cooling,spiral milled slot regenerative cooling,regenerative cooling using artificial roughness to enhance heat transfer,high aspect ratio channel regenerative cooling have been gradually developed.Spiral regenerative cooling can be applied to the area with high heat flux in the thrust chamber.It can effectively improve the flow rate of the coolant,increase the heat transfer coefficient between the wall and the coolant,keep the circumferential temperature of the same section wall in a uniform state,which can avoid the local ablation caused by uneven gas with high temperature[12].

    Compared to simple vertical flow regenerative cooling,regenerative cooling using artificial roughness can effectively increase the heat transfer time between the coolant and the thrust chamber wall,even the temperature distribution of near and far coolant in the regenerative cooling channel,and increase the thermal conductivity of the coolant[7,13].However,the use of regenerative cooling channels with artificial roughness increases the flow resistance of the channels and increases the possibility of coking of the regenerative coolant.Therefore,this technique can be applied in localized regions with high heat flux density.In addition,the regenerative cooling using a high aspect ratio channel can enable the channel number to increase,increase the side surface area of regenerative cooling channel,reduce the pressure drop of coolant,and thus extend the life of regenerative cooling channel.Therefore,this technology is very beneficial for improving the reliability of reusable engines.

    On the other hand,the regenerative cooling structure greatly increases engine mass despite its significant enhancement of cooling capacity,high-thrust liquid propellant rocket engines cannot cancel the regenerative cooling structures at present.

    3.2 Liquid Film Cooling Technology

    Liquid film cooling in combination with regenerative cooling is used to accomplish thrust chamber cooling in many advanced liquid propellant rocket engines like the RD-170.Employed at different locations,liquid film cooling structures can be divided into an edge area cooling structure at the injector head and a liquid film cooling slot at the thrust chamber body[14].The liquid film cooling slot refers to ring holes or narrow cracks machined in the circumferential direction on the thrust chamber wall.Coolant is injected in the thrust chamber through slots to form a relatively low-temperature fluid layer adjacent to the inner wall,which separates the inner wall from high-temperature gas,reducing temperature of the chamber wall and the regenerative cooling channel.Figure 5 is a schematic diagram of RD-170 injection structure.

    Figure 5 Injection structures of liquid film cooling of RD-170 [15]

    High-thrust liquid propellant rocket engines often use liquid film cooling for high-pressure thrust chamber cooling.Despite the remarkable cooling effect liquid film cooling suffers from a complicated manufacturing process and high cost.In addition,in order to achieve a better cooling effect,multiple liquid film cooling slots have to be used simultaneously in the thrust chamber for practical engineering applications.The location,flow rate and structures of each cooling slot have a significant nonlinear influence on the final cooling effect.

    In some high-pressure thrust chambers,one cooling slot is not enough to protect the thrust chamber.For example,in the RD-170 engine,a total of three cooling slots are used.The location of each cooling slot is designed according to temperature distribution of the thrust chamber wall.The first cooling slot is designed to protect the thrust chamber body from damage,the second to protect the third one from destroying the high-speed hot gas flow,while the third one to reduce the thermal protection pressure in the thrust chamber throat section.

    The convective heat transfer density between gas-side wall and liquid film coolant can be calculated by Stechman’s method:

    wherehlfis convective heat transfer coefficient between the gas-side wall and liquid film coolant,cpis constant pressure specific heat,Pris Prandtl number,μis dynamic viscosity coefficient,

    xis axial distance,ηis cooling efficiency,m˙is mass flow rate,μis velocity,hgis convective heat transfer coefficient between the hot gas flow and liquid film,ρis density,ris temperature recovery coefficient of the hot gas flow,lfis the liquid film,gis the hot gas flow.

    There are two disadvantages of liquid film cooling slot structures.Firstly,the annular slot structure for internal cooling will increase the mass of the engine,which is unfavorable to a launch vehicle.Secondly,when the liquid film coolant flow rate is too large,the combustion efficiency will be reduced,which is not conducive to improving engine performance.

    3.3 Thermal Barrier Coating Technology

    Thermal barrier coating technology is one of the internal cooling technologies.Thermal barrier coatings have been widely used in thrust chamber walls of liquid propellant rocket engines and blades of aero engine gas turbines.For a high-pressure thrust chamber,high-temperature and high-speed gas flows have a very intense erosion effect on the thrust chamber wall.Thermal barrier coatings are an important and indispensable means to ensure the thrust chamber wall will not being destroyed by burning and meet the strict cooling requirements despite their complex manufacturing process.

    Figure 6 is a schematic diagram of the temperature distribution on the thrust chamber wall of a liquid propellant rocket engine after using thermal barrier coatings.Comparison between Figure 6(a) and Figure 6(c) indicates that the temperature and heat flux of the inner and external walls with thermal barrier coatings are lower significantly at similar gas temperatures near the walls.As a result,the coolant required is relatively less.By comparing Figure 6(a) and Figure 6(b),it can be seen that at similar inner wall temperature and heat flux,the thrust chamber with thermal barrier coatings can operate in the environment with higher gas temperature.

    Figure 6 Temperature distribution after application of thermal barrier coatings [16]

    The convective heat transfer density between the gas-side wall and hot gas flow can be calculated by the heat conduction formula:

    whereTis the temperature,gis the hot gas flow,wis the gasside wall,δis the thickness of coatings,λis the thermal conductivity of coatings,1,…nis coating number.

    In the thrust chambers of high pressure staged combustion LOX/kerosene engines,the combustion chamber inner wall and part of nozzles are coated with metal thermal barrier coatings,whose low thermal conductivity is employed to protect the thrust chamber wall.In addition,thermal barrier coatings with a double-layer design have both effects of heat insulation and anti-erosion.The inner surface of the combustion chamber wall is only electroplated with nickel coatings.However,the inner surface of the nozzle wall is plated with chromium coatings on nickel-based coatings.

    Due to fast gas flows in converging-diverging nozzles,the double-layer coating design was adopted.The erosion effect of gas flows on the wall surface is very intense.Chromium metals are characterized by superior heat resistance and strong scour resistance.With double layered coatings,despite the occurrence cracks in localized areas due to the scouring action of gas flows,gas flows only touch the nickel layer below,rather than the copper wall of the thrust chamber[12].The RD-170 engine has the similar coating structure.

    4 CHALLENGES AND COUNTERMEASURES OF FUTURE COOLING TECHNOLOGY

    In addition to the increase of thrust chamber pressure mentioned earlier,another trend of future rocket engines is the ability to reuse.The reuse of a launch vehicle can greatly reduce the cost of the rocket launch and improve the economy of a launch vehicle.SpaceX’s Raptor engine is reported to have a thrust chamber pressure of 30 MPa.At present,China’s rocket engine cannot reach this pressure,so it is necessary to resolve the relevant problems in this process.

    For reusable launch vehicles,engine thrust chambers are one of the most problematic components,requiring additional attention.When a reusable launch vehicle re-enters the atmosphere,the problem of heat flux increase caused by air friction will seriously affect the thermal protection process of engines.Especially after multiple reuses,the repeated cycle of cooling and heating will cause fatigue stress concentration of the thermal protection structures such as regenerative cooling channels,so that the mechanical performance of the structures will be reduced and the operational requirements for the engines will not be satisfied.Therefore,the ability to reuse the cooling structure is very important to judge the number of reuse times for a launch vehicle.In the process of reusing the rocket engine,it is necessary to strengthen the integrity inspection and the cooling capacity margin of thrust chambers.

    In order to ensure the reliability of the engine and the safety for reuse,in addition to further optimizing the cooling structure of the thrust chamber,the performance of the related engineering materials should be further improved.Engineering materials with high mechanical strength and high thermal conductivity can effectively alleviate the thermal protection problem of the thrust chamber when it is reused,and greatly improve the reliability of the reusable launch vehicle.

    In addition to the above mentioned regenerative cooling structures,liquid film cooling slots and thermal barrier coatings,the selection of inner wall materials and the layout of coolant flow path should be considered[17-19].For the future advanced LOX/kerosene engines,the cooling structures of thrust chambers can be proposed using the following methods:

    1) The regenerative cooling channels adopt a milled process,and adopt a spiral design with high aspect ratio in the area with high heat flux.

    2) Multiple liquid film cooling slots should be set at different thrust chamber locations in the axial direction at the same time,so as to reduce the heat flux.

    3) Some rough structures are artificially created in the regenerative cooling channels,so as to enhance the heat transfer ability in the local area.

    4) Materials with good thermal conductivity,such as copper alloy,should be used for thrust chamber inner wall.

    5) For the surface of the thrust chamber wall we should choose a reasonable heat insulation layer,such as carbon layer,ceramic coatings or metal coatings.

    6) The flow path of coolant should be optimized.For example,kerosene ought to be introduced to thrust chambers from upstream of the throat,where heat flux is high,to take full advantage of kerosene’s better cooling properties at low temperature.

    In the process of development,a variety of methods are used to estimate the cooling capacity of a high-pressure staged combustion LOX/kerosene rocket engine,such as two-dimen-

    2) For the future advanced 480 t-thrust staged combustion LOX/kerosene rocket engines,the pressure of the thrust chambers will be more than 20 MPa.Therefore,a reliable cooling method for thrust chambers will be more difficult to find.It is proposed to further study the flow mechanism,heat transfer mechanism and active mechanism of liquid films using annular slot for internal cooling.

    3) In order to ensure the reliability of engines and the safety of reuse,in addition to further optimizing the cooling structures of thrust chambers,the performance of related engineering materials should be further improved.The fatigue stress concentration caused by the sional simulation of heat flux and three-dimensional simulation of temperature.Figure 7 shows the schematic diagram of the simulation method adopted.

    Figure 7 Schematic diagram of the simulation

    5 CONCLUSION

    This paper introduces the LM-5B and LOX/kerosene rocket engines.In addition,the cooling structures used in thrust chambers of high-pressure staged combustion LOX/kerosene engines were discussed comprehensively.Finally,the following conclusions have been reached:

    1) Due to stage reduction and cooling structure optimization,the reliability of the LM-5B has been greatly improved.The future LM-9 will use more advanced LOX/kerosene engines.Therefore,the requirements for thrust chamber cooling performance will be more stringent.After discussing the advantages and disadvantages of main cooling methods,the regenerative cooling using artificial roughness is expected to be used to enhance heat transfer and improve cooling capacity.repeated cycle of cooling and heating in the process of engine reuse determines the service life of re-usable launch vehicles to a great extent,so needs to be carefully monitored.

    日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 老司机午夜福利在线观看视频| 亚洲精品久久午夜乱码| 三上悠亚av全集在线观看| 色在线成人网| 久久中文字幕一级| 性欧美人与动物交配| 欧美最黄视频在线播放免费 | 亚洲少妇的诱惑av| 国产一区二区在线av高清观看| 十八禁人妻一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区精品视频观看| 免费av毛片视频| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 美国免费a级毛片| 大型黄色视频在线免费观看| 在线观看一区二区三区| 亚洲av成人av| 在线永久观看黄色视频| 亚洲av美国av| 成年人免费黄色播放视频| 亚洲av电影在线进入| 亚洲一码二码三码区别大吗| 丝袜人妻中文字幕| 真人一进一出gif抽搐免费| 极品人妻少妇av视频| 久久久久久亚洲精品国产蜜桃av| 久久久久国产一级毛片高清牌| 免费av中文字幕在线| 黄色a级毛片大全视频| 亚洲午夜理论影院| 国产精品一区二区精品视频观看| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产野战对白在线观看| 日日干狠狠操夜夜爽| 可以免费在线观看a视频的电影网站| 在线观看舔阴道视频| 97碰自拍视频| 国产亚洲精品久久久久5区| 免费在线观看亚洲国产| 久久精品亚洲熟妇少妇任你| 精品久久久久久,| 嫩草影院精品99| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 变态另类成人亚洲欧美熟女 | 天天添夜夜摸| 热99re8久久精品国产| 丁香六月欧美| 日本五十路高清| 国产一区二区三区在线臀色熟女 | 亚洲国产看品久久| 午夜福利在线观看吧| 黄色丝袜av网址大全| 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 麻豆av在线久日| 欧洲精品卡2卡3卡4卡5卡区| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 99riav亚洲国产免费| 黄色丝袜av网址大全| 精品福利观看| 欧美激情 高清一区二区三区| www.www免费av| 国产片内射在线| 亚洲五月色婷婷综合| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 国产高清videossex| 麻豆成人av在线观看| 一进一出好大好爽视频| 久9热在线精品视频| xxxhd国产人妻xxx| 日本五十路高清| 久久中文字幕一级| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 欧美日本中文国产一区发布| 操美女的视频在线观看| 搡老熟女国产l中国老女人| av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| e午夜精品久久久久久久| 咕卡用的链子| 搡老岳熟女国产| 男女下面插进去视频免费观看| 欧美成人免费av一区二区三区| 成年版毛片免费区| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 91在线观看av| 日韩 欧美 亚洲 中文字幕| 日韩人妻精品一区2区三区| 级片在线观看| 国产成人欧美| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 色综合站精品国产| 久久久国产成人精品二区 | 视频在线观看一区二区三区| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 久久精品成人免费网站| 亚洲精品久久午夜乱码| 国产成人系列免费观看| 久久久久九九精品影院| 看黄色毛片网站| 亚洲美女黄片视频| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| 欧美一区二区精品小视频在线| 视频区欧美日本亚洲| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 国产高清激情床上av| a在线观看视频网站| 精品国产乱子伦一区二区三区| 久久婷婷成人综合色麻豆| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区 | 亚洲五月婷婷丁香| 免费一级毛片在线播放高清视频 | 精品久久久久久久毛片微露脸| 两性夫妻黄色片| 91大片在线观看| 久久久久久免费高清国产稀缺| 久久精品影院6| 精品无人区乱码1区二区| 国产免费男女视频| 欧美老熟妇乱子伦牲交| 性少妇av在线| 少妇 在线观看| 十八禁网站免费在线| 精品国产一区二区久久| 午夜激情av网站| 免费在线观看完整版高清| 一区在线观看完整版| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av | 真人一进一出gif抽搐免费| 亚洲精品国产一区二区精华液| 少妇 在线观看| 欧美日本中文国产一区发布| 校园春色视频在线观看| 午夜精品国产一区二区电影| 大型av网站在线播放| 亚洲情色 制服丝袜| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 久久青草综合色| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 丝袜美足系列| 男女下面进入的视频免费午夜 | 美女高潮喷水抽搐中文字幕| 三级毛片av免费| 岛国在线观看网站| 91精品三级在线观看| 国产麻豆69| 757午夜福利合集在线观看| 日韩欧美三级三区| 91麻豆av在线| 久久婷婷成人综合色麻豆| 丝袜美腿诱惑在线| 国产在线精品亚洲第一网站| 国产深夜福利视频在线观看| www.www免费av| 一区二区三区国产精品乱码| 亚洲精品一二三| 久久这里只有精品19| 亚洲色图av天堂| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 男女下面进入的视频免费午夜 | av有码第一页| 国产高清videossex| 18禁观看日本| 国产黄色免费在线视频| av电影中文网址| 日韩欧美一区二区三区在线观看| 99久久精品国产亚洲精品| 国产精品一区二区精品视频观看| 日韩视频一区二区在线观看| 9色porny在线观看| 日韩精品免费视频一区二区三区| 精品久久久久久电影网| 国产99白浆流出| 成在线人永久免费视频| 免费观看精品视频网站| 国产不卡一卡二| 午夜精品在线福利| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 日韩精品青青久久久久久| 国产精品 国内视频| 国产精品野战在线观看 | 看免费av毛片| 国产欧美日韩一区二区三| 国产麻豆69| 又紧又爽又黄一区二区| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 免费少妇av软件| 香蕉国产在线看| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 嫩草影视91久久| 午夜福利在线观看吧| 亚洲av片天天在线观看| 99国产精品免费福利视频| 首页视频小说图片口味搜索| 999精品在线视频| 日本a在线网址| 人人澡人人妻人| 国产成人系列免费观看| 精品无人区乱码1区二区| 黑人巨大精品欧美一区二区mp4| 久久久久久久午夜电影 | 宅男免费午夜| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 久久 成人 亚洲| 日本 av在线| 很黄的视频免费| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区蜜桃| 91国产中文字幕| 一级毛片女人18水好多| av天堂在线播放| 丝袜人妻中文字幕| 亚洲色图综合在线观看| 午夜影院日韩av| www.www免费av| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| av天堂久久9| 人人妻,人人澡人人爽秒播| 国产精品偷伦视频观看了| 一级毛片高清免费大全| 美女高潮喷水抽搐中文字幕| 亚洲精品国产色婷婷电影| 精品人妻1区二区| 成年人黄色毛片网站| 在线十欧美十亚洲十日本专区| 亚洲熟妇熟女久久| 性欧美人与动物交配| 国产一区二区三区视频了| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 亚洲片人在线观看| 精品久久蜜臀av无| 亚洲成人精品中文字幕电影 | 岛国在线观看网站| 色综合站精品国产| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| av在线天堂中文字幕 | 国产蜜桃级精品一区二区三区| 极品人妻少妇av视频| 久久精品91蜜桃| 午夜影院日韩av| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 国产单亲对白刺激| 亚洲精品在线观看二区| 亚洲色图 男人天堂 中文字幕| 亚洲午夜理论影院| av有码第一页| 日日爽夜夜爽网站| 日本精品一区二区三区蜜桃| 搡老乐熟女国产| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 激情视频va一区二区三区| 黄频高清免费视频| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 一区二区三区精品91| 91大片在线观看| 亚洲欧美激情在线| 他把我摸到了高潮在线观看| 日韩高清综合在线| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 亚洲成a人片在线一区二区| 国产无遮挡羞羞视频在线观看| 午夜福利在线观看吧| 中文字幕精品免费在线观看视频| av在线天堂中文字幕 | 日韩精品免费视频一区二区三区| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 国产成人av教育| 国产成人欧美| 一区二区三区精品91| 一二三四在线观看免费中文在| 日日干狠狠操夜夜爽| 一本综合久久免费| 亚洲九九香蕉| 又黄又粗又硬又大视频| 久久久精品欧美日韩精品| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 性少妇av在线| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 这个男人来自地球电影免费观看| 一级黄色大片毛片| 色精品久久人妻99蜜桃| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 高清欧美精品videossex| 欧美日韩中文字幕国产精品一区二区三区 | 桃色一区二区三区在线观看| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 国产精品免费视频内射| 人成视频在线观看免费观看| 手机成人av网站| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 淫妇啪啪啪对白视频| 午夜福利一区二区在线看| 可以免费在线观看a视频的电影网站| 国产三级在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲国产毛片av蜜桃av| 久久草成人影院| 波多野结衣av一区二区av| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 欧美色视频一区免费| 亚洲精品在线美女| 十八禁人妻一区二区| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| 99国产精品一区二区三区| 国产有黄有色有爽视频| 国产精品乱码一区二三区的特点 | 欧美丝袜亚洲另类 | 国产黄a三级三级三级人| 黑人欧美特级aaaaaa片| 亚洲精品美女久久久久99蜜臀| 黑人猛操日本美女一级片| 男女做爰动态图高潮gif福利片 | 窝窝影院91人妻| 中文字幕人妻丝袜一区二区| 50天的宝宝边吃奶边哭怎么回事| 天堂√8在线中文| 日韩大尺度精品在线看网址 | 后天国语完整版免费观看| 亚洲人成网站在线播放欧美日韩| tocl精华| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 丝袜在线中文字幕| 18禁黄网站禁片午夜丰满| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 日本黄色视频三级网站网址| 成人手机av| 身体一侧抽搐| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 国产成人欧美在线观看| 精品一区二区三卡| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 少妇的丰满在线观看| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成网站在线播放欧美日韩| 成年人黄色毛片网站| 亚洲国产欧美日韩在线播放| 欧美色视频一区免费| 日本免费一区二区三区高清不卡 | 亚洲欧美一区二区三区久久| 欧美日韩乱码在线| 欧美性长视频在线观看| 夜夜爽天天搞| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 国产亚洲精品第一综合不卡| 欧美成人免费av一区二区三区| 亚洲精品久久成人aⅴ小说| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 啦啦啦在线免费观看视频4| 国产亚洲欧美在线一区二区| 亚洲专区字幕在线| 一级片免费观看大全| 97人妻天天添夜夜摸| 亚洲人成电影观看| 不卡一级毛片| 在线观看免费午夜福利视频| 亚洲自拍偷在线| 久久久久国产一级毛片高清牌| 久久亚洲精品不卡| 久久人妻av系列| 欧美日本中文国产一区发布| 91九色精品人成在线观看| 成在线人永久免费视频| 欧美不卡视频在线免费观看 | 好男人电影高清在线观看| x7x7x7水蜜桃| 巨乳人妻的诱惑在线观看| 黑人猛操日本美女一级片| 亚洲精品一二三| 亚洲人成伊人成综合网2020| 亚洲成a人片在线一区二区| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 制服人妻中文乱码| 国产主播在线观看一区二区| 久久久国产成人精品二区 | www.www免费av| 老熟妇乱子伦视频在线观看| 18禁美女被吸乳视频| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲片人在线观看| 久久这里只有精品19| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 99久久久亚洲精品蜜臀av| 成年人黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区 | 精品一区二区三区四区五区乱码| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 看黄色毛片网站| 久久精品国产亚洲av高清一级| 激情在线观看视频在线高清| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 欧洲精品卡2卡3卡4卡5卡区| 久久久水蜜桃国产精品网| 91在线观看av| 久久亚洲真实| 久久婷婷成人综合色麻豆| 精品一区二区三区四区五区乱码| 精品一品国产午夜福利视频| 脱女人内裤的视频| 日韩欧美免费精品| 在线观看免费视频日本深夜| 女警被强在线播放| 国产真人三级小视频在线观看| 最新美女视频免费是黄的| 国产午夜精品久久久久久| 中文字幕精品免费在线观看视频| av在线天堂中文字幕 | 久久久久亚洲av毛片大全| 99精品久久久久人妻精品| 老熟妇仑乱视频hdxx| 女警被强在线播放| 999久久久精品免费观看国产| 超色免费av| 精品福利观看| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 视频区欧美日本亚洲| 窝窝影院91人妻| 亚洲精品一二三| 国产人伦9x9x在线观看| 男女做爰动态图高潮gif福利片 | 中国美女看黄片| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 久久精品亚洲精品国产色婷小说| 色综合站精品国产| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 99久久人妻综合| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 一区二区三区精品91| 亚洲精品在线美女| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 日韩av在线大香蕉| 欧美精品啪啪一区二区三区| 91av网站免费观看| 97人妻天天添夜夜摸| 欧美日韩一级在线毛片| 在线观看一区二区三区| 精品国内亚洲2022精品成人| 国产成人精品无人区| 在线观看www视频免费| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 亚洲午夜理论影院| a在线观看视频网站| 亚洲少妇的诱惑av| 正在播放国产对白刺激| 亚洲狠狠婷婷综合久久图片| 久久香蕉精品热| 精品无人区乱码1区二区| 国产av一区二区精品久久| av国产精品久久久久影院| 亚洲一码二码三码区别大吗| 一进一出抽搐gif免费好疼 | 99热只有精品国产| 欧美人与性动交α欧美软件| 青草久久国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线精品亚洲第一网站| 91av网站免费观看| 999精品在线视频| 久久精品国产99精品国产亚洲性色 | 成人三级黄色视频| 人人澡人人妻人| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 黄色女人牲交| 欧美乱码精品一区二区三区| 亚洲一区二区三区欧美精品| 国产三级在线视频| 黄色a级毛片大全视频| 午夜亚洲福利在线播放| 丝袜在线中文字幕| www.精华液| 国产亚洲欧美在线一区二区| 少妇 在线观看| tocl精华| 亚洲少妇的诱惑av| 久久草成人影院| 精品国产美女av久久久久小说| 久久久国产一区二区| 欧美性长视频在线观看| 国产亚洲精品久久久久5区| 日韩国内少妇激情av| 男人的好看免费观看在线视频 | 老熟妇仑乱视频hdxx| 亚洲免费av在线视频| 在线观看免费视频网站a站| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久免费视频 | 国内毛片毛片毛片毛片毛片| 亚洲国产精品合色在线| 国产黄色免费在线视频| 亚洲国产欧美日韩在线播放| 女人被狂操c到高潮| 午夜a级毛片| 99精品在免费线老司机午夜| 国产有黄有色有爽视频| 国产亚洲精品久久久久久毛片| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 国产高清激情床上av| 丰满迷人的少妇在线观看| 精品乱码久久久久久99久播| 久久久久久久久中文| 国产精品av久久久久免费| 亚洲专区国产一区二区| 久久久久九九精品影院| 午夜精品国产一区二区电影| 精品一区二区三区四区五区乱码| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9| 国产不卡一卡二| 最新美女视频免费是黄的| 一二三四社区在线视频社区8| 丁香六月欧美| 午夜福利在线免费观看网站| 可以在线观看毛片的网站| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| 两性夫妻黄色片| 新久久久久国产一级毛片| 校园春色视频在线观看| 亚洲视频免费观看视频| 人妻丰满熟妇av一区二区三区| 国产精品日韩av在线免费观看 |