• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractions of Compact Object Binaries in Star Clusters: Theoretical Predictions

    2023-03-25 07:36:46ZhongMuLiBhusanKayasthaAlbrechtKamlahPeterBerczikYangYangDengandRainerSpurzem

    Zhong-Mu Li ,Bhusan Kayastha ,Albrecht Kamlah ,Peter Berczik ,Yang-Yang Deng,3,8 ,and Rainer Spurzem,9

    1Institute for Astronomy,Dali University,Dali 671003,China;zhongmuli@126.com

    2 National Astronomical Observatories &Key Laboratory of Computational Astrophysics,Chinese Academy of Sciences NAOC/CAS,Beijing 100101,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    4 Zentrum für Astronomie—Astronomisches Rechen-Institut,M?nchhofstr.12-14,Heidelberg D-69120,Germany

    5 Max-Planck-Institut fr Astronomie,K?nigstuhl 17,D-69117 Heidelberg,Germany

    6 Main Astronomical Observatory,National Academy of Sciences of Ukraine,27 Akademika Zabolotnoho St.,03143,Kyiv,Ukraine

    7 Konkoly Observatory,Research Centre for Astronomy and Earth Sciences,E?tv?s Loránd Research Network(ELKH),MTA Centre of Excellence,Konkoly Thege Miklós út 15-17,1121 Budapest,Hungary

    8 Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China

    9 Kavli Institute for Astronomy and Astrophysics,Peking University,Beijing 100871,China

    Abstract The binary population in field stars and star clusters contributes to the formation of gravitational wave (GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of binary populations,is still difficult to measure and very uncertain.This paper predicts the fractions of important CBs and semi-compact object binaries (SCBs) making use of an advanced stellar population synthesis technique.A comparison with the result of N-body simulation is also presented.It is found that most CBs are formed within about 500 Myr after the starburst.The fractions of CBs and SCBs are demonstrated to correlate with stellar metallicity.The higher the metallicity becomes,the smaller the fraction of black hole binaries(BHBs),neutron star binaries (NSBs) and SCBs.This suggests that the GW sources of BHBs and NSBs are more likely to form in metal-poor environments.However,the fraction of black hole-neutron star binaries is shown to be larger for metalrich populations on average.

    Key words: (stars:) binaries: visual–gravitational waves–(Galaxy:) globular clusters: general–methods:numerical

    1.Introduction

    Binary stars and their properties are central in a number of astrophysical studies.For example,the sources of progenitors of some type I supernovae are thought to be binary stars (Whelan &Iben 1973;Nomoto et al.1995).Furthermore,on the observational side,binary stars have significant effects on the determination of stellar age and star formation histories of star clusters and galaxies (Han et al.2007;Li &Han 2008;Li et al.2013b,2016).Populations of binary stars are also important in gravitational wave (GW)source studies (Blanchet 2014;Abbott et al.2016,2017;Wysocki et al.2018),and stellar population studies (Zhang et al.2004;Li &Han 2008).From the former we know that tight compact-object binaries (CBs) are sources of GWs that have been detected up to date (see e.g.,Abbott et al.2019).Note that both of the two members of each CB cannot be observed in the optical band.Thus it is of statistical importance to constrain the compact binary fraction with population synthesis (e.g.,Breivik et al.2020b) andN-body simulations (e.g.,Kamlah et al.2022).

    In general,binary populations,which we observe today,have undergone significant dynamical interaction with surrounding gas and other stars from birth until the time of observation.However,some works did not consider the combination of binary stellar population synthesis andN-body simulations (e.g.,Fregeau et al.2009;Li et al.2013b),which has been widely used for studying the formation of GW sources in star clusters(e.g.,Di Carlo et al.2019,2020a,2020b,2021;Rizzuto et al.2021).This makes it difficult to have a complete image of the binary population features.In particular,the poor understanding impedes an accurate study of such objects and many related targets (e.g.,GW sources).

    The fractions of normal binary populations,which have at least one member that can be observed in the optical band,can be estimated from the observations of,e.g.,fractions of pulsars and X-ray binaries,or the spectra or color–magnitude diagrams(see the review of Kalogera et al.2007;Sana et al.2008;Abadie et al.2010;Hu et al.2010;Li et al.2013a).However,such methods can only work for a handful of star clusters and galaxies,and are generally not useful for studying the fraction of CBs.Therefore,we need more methods to estimate the fractions of binary populations.A useful way is the evolution of fraction of binary populations based on some well-known inputs,and then determining the binary fractions from the age of stellar systems.Some researches were done in this way and different trends for the evolution of binary fraction have been revealed(Ivanova et al.2005;Hurley et al.2007;Sollima 2008;Fregeau et al.2009;Li &Mao 2018).In the studies of normal binary stars,the binary fraction seems to decrease with time in stellar evolution (Ivanova et al.2005;Li &Mao 2018),but increases with time in dynamical evolution(Hurley et al.2007;Fregeau et al.2009) when implementing one of the two processes.The reason is that compact objects such as black holes (BHs)and neutron stars (NSs)cannot be observed in the optical band and new binaries can form when stars are moving toward the mass center of a stellar system.The case for CBs is very complicated because CBs can evolve from not only massive binary stars but also dynamical processes.Binary fractions also depend on rotation of the star cluster and the general tidal field.Therefore,the techniques of stellar population synthesis andN-body simulation are usually used to study the fraction of CBs.

    There have been a number of evolutionary population synthesis andN-body simulation studies on CBs.For example,Eldridge&Stanway(2016)calculated the rates,timescales and mass distributions for black hole binary (BHB) mergers as a function of metallicity,using the Binary Population and Spectral Synthesis (BPASS)code (Eldridge &Stanway 2016).They found that BHB mergers are rare for initial metallicity aboveZ=0.010.Giacobbo &Mapelli (2018) used an upgraded version of BSE (Hurley et al.2002),MOBSE(Giacobbo&Mapelli 2018),to study the effects of metallicity,mass loss,core-collapse supernovae and common envelope on merging BHBs.They found that most merging BHBs have gone through a common envelope phase.Kruckow et al.(2018)performed a binary population synthesis at different metallicities using a grid-based binary population synthesis code,ComBinE (Kruckow et al.2018).They demonstrated that all the BHB mergers,GW150914,LVT151012,GW151226,GW170104,GW170608 and GW170814,as well as the neutron star binary(NSB)merger GW170817,were accounted for in their models.Di Carlo et al.(2019) investigated the possibility that BHs with mass in the pair instability gap form via stellar mergers and multiple stellar mergers facilitated by dynamical encounters in young star clusters.They took the directN-body code NBODY6++GPU coupled with MOBSE to find that up to 5%of all simulated BHs have mass in the pair instability gap,depending on the progenitor’s metallicity.Spera et al.(2019)investigated the statistics of BHBs that form from isolated binaries,by the upgraded SEVN population synthesis code,in which the mass-transfer prescription described in Hurley et al.(2002) has been updated.They found that the mass distribution of BHs which are members of CBs is quite similar to the one obtained considering only single stellar evolution calculations.Di Carlo et al.(2019) performed NBODY6++GPU simulations of young star clusters withZ=0.002,using a population-synthesis approach based on the MOBSE code,and found that cluster dynamics do not affect the merger rate significantly,but they change the properties of merging BHBs.More than 50% of merging BHBs in young clusters formed by dynamical exchanges in the first few Myr.Kumamoto et al.(2019)studied the formation rate of BHBs in stellar clusters using NBODY6++GPU with an updated mass loss model of Belczynski et al.(2010) and concluded that the contribution of BHBs originating from open clusters is not negligible.

    However,no work compares the fraction of CBs in populations with different metallicities and compares the results with dynamical simulations in detail.Aiming to clarify the evolution of fractions of CBs in globular clusters,this work presents and compares the results from stellar population synthesis andN-body simulation.The structure of this paper is as follows: the model inputs and calculations are described in Section 2.The main results are presented in Section 3.Section 4 provides a comparison between advanced stellar population synthesis (ASPS) andN-body simulation.Finally,Section 5 concludes and discusses future aspects of this research.

    2.Model Inputs and Calculations

    This work models a stellar population with 100,000 objects.The star sample is similar to small clusters.We generate the initial cluster model with McLuster (Küpper et al.2011).An initial mass function (IMF) of Kroupa (2001) is taken to generate the masses of stars,and the lower and upper mass limits are set to 0.08 and 100M⊙,respectively.We use a primordial hard binary fraction of 10%,which corresponds to 8180 binaries with orbital periods shorter than 108days within 100,000 stars.This is a physical choice,because most soft binaries will be disrupted in a few dynamical timescales in dense stellar environments.Thus the initial binary fraction does not affect the global dynamics andN-body simulation results very much,and it does not affect the results of evolutionary population synthesis.In fact,there are different choices for binary fraction (e.g.,Kroupa 1995a;Sana et al.2012 and Moe&Di Stefano 2017) but the fraction of hard binaries is not different by a lot.From the work of Marks et al.(2011),we can safely assume that most binaries are already disrupted in 5 Myr if we assume a period distribution by Kroupa (1995a,1995b).Figure 1 shows the mass distribution of components of initial binaries.The separations of binary stars are generated according to a simple distribution,which is flat in the logarithm of semimajor axis (a) from 0.005 to 50 au.The square of eccentricities (e2) of pairs follows a uniform distribution(thermal distribution),but it is restricted by the eigen-evolution according to Kroupa (1995b),such that highly eccentric binaries,if the stars overlap at the pericenter,are omitted.The results can be used for estimating the formation and merger rates of various CBs,combining with the models of cosmology and star formation rate.After building the star sample,we evolve the stellar population using the ASPS model (Li et al.2012,2016).An upgraded version of the rapid stellar evolution code of Hurley et al.(2002),i.e.,MOBSE (Giacobbo et al.2018;Giacobbo &Mapelli 2018),is used to calculate the evolutionary parameters of stars,because this code includes advanced prescriptions for mass loss by stellar winds and a formalism for core-collapse,electron-capture and pair instability supernovae.CE parameters of α=1.0 and λ=0.5,Reimers mass loss rates η=0.5,momentum-conserving kick of Belczynski et al.(2008)and compact remnant mass description by Fryer et al.(2012) are incorporated in our simulations.In order to check the evolution of CB fraction in a large age range,an age step of 100 Myr is set for the ASPS simulation.

    Figure 1.Initial masses of binaries in a mimic star cluster.M*1 and M*2 are for the masses of the primary and secondary,respectively.Masses are in solar mass.

    Figure 2.Some normal stars in the Hertzsprung-Russell (H-R) diagram.Stars have the same metallicity (Z=0.000 51) but different ages.Effective temperature (Teff) is in K and luminosity (L) is in solar luminosity.

    3.Results of ASPS Simulation

    Stars excluding BHs and NSs are treated as normal stars(see Figure 2 for examples),and they can be observed in the optical band.Because normal stars are not as important as BHs and NSs in present GW observational studies(Breivik et al.2020a),they are not studied in this paper.Therefore,the compact objects in this paper ignore a well-known compact object,a white dwarf (WD),which has been included in normal stars.Figures 3–7 depict the evolution of fraction of CBs in the ASPS simulation and the fractions of different kinds of binaries at 10 Gyr are presented in Table 1.Because tight CBs are important GW sources,these results are useful for many GW studies.Note that these results are computed from an initial hard binary fraction of 10%.If all stars are hard binaries,the results will be 10 times the values shown here.Figure 3 displays the evolution of fraction of BHBs,which is a kind of important GW source candidate.It is clear that the fraction of BHBs increases steeply in the first 0.5 Gyr and then it remains almost the same for the ASPS simulation after that time.The reason is that a time step of 0.5 Gyr was taken here and most single stars and binaries form BHs within about 0.2 Gyr.The fraction of BHBs is obviously larger in metal-poor(Z≤0.004)populations.The BHB fraction of metal-rich populations is less than half that of metal-poor populations,because of the metallicity-dependent stellar wind.The results imply that only a few BHBs can be observed in a cluster of 100,000 stars.Figure 4 plots the evolution of fraction of another important GW source candidate,NSB.We see that the fraction of NSBs has a similar trend as that of BHBs.This suggests that the BHB and NSB systems including potential GW sources are more likely to form in metal-poor environments.

    Figure 3.Evolution of fraction of BHBs with various metallicities.Different lines signify metallicities.Age is in yr.Black,red,green,blue,cyan,purple and yellow lines are for Z=0.0001,0.0003,0.001,0.004,0.01,0.02 and 0.03,respectively.

    Figure 4.Similar to Figure 3,but for the fraction of NSBs.

    Figure 5.Similar to Figure 3,but for the fraction of BH-NS binaries.

    Figure 6.Evolution of fraction of CBs.Each CB consists of two BH or NS objects.Lines have the same meaning as in Figure 3.

    Figure 7.Evolution of fraction of SCBs.Each SCB consists of a BH or NS,and a normal star.Lines have the same meaning as in Figure 3.

    Table 1 Fractions of Different Kinds of Binaries at 10 Gyr in ASPS Simulation

    Figure 5 shows the evolution of fraction of BH-NSs.We observe that the fraction of BH-NSs increases quickly with time when age is younger than 0.5 Gyr and it remains unchanged after that,for all metallicities.Metallicity affects the fraction of BH-NSs in a way different from the case of BHBs and NSBs.In detail,the fraction of BH-NSs is highest when metallicityZis 0.01 and 0.02,but the fraction is the lowest forZ=0.03.The BH-NS fraction is medium for poorer metallicities.Note that we exclude ultra-stripping in binary stars (e.g.,Kamlah et al.2022),which supposedly greatly decreases the expected BHB and NS-BH merger rates and only slightly increases the expected NS-NS merger rate (Schneider et al.2021).

    Figure 8.Period distribution of CBs at ages older than 1 Gyr.Period is in days.Black solid,red dashed,green dash–dotted and blue dotted lines are for Z=0.0001,0.001,0.008 and 0.02,respectively.

    Figure 9.Similar to Figure 8,but for SCBs.

    Figure 6 features the evolution of fraction of CBs.BHBs,NSBs and BH-NSs are counted in CBs here.We see that CB fraction increases with age in the first 0.5 Gyr and metal-poor(Z≤0.004) stellar populations have higher CB fractions.

    Figure 7 depicts the evolution of fraction of semi-compact object binaries (SCBs).Note that besides a BH or NS,each SCB contains a normal star.We have shown that the fraction of SCBs changes from 0 to 2 Gyr,and then it does not change.It is clear that metal-poor (Z≤0.001) populations have higher SCB fractions compared to their metal-rich counterparts.Although the fraction of SCBs changes when age is younger than 2 Gyr for all metallicities,the trend is different for various metallicities.

    Figures 8 and 9 present the period distributions of CBs and SCBs respectively.The results are for ages older than 1 Gyr.We observe that a small fraction of CBs has periods shorter than 1 day,which may be detected by Laser Interferometer Space Antenna (LISA) (see e.g.,Shao &Li 2021).This means that a few of them can possibly be observed by LISA,according to the work of Lamberts et al.(2018).It is also clear that SCBs are distributed more widely than CBs.A few SCBs have periods longer than a million days.Figures 10–12 show the mass distributions of CBs and SCBs;as a whole,the larger the total mass,the less the number of CBs (Figure 10).The fraction of SCBs peaks at about 3.16M⊙at 1 Gyr,but some lighter ones are generated at 6 Gyr (Figures 11 and 12).When we count the number of X-ray binaries after 0.5 Gyr,the results forZ=0.00001,0.0003,0.001,0.004,0.008,0.01,0.02 and 0.03 are 10,8,8,6,6,6,4 and 3,respectively.These results can possibly be compared to some observations.

    Because this work adopts a default value of λ=0.5,but most other works take values of 0.01–0.1,we test the effect of λ.The results show that similar results of CBs will be obtained if λ=0.05 is applied.However,the results of SCBs for metallicities ofZ=0.0003,0.001,0.02 and 0.03 are different.Figures 13 and 14 feature the results of λ=0.05.

    Figure 10.Mass distribution of CBs at 1 Gyr.M*1 and M*2 are masses of the primary and secondary components of a binary respectively.The case of older ages is similar.

    Figure 11.Similar to Figure 10,but for SCBs.The case of 1–6 Gyr is similar.

    Figure 12.Similar to Figure 11,but for the case of 6 Gyr.The case of older ages is similar.

    4.Comparison of ASPS and N-body Simulations

    As the ASPS simulation does not take into account the dynamical processes as well as the internal evolution of binary stars which affect the formation of CBs,this section tests the effect ofN-body dynamical processes.In this test,the star sample is generated by the same method as the above ASPS simulation,and metallicities ofZ=0.001 and 0.00051 are taken.An updated version of NBODY6++GPU code(Spurzem 1999;Wang et al.2016) is utilized for theN-body simulation.This code enables calculating large stellar systems with more than one million particles as it implements a GPU parallel calculation technique.The code has included different dynamical processes,and it was widely employed in astrophysical studies (e.g.,Hong et al.2017 &Rodriguez et al.2016).

    Figure 15 shows the evolution of fractions of BHBs in theNbody simulation.We observe that the BHB fraction of theNbody simulation is similar to that of the ASPS simulation,although there is a small difference.Because there is large fluctuation in the fraction of BHBs in theN-body simulation,the average value of nine simulations is calculated to test the random uncertainties.The average result is plotted by the solid line in Figure 15 together with the root mean square (r.m.s.)standard deviations.The star samples of nine simulations are generated by the same method,but taking different random seeds to generate the initial positions,velocities,stellar masses,binary separations and orbital eccentricities.We see that although the average fraction of nine simulations is taken,there is still obvious fluctuation.However,the fluctuation in the average fraction is much less than any one of the nine simulations.The fluctuation decreases with increasing number of simulations.This suggests that the main fluctuation is possibly caused by random uncertainties in theN-body simulation.Thereby,the evolution of BHB fraction has a similar trend in theN-body and ASPS simulations(see the cyan line in Figure 3).

    Figure 13.Similar to Figure 6,but for the case of λ=0.05.

    Figure 14.Similar to Figure 7,but for the case of λ=0.05.

    When comparing the fractions of SCBs in the ASPS andNbody simulations,the results seem similar.In the first 1 Gyr,the fraction increases quickly then it changes slightly.One can see Figure 16 for the detailed comparison.Note that the compact objects in SCBs include only BHs and NSs,rather than WDs.The SCBs in this paper are actually part of X-ray binaries.

    Figure 15.Evolution of average fraction of BHBs from nine N-body simulations and the associated r.m.s.standard deviation.Age is in yr.A metallicity of Z=0.001,star number of 100,000 and hard binary fraction of 10% are taken for the simulation.Solid line signifies the average fraction and dashed lines mean the r.m.s.

    Figure 16.Evolution of SCB fraction for a pair of N-body and ASPS simulations.Age is in yr.A metallicity of Z=0.000 51,star number of 100,000 and hard binary fraction of 10% are taken.

    5.Conclusion and Discussion

    We investigated the evolution of fractions of compact object binaries in star clusters,via ASPS andN-body simulations.As a result,two kinds of simulations reveal similar results for the evolution of fraction of CBs and SCBs.This is the first work to demonstrate the evolution of fraction of SCBs with the two methods.Our results are more comprehensive than previous studies,e.g.,Giacobbo &Mapelli (2018),because seven metallicities rather than one are examined by this work.The results are also shown to be different.The fraction of BHBs does not decrease with increasing metallicity in this work,and it is different from the monotonic decline trend of the previous work.The combined effects of dynamics and stellar evolution seem very complicated and the previous results of,e.g.,Di Carlo et al.(2019),should be confirmed from different works.In addition,theN-body simulations result in lower fractions of CBs than stellar population synthesis.This means that the effect of dynamics remains very uncertain,which may depend on the model inputs.

    As a whole,the results of this work suggest that evolutionary population synthesis such as ASPS can be used to estimate the fraction of CBs and SCBs,in particular the BHBs of star clusters.This will provide a good opportunity to combine stellar population synthesis and GW progenitor studies (see e.g.,Belczynski et al.2016).Note that an increasing initial hard binary fraction may not change the results,as the simulations with 10% hard binary fraction compare very well in terms of binary fraction at 10 Gyr with a Monte-Carlo simulation with a Kroupa (1995a) period distribution.In this research,some widely used inputs are applied,but there are still some uncertainties in the results.It is necessary to simulate the binary populations of more realistic star clusters,by taking their known metallicity,stellar mass,binary fraction,chemical enhancement and star formation history into account.Now we present simulations from a relatively small star sample (N=100,000).In order to decrease the stochastic variations in our results,we have calculated nine of these models in total,with statistically independent initial conditions.We are currently calculating larger models,with one million stars,which will be the subject of future work and take much more computing time.In addition,it is possible to get a different result if we use another population synthesis code,e.g.,SEVN,instead of the MOBSE code.Some comparisons to other works,e.g.,Eldridge &Stanway (2016)and Kruckow et al.(2018),are also needed to give better constraints on the CB fractions of star clusters in the future.

    Acknowledgments

    The authors thank the reviewer for constructive comments on this paper,and thank Jarrod Hurley,Sambaran Banerjee and Manuel Arca Sedda for cooperation,help and assistance in developing and using the NBODY6++GPU code.This work has been supported by the National Natural Science Foundation of China (NSFC,Grant Nos.11863002 and 11673032),Yunnan Academician Workstation of Wang Jingxiu (202005AF150025),China Manned Space Project with No.CMS-CSST-2021-A08,and Sino-German Cooperation Project (No.GZ 1284).

    B.K.would like to thank the CAS-TWAS President’s PhD Fellowship Programme of the Chinese Academy of Sciences&The World Academy of Sciences.The work of P.B.was supported by the Volkswagen Foundation under the special stipend No.9B870 (2022).P.B.acknowledges the support within the grant No.AP14869395 of the Science Committee of the Ministry of Science,Higher Education of Kazakhstan(“Triune model of Galactic center dynamical evolution on cosmological timescale”),Ministry of Education and Science of Ukraine under the collaborative grant M/32-23.05.2022 and the National Academy of Sciences of Ukraine under the Main Astronomical Observatory GPU computing cluster project No.13.2021.MM.

    This work was also supported by the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) -Project-ID 138713538—SFB 881 (“The Milky Way System”),and by the Volkswagen Foundation under the Trilateral Partnerships grant Nos.90411 and 97778.

    Data Availability

    The data on fractions of CBs and SCBs from ASPS simulations are available at the Zenodo repository.

    ORCID iDs

    97人妻精品一区二区三区麻豆| 国产午夜精品久久久久久| 一个人免费在线观看电影 | 精品久久久久久成人av| 国产午夜精品论理片| 三级国产精品欧美在线观看 | 又大又爽又粗| 首页视频小说图片口味搜索| 精品久久久久久久久久免费视频| 久久国产精品影院| 村上凉子中文字幕在线| 精品乱码久久久久久99久播| 黄色视频不卡| 亚洲av电影在线进入| 国产黄a三级三级三级人| 亚洲中文av在线| 在线观看美女被高潮喷水网站 | 亚洲五月婷婷丁香| 俺也久久电影网| 精品福利观看| 熟女电影av网| 婷婷精品国产亚洲av在线| 神马国产精品三级电影在线观看 | 91成年电影在线观看| 久久久久久久午夜电影| 国产精品精品国产色婷婷| 九色成人免费人妻av| 久久精品综合一区二区三区| 91av网站免费观看| 这个男人来自地球电影免费观看| 免费在线观看黄色视频的| 国产v大片淫在线免费观看| 成人18禁在线播放| 成人一区二区视频在线观看| 成人永久免费在线观看视频| 国产精品98久久久久久宅男小说| 免费在线观看影片大全网站| 午夜福利18| 久久精品影院6| 欧美乱妇无乱码| 久久热在线av| 一区二区三区激情视频| 国产精品,欧美在线| a在线观看视频网站| 午夜成年电影在线免费观看| 99国产精品一区二区三区| 国产三级在线视频| or卡值多少钱| 久久久精品国产亚洲av高清涩受| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 麻豆国产97在线/欧美 | 在线观看66精品国产| 日韩精品免费视频一区二区三区| 99国产精品一区二区蜜桃av| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 国产精品久久久av美女十八| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 国产黄色小视频在线观看| 狂野欧美激情性xxxx| 超碰成人久久| 18禁黄网站禁片免费观看直播| 日本a在线网址| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 99re在线观看精品视频| cao死你这个sao货| 亚洲男人的天堂狠狠| 欧美日韩精品网址| 久久婷婷人人爽人人干人人爱| cao死你这个sao货| 黄色片一级片一级黄色片| 精品国产美女av久久久久小说| 99re在线观看精品视频| 日韩 欧美 亚洲 中文字幕| 国产一区二区在线观看日韩 | 很黄的视频免费| svipshipincom国产片| 日韩欧美免费精品| 国产黄色小视频在线观看| 桃红色精品国产亚洲av| 成年免费大片在线观看| 男女那种视频在线观看| 国产免费男女视频| 国产黄片美女视频| 午夜a级毛片| 精品久久久久久久末码| 国产精品永久免费网站| 亚洲中文字幕日韩| www.999成人在线观看| 在线观看日韩欧美| 91大片在线观看| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 日本精品一区二区三区蜜桃| 亚洲精品美女久久av网站| 我要搜黄色片| 一本久久中文字幕| 精品欧美一区二区三区在线| 免费观看精品视频网站| 激情在线观看视频在线高清| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 久久中文字幕人妻熟女| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看| 精品高清国产在线一区| 亚洲 欧美 日韩 在线 免费| 男人舔女人下体高潮全视频| 淫秽高清视频在线观看| 女警被强在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| 久久热在线av| ponron亚洲| 久久中文字幕人妻熟女| 亚洲男人的天堂狠狠| 亚洲成人免费电影在线观看| 黄片小视频在线播放| 狠狠狠狠99中文字幕| 国产免费av片在线观看野外av| 在线观看66精品国产| 欧美日韩黄片免| 久久精品国产亚洲av香蕉五月| 99国产综合亚洲精品| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久| 亚洲专区字幕在线| 精品电影一区二区在线| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 首页视频小说图片口味搜索| 成人精品一区二区免费| 精品国产超薄肉色丝袜足j| 在线永久观看黄色视频| 岛国在线免费视频观看| 在线观看午夜福利视频| 欧美+亚洲+日韩+国产| 色哟哟哟哟哟哟| 国产亚洲精品第一综合不卡| 国产精品久久久人人做人人爽| 成人国产一区最新在线观看| 特大巨黑吊av在线直播| 亚洲免费av在线视频| 国产午夜精品论理片| 在线观看www视频免费| 国产成年人精品一区二区| 亚洲成av人片免费观看| 国内精品久久久久精免费| 午夜激情av网站| 妹子高潮喷水视频| 国产av不卡久久| 亚洲七黄色美女视频| 很黄的视频免费| 成年免费大片在线观看| 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 国产av又大| 制服人妻中文乱码| 久久人妻av系列| 国产精品免费视频内射| 亚洲精品在线美女| 日本 av在线| 国产精品,欧美在线| 日韩高清综合在线| 黄色丝袜av网址大全| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 十八禁人妻一区二区| 91老司机精品| 在线观看免费视频日本深夜| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 久久国产乱子伦精品免费另类| 久久中文字幕人妻熟女| 欧美丝袜亚洲另类 | 99久久无色码亚洲精品果冻| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区色噜噜| av国产免费在线观看| 中文字幕熟女人妻在线| 中文字幕精品亚洲无线码一区| 九色国产91popny在线| 日本黄大片高清| 国产一区二区在线av高清观看| 午夜精品久久久久久毛片777| www.精华液| 欧美高清成人免费视频www| 大型黄色视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久久久电影| 亚洲午夜理论影院| 久热爱精品视频在线9| 啦啦啦免费观看视频1| 黄频高清免费视频| 99在线视频只有这里精品首页| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 久久香蕉国产精品| 成人av一区二区三区在线看| 村上凉子中文字幕在线| 亚洲熟妇熟女久久| 日本一区二区免费在线视频| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 最近最新中文字幕大全免费视频| 成人欧美大片| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 曰老女人黄片| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 亚洲全国av大片| 亚洲五月天丁香| 午夜日韩欧美国产| 香蕉av资源在线| 亚洲免费av在线视频| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 成年人黄色毛片网站| 日韩国内少妇激情av| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 日本免费一区二区三区高清不卡| a级毛片在线看网站| 欧美高清成人免费视频www| 1024香蕉在线观看| 久久草成人影院| 身体一侧抽搐| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 全区人妻精品视频| 男人舔女人的私密视频| 校园春色视频在线观看| 日本成人三级电影网站| 十八禁网站免费在线| 久久九九热精品免费| 国产av麻豆久久久久久久| 午夜福利18| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| 成年版毛片免费区| 亚洲男人天堂网一区| 久久久久久久午夜电影| 99热6这里只有精品| 亚洲中文日韩欧美视频| 精品人妻1区二区| 国产精品 国内视频| 日本在线视频免费播放| 两个人看的免费小视频| 久久精品91蜜桃| 叶爱在线成人免费视频播放| 无人区码免费观看不卡| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三| 中文字幕精品亚洲无线码一区| 亚洲国产日韩欧美精品在线观看 | 日本一区二区免费在线视频| 国产亚洲精品一区二区www| 少妇人妻一区二区三区视频| 色播亚洲综合网| 国产成人啪精品午夜网站| 精品福利观看| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 99精品欧美一区二区三区四区| 操出白浆在线播放| 无限看片的www在线观看| av在线播放免费不卡| 久99久视频精品免费| 日韩国内少妇激情av| 国产精品av视频在线免费观看| 丝袜人妻中文字幕| 最近最新中文字幕大全电影3| 亚洲中文字幕一区二区三区有码在线看 | 黄色视频,在线免费观看| 国产69精品久久久久777片 | 亚洲欧美精品综合一区二区三区| 岛国视频午夜一区免费看| 亚洲欧美激情综合另类| 欧美日韩精品网址| 久久香蕉国产精品| av片东京热男人的天堂| 亚洲av五月六月丁香网| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 色老头精品视频在线观看| 国产91精品成人一区二区三区| 久久久久久亚洲精品国产蜜桃av| 精品少妇一区二区三区视频日本电影| 国产精品九九99| 美女扒开内裤让男人捅视频| 一二三四在线观看免费中文在| 91成年电影在线观看| 久久伊人香网站| 免费在线观看影片大全网站| 中文字幕熟女人妻在线| 国产区一区二久久| 老熟妇乱子伦视频在线观看| 日本精品一区二区三区蜜桃| aaaaa片日本免费| 国产黄片美女视频| 床上黄色一级片| 精品欧美一区二区三区在线| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看| 国产午夜福利久久久久久| 叶爱在线成人免费视频播放| 国产片内射在线| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 成人一区二区视频在线观看| www日本黄色视频网| 精品欧美国产一区二区三| 欧美性长视频在线观看| 51午夜福利影视在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美人成| 中文字幕久久专区| 波多野结衣高清作品| 正在播放国产对白刺激| 啦啦啦免费观看视频1| 久99久视频精品免费| 欧美不卡视频在线免费观看 | 亚洲国产高清在线一区二区三| 长腿黑丝高跟| 日本一区二区免费在线视频| 国产熟女xx| 美女午夜性视频免费| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看 | 亚洲欧美精品综合久久99| 人体艺术视频欧美日本| 一个人免费在线观看电影| 波多野结衣巨乳人妻| 久久中文看片网| 欧美3d第一页| 熟女电影av网| 亚洲av男天堂| 嫩草影院精品99| 成年av动漫网址| 成人亚洲欧美一区二区av| 深爱激情五月婷婷| 99热精品在线国产| 97人妻精品一区二区三区麻豆| 99久国产av精品国产电影| 国产精品一区二区三区四区免费观看| 国产 一区精品| 精品欧美国产一区二区三| 伦理电影大哥的女人| 欧美性感艳星| 看片在线看免费视频| 免费不卡的大黄色大毛片视频在线观看 | 人人妻人人看人人澡| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 亚洲天堂国产精品一区在线| 欧美日韩在线观看h| 国产精品一区www在线观看| 大香蕉久久网| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 国产精品1区2区在线观看.| 成人特级av手机在线观看| 级片在线观看| 日本色播在线视频| 国产精品一区www在线观看| 三级男女做爰猛烈吃奶摸视频| 免费大片18禁| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| av在线蜜桃| av在线播放精品| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 国产午夜精品久久久久久一区二区三区| 亚洲国产色片| 国产熟女欧美一区二区| 欧美激情在线99| 尾随美女入室| 国产一区二区激情短视频| 国产 一区 欧美 日韩| 欧美bdsm另类| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 欧美丝袜亚洲另类| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说 | 国产精品美女特级片免费视频播放器| 女同久久另类99精品国产91| 舔av片在线| 久久这里有精品视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 热99re8久久精品国产| 三级国产精品欧美在线观看| 97在线视频观看| 久久精品国产亚洲av天美| eeuss影院久久| 国产一级毛片在线| 国产av在哪里看| 亚洲人与动物交配视频| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 久久精品国产清高在天天线| 99久国产av精品| 日本五十路高清| 成人av在线播放网站| 久久精品91蜜桃| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 嫩草影院精品99| 美女被艹到高潮喷水动态| 精品无人区乱码1区二区| 国产精品野战在线观看| 精品午夜福利在线看| 国产精品蜜桃在线观看 | 国产av不卡久久| 一本精品99久久精品77| 热99在线观看视频| 亚洲欧美精品综合久久99| 免费看a级黄色片| 可以在线观看的亚洲视频| 免费观看在线日韩| 午夜福利在线观看吧| 色综合色国产| 又爽又黄无遮挡网站| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 亚洲av二区三区四区| 久久6这里有精品| 色5月婷婷丁香| 日韩强制内射视频| 日韩欧美在线乱码| 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 成年免费大片在线观看| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 91久久精品电影网| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 久久综合国产亚洲精品| 国产亚洲精品av在线| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| www.色视频.com| 日本三级黄在线观看| 精品国产三级普通话版| 成熟少妇高潮喷水视频| 国产真实伦视频高清在线观看| 久久久国产成人精品二区| 日产精品乱码卡一卡2卡三| 亚洲成a人片在线一区二区| 国产午夜精品久久久久久一区二区三区| 中文字幕精品亚洲无线码一区| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 午夜福利高清视频| 国产精品久久久久久精品电影小说 | 婷婷色av中文字幕| 亚洲成人精品中文字幕电影| 桃色一区二区三区在线观看| 国产三级在线视频| 麻豆av噜噜一区二区三区| 亚洲乱码一区二区免费版| 色视频www国产| 国产精品无大码| 亚洲精品456在线播放app| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 国产一区二区三区av在线 | 亚洲欧美日韩无卡精品| 啦啦啦啦在线视频资源| 欧美日韩在线观看h| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 国产精品蜜桃在线观看 | 亚洲高清免费不卡视频| 黄色日韩在线| 午夜福利在线观看吧| 九九在线视频观看精品| 男女视频在线观看网站免费| 色综合色国产| 欧美zozozo另类| 少妇高潮的动态图| 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 日日摸夜夜添夜夜爱| 三级经典国产精品| 在线观看午夜福利视频| 九九在线视频观看精品| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 乱系列少妇在线播放| 男人舔奶头视频| 日本撒尿小便嘘嘘汇集6| 国产真实伦视频高清在线观看| 极品教师在线视频| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频| 国产私拍福利视频在线观看| 亚洲在线自拍视频| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 欧美性猛交╳xxx乱大交人| 免费看光身美女| 一夜夜www| 看十八女毛片水多多多| 能在线免费看毛片的网站| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 永久网站在线| a级毛色黄片| 97超视频在线观看视频| 一个人看视频在线观看www免费| 亚洲av免费高清在线观看| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 免费人成视频x8x8入口观看| 亚洲精品自拍成人| 国产综合懂色| 一个人免费在线观看电影| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免| 有码 亚洲区| 亚洲av二区三区四区| 免费在线观看成人毛片| 久久中文看片网| 国产探花极品一区二区| 麻豆成人午夜福利视频| 草草在线视频免费看| 免费av观看视频| 亚洲精品国产av成人精品| 久久国产乱子免费精品| 欧美潮喷喷水| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 最近最新中文字幕大全电影3| 国产黄色小视频在线观看| 一进一出抽搐gif免费好疼| 亚洲图色成人| 免费大片18禁| 日韩欧美 国产精品| 亚洲精品乱码久久久v下载方式| 久久久精品欧美日韩精品| 亚洲第一区二区三区不卡| 成人亚洲精品av一区二区| 91久久精品国产一区二区三区| 在线天堂最新版资源| 极品教师在线视频| 久久久精品94久久精品| 九九在线视频观看精品| 欧美成人精品欧美一级黄| 亚洲内射少妇av| 小说图片视频综合网站| 免费看日本二区| 国产精品日韩av在线免费观看| 人体艺术视频欧美日本| 中出人妻视频一区二区| a级毛片免费高清观看在线播放| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩东京热| 最近的中文字幕免费完整| 亚洲av男天堂| 人妻制服诱惑在线中文字幕| 美女 人体艺术 gogo| 深夜精品福利| 三级经典国产精品| 国产69精品久久久久777片| 国产成人福利小说| 欧美日韩综合久久久久久| 国产精品久久久久久久久免| 欧美性猛交黑人性爽| 亚洲中文字幕一区二区三区有码在线看| 午夜精品国产一区二区电影 | 啦啦啦韩国在线观看视频|