• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Galaxy Interactions in Filaments and Sheets: Effects of the Large-scale Structures Versus the Local Density

    2023-03-25 07:36:38ApashankaDasBiswajitPandeyandSumanSarkar

    Apashanka Das ,Biswajit Pandey ,and Suman Sarkar

    1 Department of Physics,Visva-Bharati University,Santiniketan,Birbhum,731235,India;a.das.cosmo@gmail.com,biswap@visva-bharati.ac.in

    2 Department of Physics,Indian Institute of Science Education and Research Tirupati,Tirupati—517507,Andhra Pradesh,India;suman2reach@gmail.com

    Abstract Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR)and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.

    Key words: methods: statistical–methods: data analysis–galaxies: evolution–galaxies: interactions–(cosmology:) large-scale structure of universe

    1.Introduction

    The present-day universe is populated with myriad galaxies that are vast collections of stars,gas,dust and dark matter.Galaxies are the fundamental units of the large-scale structures in the universe.The early redshift surveys during the late seventies and early eighties demonstrated that galaxies are distributed in a complex interconnected network surrounded by large empty regions (Gregory &Thompson 1978;Joeveer &Einasto 1978;Einasto et al.1980;Zeldovich&Shandarin 1982;Einasto et al.1984).The existence of this network of filaments,sheets and clusters encircled by numerous voids became more evident with the advent of modern galaxy redshift surveys(Colless et al.2001;Stoughton et al.2002).The role of the different geometric environments of the cosmic web (Bond et al.1996)on galaxy formation and evolution has remained an active area of research since then.

    Galaxies are believed to have formed via the cooling and condensation of accreted neutral hydrogen gas at the centers of dark matter halos (Rees &Ostriker 1977;Silk 1977;White &Rees 1978;Fall &Efstathiou 1980).These dark matter halos reside in different morphological environments of the cosmic web.Studies with hydrodynamical simulations suggest that the filaments are dominated by gas in WHIM that accounts for more than 80% of the baryonic budget in the universe(Galarraga-Espinosa et al.2021;Tuominen et al.2021).It has been suggested by a number of works that the filaments play a significant role in governing the gas accretion efficiency in galaxies (Cornuault et al.2018;Zhu et al.2022).The dark matter halos residing in filaments and sheets may have different gas accretion efficiencies.An earlier analysis shows that the star-forming blue galaxies have a more filamentary distribution than their red counterparts (Pandey &Bharadwaj 2008).The large-scale coherent patterns like sheets and filaments may play significant roles in the formation and evolution of galaxies.

    The roles of environment on the formation and evolution of galaxies have been extensively studied in the literature(Oemler 1974;Davis &Geller 1976;Dressler 1980;Guzzo et al.1997;Zehavi et al.2002;Hogg et al.2003;Blanton et al.2003;Einasto et al.2003;Goto et al.2003;Kauffmann et al.2004;Pandey &Bharadwaj 2006;Park et al.2007;Mouhcine et al.2007;Pandey &Bharadwaj 2008;Porter et al.2008;Bamford et al.2009;Cooper et al.2010;Koyama et al.2013;Pandey &Sarkar 2017;Sarkar &Pandey 2020;Bhattacharjee et al.2020;Pandey&Sarkar 2020).The galaxies interact with their environment and other galaxies in their neighborhood.It is well known that the galaxies in high density regions have a lower star formation activity (Lewis et al.2002;Gómez et al.2003;Kauffmann et al.2004).The quenching of star formation in high density regions can be induced by a host of mechanisms such as ram pressure stripping (Gunn &Gott 1972),galaxy harassment (Moore et al.1996;1998),strangulation (Gunn &Gott 1972;Balogh et al.2000),starvation (Larson et al.1980;Somerville &Primack 1999;Kawata &Mulchaey 2008) and gas loss through starburst,AGN or shock-driven winds (Cox et al.2004;Murray et al.2005;Springel et al.2005).A galaxy can also quench its star formation through different physical processes such as mass quenching (Birnboim &Dekel 2003;Dekel&Birnboim 2006;Kere? et al.2005;Gabor et al.2010),morphological quenching (Martig et al.2009),bar quenching(Masters et al.2010) and angular momentum quenching(Peng 2020).Galaxy interactions on the other hand can trigger star formation activity in galaxies and alter their color (Barton et al.2000;Lambas et al.2008;Alonso et al.2004;Nikolic et al.2004;Alonso et al.2006;Woods et al.2006;Woods &Geller 2007;Barton et al.2007;Ellison et al.2008;Heiderman et al.2009;Knapen&James 2009;Robaina et al.2009;Ellison et al.2010;Woods et al.2010;Patton et al.2011).

    The density of the local environment is known to play a crucial role in deciding the galaxy properties and their evolution.However,the roles of the different morphological environments of the cosmic web on the formation and evolution of galaxies are less clearly understood.The sheets and filaments provide unique environments for galaxy formation and evolution.The different physical mechanisms triggering or quenching star formation in galaxies may be impacted differently in such environments.In this work,we consider the major interaction between galaxies in sheets and filaments.Major interactions between galaxies are known to trigger new star formation.Galaxy pairs are frequently observed in denser regions.Both filaments and sheets represent overdense regions of the cosmic web and are expected to host a significant number of major galaxy pairs.The star formation rate (SFR) of a galaxy is largely set by the available gas mass,which itself is modulated by inflows and outflows of gas(Dekel et al.2009;Davé et al.2011,2012;Lilly et al.2013).The interaction and mergers are transient events that can push galaxies out of equilibrium.The differences in the availability of gas and the accretion efficiency of the interacting galaxies in filaments and sheets may influence their physical properties.

    This work aims to study the differences in the major galaxy interaction observed in sheets and filaments.Currently,Sloan Digital Sky Survey(SDSS)(Stoughton et al.2002)is the largest redshift survey and has reliable photometric and spectroscopic information on millions of galaxies in the nearby universe.It provides us the unique opportunity to address such questions in a statistical manner.We construct a set of volume limited samples of galaxies in different luminosity ranges.We use the local dimension (Sarkar &Bharadwaj 2009) to identify the galaxies residing in sheets and filaments in the cosmic web.We then find the galaxy pairs residing in these environments and study their SFR and color as a function of the projected pair separation.

    We use both SFR and color of the galaxies in major pairs for the present analysis.The enhancement or quenching of star formation in a galaxy can alter its color.However,such changes require a much longer timescale.The effects of the tidal interactions in different environments can be captured more reliably if we use both SFR and color for such studies.

    The filaments are known to be a somewhat denser region than the sheets.We also study the SFR and color of the major pairs in environments with different local density and compare these findings to those observed for the different geometric environments.

    We organize the paper as follows: we describe the data and method of analysis in Section 2 and present the results and conclusions in Section 3.

    2.Data and Method of Analysis

    2.1.SDSS Data

    SDSS(Stoughton et al.2002)is currently the largest redshift survey.It uses a dedicated 2.5 m telescope at Apache Point Observatory in New Mexico to measure the spectra and images of millions of galaxies in five different bands over roughly one third of the sky.We downloaded the SDSS data from the sixteenth data release of SDSS (Ahumada et al.2020) that are publicly available at SDSS Skyserver.3https://skyserver.sdss.org/casjobs/We obtained the spectroscopic and photometric information of all the galaxies present within the region 135°≤α ≤225° and 0°≤δ ≤60°.The spectroscopic and photometric information of the galaxies are obtained from the SpecPhotoAll table.We use the stellarMassFSPSGranWideNoDust (Conroy et al.2009) table to extract stellar mass and the SFR of the galaxies.These estimates are based on the Flexible Stellar Population Synthesis Models.The information on internal reddeningE(B?V) for each galaxy is taken from emissionlinesport table.The internal reddening is derived using the publicly available Gas and Absorption Line Fitting (GANDALF) (Sarzi et al.2006) and Penalized PIXEL Fitting (pPXF) (Cappellari &Emsellem 2004).We set the scienceprimary=1 while downloading our data to ensure that only the galaxies with the best spectroscopic information are included in our analysis.

    We find that the above mentioned properties are available for a total of 350 536 galaxies within the specified region.We restrict therband apparent magnitude tomr≤17.77 and construct three volume limited samples withr-band absolute magnitude rangeMr≤?19,Mr≤?20,Mr≤?21 that correspond to redshift limitsz<0.0422,z<0.0752 andz<0.1137 respectively.The total number of galaxies present in the three volume limited samples corresponding toMr≤?19,Mr≤?20,Mr≤?21 are 21,984,69,456 and 85,745 respectively.

    We separately identify all the galaxy pairs in our data by employing simultaneous cuts on the projected separation and the rest frame velocity difference.Any two galaxies withrp<150 kpc and Δv<300 km s?1are identified as a galaxy pair.A galaxy may appear in multiple pairs provided these conditions are satisfied.We allow this following Scudder et al.(2012) who showed that excluding the galaxies with multiple companions does not make any difference to their results.These cuts yield a total of 24,756 galaxy pairs present within the specific region of the sky chosen in our analysis.

    We cross match the SpecObjID of the galaxies in the volume limited samples to that with the sample of identified galaxy pairs.The cross-matching respectively provides us with 2581,5441 and 3039 galaxy pairs in the three volume limited samples corresponding toMr≤?19,Mr≤?20 andMr≤?21.We employ a further cutin the stellar mass ratio of the galaxy pairs.This reduces the number of available galaxy pairs to 2024,5014 and 3002 in the three volume limited samples.

    A significant number of close galaxy pairs cannot be observed simply due to the finite aperture of the SDSS fibers.The spectra of two galaxies within 55″ cannot be acquired simultaneously (Strauss et al.2002) which leads to under selection of galaxy pairs with angular separation closer than 55″.We compensate this incompleteness effect by randomly culling 67.5% of galaxies in pairs having angular separation>55″ (Patton &Atfield 2008;Ellison et al.2008;Patton et al.2011;Scudder et al.2012).

    After the culling,we are left with 737,2203 and 1600 galaxy pairs in the three volume limited samples.We then identify only the major pairs in our samples by restricting the stellar mass ratio toFinally,in the three volume limited samples,we have 387,1409 and 1255 major galaxy pairs that are formed by 739,2672 and 2432 galaxies respectively.

    We use a ΛCDM cosmological model with Ωm0=0.315,ΩΛ0=0.685 andh=0.674 (Planck Collaboration et al.2020)for our analysis.

    2.2.Morphology of the Local Environment

    Galaxies reside in various types of geometric environments in the cosmic web.We calculate the local dimension(Sarkar&Bharadwaj 2009)of each galaxy to quantify the morphology of its local environment.The local dimension of a galaxy is estimated from the number counts of galaxies within a sphere of radiusRcentered on it.The number counts of galaxies within a given radiusRcan be written as,

    whereAis a proportionality constant andDis the local dimension.For each galaxy,the radius of the sphere is varied over length scalesR1Mpc ≤R≤R2Mpc.We consider only those galaxies for which there are at least 10 galaxies available within two concentric spheres of radiusR1andR2.The measured number countsN(

    Table 1 This Table Shows the Range of Local Dimension Values D and the Associated Geometric Environment of Galaxies

    2.3.Local Density of Environment

    We estimate the local density of the environment of each galaxy using the distance to thekthnearest neighbor in threedimensions.The local density ηk(Casertano &Hut 1985)around a galaxy is defined as,

    whererkis the distance to thekthnearest neighbor andis the volume of the sphere associated with radiusrk.We setk=5 and consider the 5th nearest neighbor from each galaxy to compute the local density around it.The local density would be underestimated near the boundary of the survey volume.We also estimate the closest distance to the survey boundaryrbfrom each galaxy and compare it withrk.We consider only those galaxies in our analysis for whichrk

    3.Results and Conclusions

    We show the cumulative median of the dust corrected(u?r)color for the major pairs as a function of the projected separation in sheets and filaments in the top left panel of Figure 1.The results in this panel affirm that at smaller pair separation,the major galaxy pairs in the sheet-like structures are significantly redder compared to those residing in the filamentary environments.We find a crossover between the two curves at ~50 kpc beyond which the major pairs in filaments are redder than those embedded in the sheet-like structures.We repeat our calculations for the SFR in the major pairs in a similar manner.The results are plotted in the bottom left panel of Figure 1.We find that the major pairs with a projected separation <50 kpc are more star-forming in filaments compared to those hosted in the sheet-like environments.Interestingly,we also notice a reversal of this behavior at~50 kpc for SFR similar to that observed for the dust corrected(u?r)color.Again,the major pairs with a projected separation greater than 50 kpc are more star-forming in sheets compared to those in filaments.The color and SFR are strongly correlated due to the observed bimodality (Strateva et al.2001;Baldry et al.2004;Pandey 2020).A similarity in the results for color and SFR is not surprising.However,the presence of the crossover at nearly the same length scale for both the properties is certainly interesting.

    Figure 1.The top left,top middle and top right panels display the cumulative median color of the major pairs as a function of the projected separation for the three magnitude bins Mr ≤?19,Mr ≤?20 and Mr ≤?21 respectively.The bottom three panels plot the cumulative median SFR of the major pairs in the three magnitude bins.We compare the results for the major pairs residing in sheets and filaments in each panel of this figure.The 1σ error bars at each data point are obtained from 10 jackknife samples drawn from each data set.

    A number of earlier works find a statistically significant alignment of the galaxy pairs with their host filaments.Using the SDSS data,Tempel &Tamm (2015) find ~25% extra aligned pairs in filaments compared to a random distribution.A similar analysis of SDSS galaxy pairs in filaments by Mesa et al.(2018) confirms the alignment signal and suggests a stronger alignment closer to the filament spine.Such preferred alignment indicates an anisotropic accretion within the filaments.The interactions between the galaxies in the aligned pairs could be more effective in triggering new star formation.We propose that the trends observed in the top left and bottom left panels of Figure 1 may arise due to the preferred alignment of galaxy pairs inside filaments.

    We repeat our analysis for volume limited samples constructed in two other magnitude bins.This would reveal any luminosity dependence of these results.The results for the magnitude binsMr≤?20 andMr≤?21 are respectively shown in the top/bottom middle and top/bottom right panels of Figure 1.Interestingly,the trends observed in the magnitude binMr≤?19 are not present in the brighter samples.The galaxy pairs in the filaments and sheets from the brighter galaxy samples trace the higher density regions in these structures.The star formation of galaxies is known to be suppressed in the high-density regions.The red galaxies usually have (u?r)>2.22 (Strateva et al.2001).It is interesting to note that the cumulative median color of the major pairs in the brighter samples is greater than 2.22 at nearly all pair separations.This clearly indicates that the major pairs in the high density regions of the filaments and sheets are not effective in forming new stars.Both the local density and largescale environment are important in the formation and evolution of galaxies;but the local density is known to play a more dominant role.The absence of these trends in the brighter samples possibly indicates the dominance of the local density over the large-scale environment.

    We separately study the effects of the local density in deciding the color and SFR of the interacting major pairs.We split each sample of major pairs into two based on their median density.This provides us two sets of major pairs corresponding to low and high density regions.The results of this analysis are shown in Figure 2.The top/bottom left,top/bottom middle and top/bottom right panels of Figure 2 respectively feature the results corresponding to magnitude binsMr≤?19,Mr≤?20 andMr≤?21.The results are qualitatively similar in the three magnitude bins.We note that at each pair separation,the cumulative median of the dust corrected(u?r)color and SFR of the major pairs are different in the low-density and highdensity regions.The major pairs in the low density regions are more star-forming and bluer as compared to their high-density counterparts.The differences in color and SFR decrease with the increasing pair separation but no crossover is observed between the curves in any of the volume limited samples.The differences in color and SFR persist at each projected pair separation up to 150 kpc for all three volume limited samples.This indicates that the local density and large-scale environments affect the galaxy interactions in a noticeably different manner.We also note that the differences between the color and SFR at each pair separation are significantly smaller for the brighter samples.The pairs in the brighter samples preferentially inhabit the denser regions.Consequently,the pairs in these samples have smaller differences in their local density.

    It is well known that the color and SFR of galaxies are strongly correlated with the stellar mass.So,the observed differences in the properties of interacting galaxies in different environments may also arise due to a difference in their stellar mass.We investigate this possibility by performing a Kolmogorov–Smirnov (KS) test on the stellar mass distributions of the galaxy pairs in different environments.We compare the probability distribution function of the stellar mass for the major pairs residing inD1 andD2-type environments in the top three panels of Figure 3.We carry out a similar comparison for the pairs in low and high-density regions in the three bottom panels of Figure 3.The results of the KS tests are summarized in Table 2.We find that the stellar mass distributions of the interacting galaxy pairs inD1 andD2-type environments are not significantly different.The nullhypothesis cannot be rejected at a very high confidence level for all the three volume limited samples.So,the observed differences in the color and SFR of interacting galaxies in filaments and sheets do not originate from the differences in their stellar mass.However,the results of the KS test suggest that the stellar mass distributions of the galaxy pairs in the lowdensity and high-density regions are significantly different for the last two magnitude bins.So,the stellar mass may have a role in causing the differences in properties of the interacting galaxies in the low-density and high-density regions.

    Table 2 The Above Table Displays the KS Statistic DKS for Compari son of l og (Mstellar/Msun)for Major Pairs Residing in D1,D2 Type Environments and Low Density,High Density Regions

    Figure 2.Same as Figure 1 but for the major pairs residing in the low-density and high-density regions.

    Figure 3.The top three panels show the distributions of log (Mstellar/Msun) for the major pairs residing in D1 and D2-type environments in the three volume limited samples.The three bottom panels compare the same but for the major pairs residing in the high-density and low-density regions.

    Generally,filaments are denser than sheets,so one would expect the interacting galaxy pairs in filaments to be less starforming and redder than those residing in sheets.However we observe an exactly opposite trend in our analysis for the galaxy pairs with projected separation less than 50 kpc.This indicates that the local density and large-scale environments affect the galaxy interactions in noticeably different manners.The local density is known to play a more dominant role.The absence of the effects of large-scale environments in the brightest sample in our analysis possibly indicates the dominance of the local density over the large-scale environment.It is worth mentioning here that the effects of local-density and large-scale environment are coupled with each other.One may study the impact of the large-scale environment by conditioning the local environment and vice versa.However this drastically reduces the number of pairs available for this study.Another limitation of this study is that the three magnitude bins used here are not completely independent.This introduces some ambiguity in the interpretation of our results.We find that the use of the independent magnitude bins also drastically reduces the number of available pairs.

    Our study clearly shows that the color and SFR in the interacting galaxies are not only affected by the local density but also by their large-scale morphological environment.We note that the effects of the local density and morphological environment are quite distinct from each other.We conclude that the large-scale structures such as filaments and sheets play a fundamental role in the outcomes of galaxy interactions.The present analysis only classifies the pairs based on their local density and local dimension.It would be interesting to carry out a similar analysis with a set of individual sheets and filaments.We plan to carry out such an analysis in a future work.This would help us to understand better the effects of alignment on galaxy interactions in filaments and sheets.

    Acknowledgments

    The authors thank the SDSS team for making the data publicly available.B.P.would like to acknowledge financial support from the SERB,DST,Government of India through the project CRG/2019/001110.B.P.would also like to acknowledge IUCAA,Pune for providing support through an associateship program.S.S.acknowledges IISER Tirupati for support through a postdoctoral fellowship.

    Funding for the SDSS and SDSS-II has been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Science Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England.The SDSS website is http://www.sdss.org/.

    The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions.The Participating Institutions are the American Museum of Natural History,Astrophysical Institute Potsdam,University of Basel,University of Cambridge,Case Western Reserve University,University of Chicago,Drexel University,Fermilab,the Institute for Advanced Study,the Japan Participation Group,Johns Hopkins University,the Joint Institute for Nuclear Astrophysics,the Kavli Institute for Particle Astrophysics and Cosmology,the Korean Scientist Group,the Chinese Academy of Sciences (LAMOST),Los Alamos National Laboratory,the Max-Planck-Institute for Astronomy(MPIA),the Max-Planck-Institute for Astrophysics (MPA),New Mexico State University,Ohio State University,University of Pittsburgh,University of Portsmouth,Princeton University,the United States Naval Observatory,and the University of Washington.

    欧美激情久久久久久爽电影| 日本一二三区视频观看| 精品国产三级普通话版| 成人特级黄色片久久久久久久| 日本三级黄在线观看| 51午夜福利影视在线观看| 日本五十路高清| 国产精品乱码一区二三区的特点| 熟女人妻精品中文字幕| 国产精品久久久久久亚洲av鲁大| 91在线观看av| 中国美女看黄片| 精品人妻偷拍中文字幕| 精品99又大又爽又粗少妇毛片 | 成人高潮视频无遮挡免费网站| 精品午夜福利视频在线观看一区| 毛片一级片免费看久久久久 | 99久久99久久久精品蜜桃| 久久久久性生活片| 免费搜索国产男女视频| 国内毛片毛片毛片毛片毛片| 亚洲av电影在线进入| 一a级毛片在线观看| 成人国产综合亚洲| 人妻丰满熟妇av一区二区三区| 欧美色欧美亚洲另类二区| 51午夜福利影视在线观看| 精品乱码久久久久久99久播| 国产高潮美女av| 黄色配什么色好看| 美女被艹到高潮喷水动态| 欧美日韩亚洲国产一区二区在线观看| 国产真实乱freesex| 日日干狠狠操夜夜爽| 床上黄色一级片| 国内揄拍国产精品人妻在线| 97碰自拍视频| 亚洲第一区二区三区不卡| 特级一级黄色大片| 国产精品永久免费网站| 女人被狂操c到高潮| 欧美日韩福利视频一区二区| 在线观看午夜福利视频| 日本a在线网址| 国产黄a三级三级三级人| 欧美午夜高清在线| 亚洲成人中文字幕在线播放| 999久久久精品免费观看国产| 757午夜福利合集在线观看| 国产欧美日韩精品一区二区| 久久久久久久亚洲中文字幕 | .国产精品久久| 看黄色毛片网站| 蜜桃久久精品国产亚洲av| 天天躁日日操中文字幕| av在线天堂中文字幕| 99在线人妻在线中文字幕| 久久婷婷人人爽人人干人人爱| 免费看a级黄色片| 女同久久另类99精品国产91| 精品人妻一区二区三区麻豆 | 丝袜美腿在线中文| 国产欧美日韩精品亚洲av| 99视频精品全部免费 在线| 嫁个100分男人电影在线观看| 有码 亚洲区| 村上凉子中文字幕在线| 757午夜福利合集在线观看| 美女被艹到高潮喷水动态| 久久伊人香网站| 首页视频小说图片口味搜索| 欧美色视频一区免费| 最近最新免费中文字幕在线| 最近中文字幕高清免费大全6 | 久久精品国产亚洲av涩爱 | 又爽又黄无遮挡网站| 亚洲精华国产精华精| 美女xxoo啪啪120秒动态图 | 又爽又黄a免费视频| 亚洲欧美激情综合另类| 高清毛片免费观看视频网站| 亚洲国产精品成人综合色| 亚洲av美国av| 男人舔女人下体高潮全视频| 亚洲自拍偷在线| 欧美又色又爽又黄视频| 1000部很黄的大片| 国产探花极品一区二区| 国产高清三级在线| 久久草成人影院| 亚洲成人久久爱视频| 在线观看美女被高潮喷水网站 | 长腿黑丝高跟| 国产真实伦视频高清在线观看 | 国产亚洲精品综合一区在线观看| 亚洲avbb在线观看| 成人性生交大片免费视频hd| 91在线精品国自产拍蜜月| 成年女人永久免费观看视频| 国产成年人精品一区二区| 亚洲av美国av| 国产精品一区二区三区四区久久| 九九久久精品国产亚洲av麻豆| 日本黄大片高清| 免费看光身美女| 少妇熟女aⅴ在线视频| 熟妇人妻久久中文字幕3abv| 欧美激情国产日韩精品一区| 在线国产一区二区在线| 成人精品一区二区免费| 少妇的逼水好多| 9191精品国产免费久久| 国产探花在线观看一区二区| 又黄又爽又刺激的免费视频.| 老司机福利观看| 国产日本99.免费观看| 国产人妻一区二区三区在| 熟女人妻精品中文字幕| av女优亚洲男人天堂| 国产亚洲精品久久久com| 嫩草影院入口| 两个人视频免费观看高清| 狠狠狠狠99中文字幕| 偷拍熟女少妇极品色| 波多野结衣高清作品| 免费av毛片视频| 国产午夜精品久久久久久一区二区三区 | 夜夜爽天天搞| 色哟哟·www| 长腿黑丝高跟| 五月玫瑰六月丁香| 国产一区二区亚洲精品在线观看| 成年女人永久免费观看视频| 成年女人永久免费观看视频| АⅤ资源中文在线天堂| 国产精品一区二区三区四区久久| 日韩欧美三级三区| 黄色日韩在线| 日韩中文字幕欧美一区二区| 人人妻人人看人人澡| 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 欧美日韩乱码在线| 欧美xxxx黑人xx丫x性爽| 毛片一级片免费看久久久久 | 婷婷亚洲欧美| 白带黄色成豆腐渣| 亚洲电影在线观看av| 久久久久久九九精品二区国产| 亚洲精品亚洲一区二区| 国产三级中文精品| 美女免费视频网站| 久久中文看片网| 亚洲精品色激情综合| 亚洲av日韩精品久久久久久密| 搡老妇女老女人老熟妇| 日韩av在线大香蕉| 亚洲成av人片免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲人与动物交配视频| 女人被狂操c到高潮| 十八禁国产超污无遮挡网站| 91九色精品人成在线观看| 亚洲专区国产一区二区| 日本免费一区二区三区高清不卡| 日本与韩国留学比较| 草草在线视频免费看| 色综合站精品国产| 久久午夜福利片| 日韩有码中文字幕| aaaaa片日本免费| 亚洲第一欧美日韩一区二区三区| 在线播放国产精品三级| 99久久精品一区二区三区| 国产免费男女视频| 一个人看的www免费观看视频| 一区二区三区高清视频在线| 嫩草影视91久久| 91av网一区二区| 亚洲av免费在线观看| 黄色视频,在线免费观看| 午夜老司机福利剧场| 日韩 亚洲 欧美在线| 欧美成人免费av一区二区三区| 久久精品国产亚洲av天美| 一本精品99久久精品77| 国产在线男女| 激情在线观看视频在线高清| 一进一出抽搐gif免费好疼| 91av网一区二区| 亚洲av美国av| 琪琪午夜伦伦电影理论片6080| 69人妻影院| 国产真实乱freesex| 好男人在线观看高清免费视频| 亚洲人成伊人成综合网2020| 一本精品99久久精品77| 国产伦一二天堂av在线观看| 国语自产精品视频在线第100页| 日韩精品青青久久久久久| 美女免费视频网站| 国产91精品成人一区二区三区| 国产三级黄色录像| 国产精品久久久久久人妻精品电影| 久久久久九九精品影院| 国产精品嫩草影院av在线观看 | 久久这里只有精品中国| 国产精品免费一区二区三区在线| 听说在线观看完整版免费高清| 亚洲av熟女| 最近在线观看免费完整版| 久久精品国产99精品国产亚洲性色| 亚洲av成人精品一区久久| 看黄色毛片网站| 久久久久国产精品人妻aⅴ院| 国产一级毛片七仙女欲春2| 亚洲精品成人久久久久久| 长腿黑丝高跟| 久久久久久久精品吃奶| 熟女人妻精品中文字幕| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久 | 久久国产精品人妻蜜桃| 欧美+日韩+精品| 1000部很黄的大片| 中文字幕人成人乱码亚洲影| 亚洲熟妇熟女久久| 亚洲av第一区精品v没综合| 精品一区二区三区视频在线| 久久草成人影院| 精品一区二区三区av网在线观看| 国产精品99久久久久久久久| 亚洲色图av天堂| av在线观看视频网站免费| 色综合亚洲欧美另类图片| 国产一区二区亚洲精品在线观看| 国模一区二区三区四区视频| 国产精品嫩草影院av在线观看 | 长腿黑丝高跟| 69av精品久久久久久| 可以在线观看的亚洲视频| 久久精品国产亚洲av天美| 内射极品少妇av片p| 亚洲精品在线美女| 美女大奶头视频| 亚洲国产欧美人成| 亚洲欧美清纯卡通| a在线观看视频网站| 精品一区二区三区视频在线| 欧美日韩亚洲国产一区二区在线观看| 成人一区二区视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| 久久中文看片网| 岛国在线免费视频观看| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 在线十欧美十亚洲十日本专区| 国产爱豆传媒在线观看| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 最后的刺客免费高清国语| 婷婷丁香在线五月| 午夜免费男女啪啪视频观看 | 久久久久九九精品影院| 中出人妻视频一区二区| 99久久99久久久精品蜜桃| 欧美区成人在线视频| 人人妻人人澡欧美一区二区| 久久精品影院6| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件 | 国内精品久久久久久久电影| 看免费av毛片| 麻豆成人av在线观看| 欧美乱色亚洲激情| 国产视频一区二区在线看| 午夜a级毛片| 国产高清有码在线观看视频| av女优亚洲男人天堂| 九色国产91popny在线| av福利片在线观看| 一级a爱片免费观看的视频| 有码 亚洲区| 真人一进一出gif抽搐免费| 精品久久久久久久久久久久久| a级一级毛片免费在线观看| 国产一级毛片七仙女欲春2| 3wmmmm亚洲av在线观看| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 久久久精品大字幕| 久久国产精品影院| 无遮挡黄片免费观看| 噜噜噜噜噜久久久久久91| av女优亚洲男人天堂| 久久伊人香网站| 欧美日本视频| 一区二区三区高清视频在线| 宅男免费午夜| 天天躁日日操中文字幕| 亚洲久久久久久中文字幕| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 天堂动漫精品| 日韩欧美精品免费久久 | 久久热精品热| 丰满人妻一区二区三区视频av| 国模一区二区三区四区视频| www.熟女人妻精品国产| 成人国产综合亚洲| 少妇人妻一区二区三区视频| 国产精品三级大全| 一本一本综合久久| 亚洲av成人精品一区久久| 久久香蕉精品热| 色吧在线观看| 亚洲精品久久国产高清桃花| www.熟女人妻精品国产| 在线观看免费视频日本深夜| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久 | 精华霜和精华液先用哪个| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 国产免费男女视频| 婷婷色综合大香蕉| 亚洲aⅴ乱码一区二区在线播放| 久久99热6这里只有精品| 91在线观看av| 日韩成人在线观看一区二区三区| 天美传媒精品一区二区| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜影院日韩av| 国产精品女同一区二区软件 | 亚洲欧美日韩高清专用| 亚洲在线自拍视频| 悠悠久久av| 国产三级黄色录像| 热99re8久久精品国产| 欧美最黄视频在线播放免费| 精品一区二区三区人妻视频| 亚洲自偷自拍三级| 久久久久国内视频| 精品一区二区三区av网在线观看| 午夜两性在线视频| 日韩欧美三级三区| 最近最新免费中文字幕在线| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 国产高清激情床上av| 午夜老司机福利剧场| 观看免费一级毛片| 日本黄色视频三级网站网址| www.999成人在线观看| 一级作爱视频免费观看| 国产在线男女| 我要搜黄色片| 能在线免费观看的黄片| 国产在线男女| 人人妻人人澡欧美一区二区| 舔av片在线| 亚洲男人的天堂狠狠| 免费av不卡在线播放| 国产精品一及| 亚洲国产色片| av专区在线播放| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 美女 人体艺术 gogo| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 国产乱人视频| 岛国在线免费视频观看| 色尼玛亚洲综合影院| 日本成人三级电影网站| 国产高清视频在线观看网站| 久久久久性生活片| 欧美激情久久久久久爽电影| 欧美黑人欧美精品刺激| 最近在线观看免费完整版| 人人妻人人看人人澡| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 亚洲国产高清在线一区二区三| 国产私拍福利视频在线观看| 日韩亚洲欧美综合| 国产欧美日韩精品一区二区| 国产高清视频在线播放一区| 女生性感内裤真人,穿戴方法视频| 老司机午夜十八禁免费视频| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 免费在线观看亚洲国产| 国产黄片美女视频| 国产一区二区亚洲精品在线观看| 很黄的视频免费| 变态另类成人亚洲欧美熟女| 国产成人福利小说| 亚洲第一欧美日韩一区二区三区| .国产精品久久| 国产一区二区激情短视频| 成年免费大片在线观看| 亚洲国产精品合色在线| 亚洲av美国av| 国产中年淑女户外野战色| 亚洲,欧美,日韩| 在线观看一区二区三区| 欧美成人a在线观看| 免费在线观看日本一区| av在线观看视频网站免费| 亚洲av一区综合| 麻豆av噜噜一区二区三区| 少妇的逼水好多| av国产免费在线观看| 午夜福利视频1000在线观看| 国产69精品久久久久777片| 无人区码免费观看不卡| 日韩国内少妇激情av| 久久久久久久久久黄片| 色视频www国产| 波野结衣二区三区在线| 久久久久久大精品| 精品午夜福利视频在线观看一区| 动漫黄色视频在线观看| 超碰av人人做人人爽久久| av在线老鸭窝| 午夜免费成人在线视频| 一边摸一边抽搐一进一小说| 欧美高清成人免费视频www| www.色视频.com| 久久99热6这里只有精品| 中文亚洲av片在线观看爽| 超碰av人人做人人爽久久| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 日韩亚洲欧美综合| 日韩精品中文字幕看吧| 国产国拍精品亚洲av在线观看| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 色精品久久人妻99蜜桃| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 免费在线观看成人毛片| 精品国产亚洲在线| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 日韩 亚洲 欧美在线| 亚洲专区国产一区二区| 亚洲av一区综合| 欧美最黄视频在线播放免费| 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类 | 伦理电影大哥的女人| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 国产午夜精品久久久久久一区二区三区 | 中文字幕熟女人妻在线| 久久伊人香网站| 国产午夜精品久久久久久一区二区三区 | 在线观看66精品国产| 亚洲成人精品中文字幕电影| 久久久久久久久久黄片| 国产精品免费一区二区三区在线| 男女床上黄色一级片免费看| 午夜a级毛片| 日本 av在线| 成人午夜高清在线视频| 真实男女啪啪啪动态图| 午夜免费成人在线视频| 精品欧美国产一区二区三| 免费看光身美女| 午夜福利免费观看在线| 乱码一卡2卡4卡精品| 3wmmmm亚洲av在线观看| 国产日本99.免费观看| 国产午夜福利久久久久久| 夜夜爽天天搞| 中文资源天堂在线| 九色成人免费人妻av| 最近最新中文字幕大全电影3| 亚洲精品一区av在线观看| 国产人妻一区二区三区在| 精品不卡国产一区二区三区| 色播亚洲综合网| 欧美日韩国产亚洲二区| 免费高清视频大片| 精品99又大又爽又粗少妇毛片 | ponron亚洲| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 日韩有码中文字幕| 亚洲成人免费电影在线观看| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 国产精品av视频在线免费观看| 欧美中文日本在线观看视频| 三级国产精品欧美在线观看| a在线观看视频网站| 内射极品少妇av片p| 精品久久国产蜜桃| 男女那种视频在线观看| 久久这里只有精品中国| 特大巨黑吊av在线直播| 精品人妻视频免费看| 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区 | 男人的好看免费观看在线视频| 又黄又爽又免费观看的视频| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 免费人成在线观看视频色| 美女高潮喷水抽搐中文字幕| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 男人狂女人下面高潮的视频| 此物有八面人人有两片| 成人av在线播放网站| 两个人的视频大全免费| 国产精品嫩草影院av在线观看 | 脱女人内裤的视频| 久久精品影院6| 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 老司机福利观看| 午夜福利欧美成人| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 丁香欧美五月| 亚洲欧美激情综合另类| 此物有八面人人有两片| bbb黄色大片| 一进一出抽搐gif免费好疼| 国产欧美日韩一区二区精品| 午夜福利在线观看免费完整高清在 | 午夜福利18| xxxwww97欧美| 午夜影院日韩av| 国内精品久久久久久久电影| 午夜福利在线在线| 国产成人aa在线观看| 日韩欧美 国产精品| 久久久色成人| 91久久精品电影网| 成人av在线播放网站| 一进一出抽搐gif免费好疼| av女优亚洲男人天堂| 国产乱人视频| 午夜激情欧美在线| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 97碰自拍视频| 99久久精品国产亚洲精品| 中文字幕av成人在线电影| 午夜激情欧美在线| 亚洲精品一区av在线观看| 在线看三级毛片| 国产精品影院久久| 日本黄色片子视频| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 91av网一区二区| 色av中文字幕| 男女做爰动态图高潮gif福利片| 99久久成人亚洲精品观看| 黄片小视频在线播放| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 天美传媒精品一区二区| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 国内少妇人妻偷人精品xxx网站| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| 久久久国产成人精品二区| 国产真实伦视频高清在线观看 | 亚洲七黄色美女视频| 在线十欧美十亚洲十日本专区| 99久久无色码亚洲精品果冻| 九九在线视频观看精品| 精品欧美国产一区二区三| 亚洲 国产 在线| 麻豆av噜噜一区二区三区| 一a级毛片在线观看| 内地一区二区视频在线|