• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Process Parameters of Preparing MoS2 Films by RF Magnetron Sputtering

    2023-03-14 13:56:14,,,,,,
    人工晶體學(xué)報(bào) 2023年2期

    , , , , , ,

    (School of Sciences, Henan University of Technology, Zhengzhou 450001, China)

    Abstract:MoS2 films were prepared on quartz substrate by radio frequency (RF) magnetron sputtering. The effect of sputtering time, sputtering temperature, argon flow rate and sputtering power on the structure of MoS2 films was studied by orthogonal test method. The crystallinity, thickness and surface morphology of MoS2 films were analyzed by XRD, Raman, XPS, EDS and SEM, the optimal process parameters for preparing MoS2 films were obtained. It is found that the crystallinity of the sample is poor at higher or lower sputtering temperature, and the XRD diffraction peak of the sample is not obvious at lower sputtering temperature. When the temperature is 250 ℃, the sample has more XRD diffraction peaks and better crystallinity. According to the orthogonal test, sputtering temperature plays a crucial role in the crystallization of MoS2, followed by argon flow rate. When sputtering temperature is 250 ℃, argon flow rate is 6 mL/min, sputtering time is 30 min, and sputtering power is 300 W or 400 W, the crystallinity of MoS2 film is better. The film prepared under this condition is thicker, but it points out the direction for future experiments. In the following experiments, sputtering temperature, sputtering power and argon flow rate can be kept unchanged. By shortening the time, films with a thickness of 58.9 nm have been successfully prepared.

    Key words:MoS2 films; RF magnetron sputtering; two-dimensional material; orthogonal test method; process parameter

    0 Introduction

    In recent years, two-dimensional (2D) materials, for instance, graphene and transition metal dichalcogenides (TMDCs) have attracted enormous research interests[1-4]. Molybdenum disulfide (MoS2), a unique transition-metal disulfide that is abundant in nature[5-7], is supposed to be a two-dimensional material because its thickness can be adjusted from bulk to monolayer[8-11]. MoS2has been broadly used in memory devices, sensors, optoelectronic devices, and biomedical fields due to its excellent physical and chemical properties[12-14]. The main techniques for preparing single-layer or few layer MoS2film materials are: micromechanical exfoliation, solution exfoliation, chemical vapor deposition (CVD)[15], wet chemical method, hydrothermal synthesis, and physical vapor deposition (PVD)[16]. However, the properties of MoS2prepared by different preparation method are significantly different. CVD method has the advantages of fast film forming speed and large area. Still, this method has defects such as high reaction temperature, environmental pollution by residues, and equipment corrosion. Due to the fast film forming speed, and uniform particle size, magnetron sputtering technology can be used to prepare MoS2films with various properties, so the method commonly used in industry[17]. But the crystal structure changes caused by magnetron sputtering process parameters are not clear and there are few literature reports. In terms of substrate, silicon substrates are used more than quartz substrates in most experiments[18]. MoS2films prepared with silicon substrates can be used as field effect transistor and heterojunction, while MoS2films prepared with quartz substrates can be used as photodetector. Therefore, further investigation of preparation technology and performance of MoS2films is indispensable.

    In the literature reports, most of the MoS2films were prepared on silicon substrate by variable-controlling method[19]. However, it is difficult to get optimum process parameters using the variable-controlling method because of the complex preparation conditions. In this paper, optimum process parameters for preparing MoS2films from orthogonal tests were obtained and MoS2films on quartz substrates by radio frequency (RF) magnetron sputtering were successfully prepared.

    1 Experimental section

    1.1 Preparation of MoS2 films

    MoS2films were deposited on quartz substrates by RF magnetron sputtering, argon (Ar, purity 99.99%) was selected as sputtering gas. High-purity MoS2(MoS2, purity 99.99%) was selected as the target material. Quartz substrates were cleaned with absolute ethanol and deionized water. The working pressure is 1.0×10-3Pa. It is found that sputtering time, substrate temperature, argon flow rate, and sputtering power have a significant influence on the experimental results, so these four factors are selected as experimental conditions. Table 1 is the factor level table of the orthogonal experiment design. Sixteen samples were prepared for the experiment. Four factors (A, B, C, and D) represent sputtering time, sputtering temperature, argon flow rate, and sputtering power, respectively. The orthogonal test scheme was obtained in Table 2[20].

    Table 1 Orthogonal test table with 4 factors and 4 levels

    Table 2 Orthogonal test table of 16 samples combined by 4 factors and 4 levels

    1.2 Characterization of MoS2 films

    The microstructures of the deposited films were characterized by 8D Discover X-ray diffraction (XRD) analysis and Renishaw inVia Raman at an excitation light of 532 nm. The chemical composition and bonding of the films were characterized by Multifunctional X-ray photoelectron spectroscope (XPS; Axis ultra dld, Japan). The thickness and morphology of the films were determined by scanning electron microscopy (SEM; S-4800, Hitachi, Tokyo, Japan). The elemental composition and atomic percentage of the films were measured using an X-ray energy spectrometer (EDS; S-4800, Hitachi, Tokyo, Japan).

    2 Results and discussion

    2.1 XRD patterns

    Fig.1 displays different diffraction peaks of 16 samples. The ICSD indicates that the diffraction peaks are 13.5°, 28.1°, 31.9°, 33.5°, and 59.0° correspond to (002), (021), (100), (101), and (110) crystal planes of MoS2. Sharp diffraction peaks indicate prominent MoS2crystals on the surface of the quartz substrate[21]. In Fig.1(a), the 0# is the spectrum of a quartz substrate. All samples have the (101) crystal plane diffraction peak except for samples 1# and 14#, which means that most samples grow preferentially on the (101) crystal plane, followed by (100) crystal plane. In Fig.1(d), samples 15# and 16# have high diffraction peaks at 33.5°.

    Fig. 1 XRD patterns of quartz substrate and sixteen samples

    2.2 Raman spectra

    Fig.2 Raman spectra of quartz substrate and sixteen samples at an excitation light of 532 nm

    Fig.3 Data analysis diagram of Raman and XRD

    2.3 Effect of process parameters on the structure of MoS2 film

    The height and width of XRD peak represent the grain size and crystallinity. The narrower and higher the peak, the larger the grain size, the more perfect the crystallization. On the contrary, the wider and lower the peak, the smaller the grain size, poor crystallization results in relatively small grains. The more the number of diffraction peaks, the better the crystallinity. To study the effect of process parameters on the structure of MoS2films, Table 3 gives the relationship between orthogonal design parameters and the number of XRD peaks. Taking the number of XRD diffraction peaks as the investigation index to investigate the effect of process parameters on the structure of MoS2film, as shown in Table 4.

    Table 3 Relationship between orthogonal design parameters and the number of XRD peaks

    Table 4 Effect of process parameters on the structure of MoS2 film

    In Table 4, it is shown that sputtering temperature plays the essential role in the crystallization effect of MoS2, followed by argon flow rate. And the best combination is A4B3C2D3, or A4B3C2D4(15#),i.e., sputtering temperature is 250 ℃, argon gas flow rate is 6 mL/min, sputtering time is 30 min, and sputtering power is 300 W or 400 W.

    As shown in Table 2 and Table 3, when sputtering temperature is 250 ℃, the crystallinity of samples 3#, 7#, and 11# is relatively good and has two diffraction peaks. There are four diffraction peaks in the spectrum of sample 15# with optimally process parameters. When sputtering temperature is very low, samples 1#, 5#, 9#, and 13# have only one diffraction peak and the intensity is very low. It shows that the lower sputtering temperature is not good for the growth of MoS2films.

    Although sputtering temperature of sample 4# has reached the maximum value, only the (101) crystal plane is crystallized due to the reduction of the mean free path of ions bombarding the substrate caused by the higher argon flow rate, which influences the etching of the film surface and film crystallization. So, argon flow rate is another indispensable influencing factor. When argon flow rate is too large, the number of diffraction peaks of XRD is minimal.

    The third influence is factor sputtering time, which influence the number of layers of MoS2. When sputtering time increases, number of layers increases, which results in the appearance of the (002) and (110) crystal planes of sample 15# and 16#, as shown in Fig.1. It can be seen from the samples 1#, 7#, 12# and 14# that it is not conducive to the growth of the (101) crystal plane when the sputtering power is lower.

    2.4 XPS

    Through the above analysis, samples 1# and 5# with poor crystallization and samples 10# and 16# with better crystallization were selected for further characterization and analysis. Fig.4(a) exhibits the XPS, which verifies the existence of S and Mo elements[26]. As shown in the figure, 531.3eV corresponds to the XPS peak of O 1s and is attributed to the oxidation of the samples before testing. The C 1s peak at 283.8 eV is associated with adventitious carbon in XPS test. The peak positions of S 2p and Mo 3d of sample 1# are shifted relative to other samples. It suggests that there are Mo and S atoms in sample 1# but no MoS2crystals, which is consistent with the results of XRD.

    Fig.4 XPS spectra of four samples: (a) survey scan; (b) Mo 3d elemental scan; (c) S 2p elemental scan

    Fig. 4(b) shows four peaks appearing at 226.5, 229.3, 232.4, and 235.1 eV in the Mo 3d spectrum[27]; these peaks correspond to S 2s, MoS2, and MoO3, respectively[28]. It can be seen that Mo 3d exhibits two spin-orbit characteristic peaks split into 3.10 eV. The high-intensity peaks of Mo 3d3/2at 229.3 eV and Mo 3d5/2at 232.4 eV are consistent with the literature[4,29]. Mo 3d3/2is typical of Mo4+in the MoS2lattice[30]. Furthermore, the peak at 235.1 eV identifies with the Mo—O bond[31], which demonstrates that the film surface is partly oxidized, and the S 2s peak occurs at 226.5 eV, indicating the formation of sulfide.

    Fig.4(c) indicates the two spin-orbit characteristic peaks of the S 2p spectrum at 163.2 eV (S 2p1/2), and 162 eV (S 2p3/2) split into 1.16 eV are consistent with the literature[24,29], reflecting the S2-state in the MoS2lattice. It can be seen from the Fig.4 that sample 16# has a high peak strength, which is due to its good crystallization effect, that is consistent with XRD and Raman results.

    2.5 EDS

    Fig.5 gives the EDS and atomic percentage of the samples 5#, 10#, 15#, and 16#. Table 5 details the atomic percentages of the four elements in four samples. The EDS information indicates that the ratio of Mo to S atoms in samples 15# and 16# is approximately 1∶2[32]. This phenomenon indicates that MoS2exists in the films (and a small number of defects is also present)[33], which is identified with the results of XRD. It shows that with the increase in sputtering temperature and sputtering time, the crystallization of MoS2film is better. Moreover, EDS found the existence of O and Si atoms, the presence of O element is due to the oxidation of the sample before testing, and the presence of Si element is due to the quartz substrates.

    Table 5 Atomic percentages of O, Si, S, and Mo for four samples /%

    Fig.5 EDS (a) and atomic percentage (b) of the samples 5#, 10#, 15# and 16#

    2.6 SEM

    SEM image of samples 5#, 10#, 15#, and 16# are given in Fig. 6. It is observed that the four samples have dense surfaces and the particle size of the last three samples is uniform, but their process parameters are different[34]. Temperature is the most important factor affecting MoS2crystallization, followed by argon flow rate. Fig. 6 shows that the MoS2film prepared at the sputtering temperature of 200 ℃ is thicker. This result is consistent with the Raman test. Although the sputtering time of samples 15# and 16# is longer than that of sample 10#, their thickness is thinner than that of sample 10#. This is because sample 15# has the most suitable temperature and sample 16# has a low argon flow. Fig. 6 (c) shows the optimal process parameters of sample 15#.

    Fig.6 SEM images and cross-section images of samples

    16 samples were prepared by magnetron sputtering, and it can be confirmed that temperature and argon flow rate have great influence. However, the prepared samples are all micron films instead of 2D materials. Next, by keeping sputtering temperature, argon flow rate and sputtering power constant and shortening sputtering time, thinner films can be prepared. Sample 17# with less time was prepared. The optimized process parameters were used for sample 17, but time was reduced, i.e.. The sputtering temperature, argon flow rate, and sputtering power were set to 250 ℃, 6 mL/min, and 300 W, respectively, sputtering time was reduced from 30 min to 1 min. Fig.7 shows the morphology and cross-section images of sample 17#. It can be seen from Fig. 7 that the surface of 17# sample is dense and thickness is 58.9 nm. It shows that the result of orthogonal test is feasible.

    Fig.7 SEM image and cross-section image of samples 17#

    3 Conclusion

    MoS2films were prepared on quartz substrates by RF magnetron sputtering. The sputtering temperature plays an essential role in the crystallization effect of MoS2, followed by argon flow rate. Prepared MoS2films are in better crystallization when sputtering temperature is 250 ℃, argon flow rate is 6 mL/min, sputtering time is 30 min, and sputtering power is 300 or 400 W. As can be seen from XRD, MoS2film grows preferentially at (101) orientation, followed by the (100) crystal plane. XPS tests show that there are typical Mo4+in the prepared films, which prove the existence of MoS2. It can be seen from SEM with the increase in sputtering time, the thickest MoS2films were prepared under 200 ℃. The film prepared under orthogonal test conditions is thicker, by keeping the sputtering temperature, argon flow rate and sputtering power constant and shortening the sputtering time, 2D films were prepared.

    看十八女毛片水多多多| 91精品国产国语对白视频| 国产在视频线精品| 亚洲精品中文字幕在线视频| 国产探花极品一区二区| 亚洲熟女精品中文字幕| 国产精品三级大全| 午夜激情av网站| 国产成人系列免费观看| 欧美日韩亚洲综合一区二区三区_| 超色免费av| 国产精品三级大全| 麻豆乱淫一区二区| 一本一本久久a久久精品综合妖精| 伊人亚洲综合成人网| 国产成人欧美在线观看 | 日本猛色少妇xxxxx猛交久久| 人妻人人澡人人爽人人| 少妇精品久久久久久久| 久久99一区二区三区| 少妇人妻久久综合中文| 好男人视频免费观看在线| 女人被躁到高潮嗷嗷叫费观| 亚洲成av片中文字幕在线观看| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 18禁动态无遮挡网站| 国产一卡二卡三卡精品 | 日韩欧美精品免费久久| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 美女主播在线视频| 国产免费视频播放在线视频| 伊人久久国产一区二区| 免费观看av网站的网址| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美亚洲国产| 一区在线观看完整版| 亚洲国产精品一区三区| 晚上一个人看的免费电影| 亚洲在久久综合| av在线观看视频网站免费| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 成人亚洲精品一区在线观看| 最新在线观看一区二区三区 | 黄色视频在线播放观看不卡| 久久天堂一区二区三区四区| 久久99精品国语久久久| 两个人看的免费小视频| 建设人人有责人人尽责人人享有的| 精品人妻在线不人妻| 人成视频在线观看免费观看| 久久ye,这里只有精品| 亚洲欧美精品综合一区二区三区| 999精品在线视频| 韩国高清视频一区二区三区| 91国产中文字幕| 亚洲欧洲国产日韩| 久久久精品94久久精品| 中文字幕高清在线视频| 蜜桃国产av成人99| a级片在线免费高清观看视频| 精品福利永久在线观看| 大片电影免费在线观看免费| 欧美日韩国产mv在线观看视频| 嫩草影视91久久| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 久久ye,这里只有精品| 亚洲欧美精品综合一区二区三区| 成年动漫av网址| 精品免费久久久久久久清纯 | 午夜福利视频在线观看免费| 在线精品无人区一区二区三| 亚洲人成77777在线视频| 午夜福利网站1000一区二区三区| 香蕉国产在线看| av天堂久久9| 丝袜脚勾引网站| 久久国产精品男人的天堂亚洲| 国产欧美亚洲国产| 国产伦人伦偷精品视频| 欧美最新免费一区二区三区| 老司机影院毛片| 成人手机av| 亚洲国产av新网站| svipshipincom国产片| 亚洲综合色网址| 午夜日韩欧美国产| 秋霞在线观看毛片| 在线亚洲精品国产二区图片欧美| 男人舔女人的私密视频| 久久狼人影院| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| 别揉我奶头~嗯~啊~动态视频 | 国产av精品麻豆| 日本av免费视频播放| 色综合欧美亚洲国产小说| 亚洲 欧美一区二区三区| a 毛片基地| 黑人巨大精品欧美一区二区蜜桃| av视频免费观看在线观看| 国产精品av久久久久免费| 亚洲美女黄色视频免费看| 国产激情久久老熟女| 午夜日韩欧美国产| 在线观看一区二区三区激情| 两性夫妻黄色片| 国产99久久九九免费精品| 成年av动漫网址| 国产有黄有色有爽视频| 777米奇影视久久| 水蜜桃什么品种好| av有码第一页| 亚洲av福利一区| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 99久久人妻综合| 色94色欧美一区二区| 极品人妻少妇av视频| 9热在线视频观看99| 久热这里只有精品99| 亚洲人成电影观看| av国产久精品久网站免费入址| 男人舔女人的私密视频| av.在线天堂| 美女扒开内裤让男人捅视频| 天堂俺去俺来也www色官网| 老汉色av国产亚洲站长工具| 亚洲av男天堂| 国产精品嫩草影院av在线观看| 久久精品aⅴ一区二区三区四区| 超色免费av| 日日摸夜夜添夜夜爱| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻 视频| 色婷婷av一区二区三区视频| 日韩中文字幕视频在线看片| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 飞空精品影院首页| 国产伦理片在线播放av一区| 香蕉丝袜av| 国产黄频视频在线观看| 亚洲国产中文字幕在线视频| 国产在视频线精品| 纯流量卡能插随身wifi吗| kizo精华| 中文天堂在线官网| 色吧在线观看| 色播在线永久视频| 欧美 日韩 精品 国产| 国产精品二区激情视频| 日韩av不卡免费在线播放| 亚洲av福利一区| 黄色毛片三级朝国网站| 美女视频免费永久观看网站| 国产伦理片在线播放av一区| 青草久久国产| 久久韩国三级中文字幕| 伊人久久国产一区二区| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 不卡av一区二区三区| 亚洲精品一二三| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 国产精品二区激情视频| 一边亲一边摸免费视频| 亚洲伊人色综图| 男的添女的下面高潮视频| 免费观看性生交大片5| 亚洲精品一区蜜桃| 久久性视频一级片| 五月天丁香电影| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码 | 97精品久久久久久久久久精品| 19禁男女啪啪无遮挡网站| 精品午夜福利在线看| 老司机在亚洲福利影院| avwww免费| 亚洲欧美一区二区三区久久| 欧美 亚洲 国产 日韩一| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 你懂的网址亚洲精品在线观看| 波多野结衣一区麻豆| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 久久ye,这里只有精品| 伊人久久国产一区二区| 麻豆av在线久日| 黄色毛片三级朝国网站| 尾随美女入室| 中文字幕色久视频| 18禁观看日本| 美女大奶头黄色视频| 中文字幕av电影在线播放| 久久狼人影院| 成人国产av品久久久| www.av在线官网国产| 亚洲综合色网址| 晚上一个人看的免费电影| 在线看a的网站| 亚洲 欧美一区二区三区| 日韩电影二区| 免费在线观看黄色视频的| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 免费av中文字幕在线| 乱人伦中国视频| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 波多野结衣av一区二区av| 久久精品亚洲av国产电影网| 美国免费a级毛片| a级片在线免费高清观看视频| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区 | 国产一区亚洲一区在线观看| 韩国精品一区二区三区| 欧美精品一区二区免费开放| 黄色视频在线播放观看不卡| 精品免费久久久久久久清纯 | 亚洲国产精品国产精品| av免费观看日本| 女性被躁到高潮视频| 伦理电影大哥的女人| 久久久精品94久久精品| 久久国产精品男人的天堂亚洲| 日韩伦理黄色片| 久热爱精品视频在线9| 国产高清不卡午夜福利| 亚洲情色 制服丝袜| 免费黄频网站在线观看国产| av福利片在线| 在线观看www视频免费| 国产福利在线免费观看视频| 国产在视频线精品| 啦啦啦 在线观看视频| 国产激情久久老熟女| 亚洲伊人色综图| 香蕉国产在线看| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 丁香六月欧美| 亚洲精品美女久久av网站| 免费av中文字幕在线| 亚洲成人免费av在线播放| av.在线天堂| 欧美少妇被猛烈插入视频| av网站免费在线观看视频| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 性色av一级| 深夜精品福利| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 色网站视频免费| 啦啦啦在线观看免费高清www| 欧美日韩av久久| 免费看不卡的av| 国产一区二区三区av在线| 高清不卡的av网站| 男女午夜视频在线观看| 国产福利在线免费观看视频| 国产精品一区二区在线不卡| 中文字幕制服av| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 欧美亚洲日本最大视频资源| 色94色欧美一区二区| 日韩中文字幕视频在线看片| netflix在线观看网站| 日韩一区二区视频免费看| 亚洲免费av在线视频| 中文字幕亚洲精品专区| 成人黄色视频免费在线看| 一二三四在线观看免费中文在| 黄频高清免费视频| 国产免费视频播放在线视频| 国产在线免费精品| 久久久久久久精品精品| 人妻一区二区av| 熟女少妇亚洲综合色aaa.| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 麻豆乱淫一区二区| av网站免费在线观看视频| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| 十八禁网站网址无遮挡| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 亚洲精品国产色婷婷电影| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 老汉色∧v一级毛片| 男女边摸边吃奶| 不卡av一区二区三区| 黑丝袜美女国产一区| 免费观看性生交大片5| 黄片小视频在线播放| 国产激情久久老熟女| 搡老岳熟女国产| 国产一区二区在线观看av| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 悠悠久久av| 两性夫妻黄色片| 亚洲欧美激情在线| 丝袜人妻中文字幕| 一级黄片播放器| 母亲3免费完整高清在线观看| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 欧美97在线视频| 少妇被粗大猛烈的视频| 男的添女的下面高潮视频| 一区二区三区精品91| 在线观看免费高清a一片| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美网| 日韩视频在线欧美| 欧美精品一区二区大全| 精品一区二区三区av网在线观看 | 建设人人有责人人尽责人人享有的| 亚洲中文av在线| 国产男人的电影天堂91| 999精品在线视频| 中文字幕人妻丝袜制服| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 日韩一本色道免费dvd| 少妇猛男粗大的猛烈进出视频| 欧美在线黄色| 最黄视频免费看| av女优亚洲男人天堂| 欧美xxⅹ黑人| 免费在线观看视频国产中文字幕亚洲 | 曰老女人黄片| 日韩一本色道免费dvd| 777久久人妻少妇嫩草av网站| 亚洲一码二码三码区别大吗| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久小说| 国产一级毛片在线| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网 | 欧美日韩视频精品一区| 老司机靠b影院| 男人操女人黄网站| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 飞空精品影院首页| 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 人成视频在线观看免费观看| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 久久久久久免费高清国产稀缺| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 日本一区二区免费在线视频| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 精品一区二区免费观看| 午夜福利视频在线观看免费| 一边亲一边摸免费视频| 亚洲精华国产精华液的使用体验| 黄片播放在线免费| 五月开心婷婷网| 毛片一级片免费看久久久久| 欧美激情高清一区二区三区 | 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 日韩欧美一区视频在线观看| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 欧美av亚洲av综合av国产av | 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 亚洲人成电影观看| 日韩欧美精品免费久久| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 国产爽快片一区二区三区| 老鸭窝网址在线观看| 久久精品国产综合久久久| 人妻一区二区av| av网站在线播放免费| 精品亚洲乱码少妇综合久久| 欧美日韩成人在线一区二区| av不卡在线播放| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品国产精品| av在线观看视频网站免费| 国产片特级美女逼逼视频| 午夜福利在线免费观看网站| 色视频在线一区二区三区| 美女中出高潮动态图| 国产精品三级大全| 亚洲成av片中文字幕在线观看| 午夜免费男女啪啪视频观看| 成人国语在线视频| 欧美日韩亚洲高清精品| 青草久久国产| 免费黄色在线免费观看| 51午夜福利影视在线观看| 一级毛片我不卡| 看十八女毛片水多多多| 青春草亚洲视频在线观看| 国产精品麻豆人妻色哟哟久久| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 国产有黄有色有爽视频| 久久青草综合色| 午夜免费男女啪啪视频观看| 大码成人一级视频| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| 日日爽夜夜爽网站| 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 天天躁狠狠躁夜夜躁狠狠躁| 欧美人与性动交α欧美精品济南到| 最近2019中文字幕mv第一页| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| av在线播放精品| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 国产av码专区亚洲av| 亚洲成人手机| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 一级爰片在线观看| 99热网站在线观看| 久久久久久人妻| 日本午夜av视频| 在线观看www视频免费| 国产黄色免费在线视频| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 在现免费观看毛片| 亚洲人成电影观看| 久久久久久人妻| 777米奇影视久久| 宅男免费午夜| 国产成人免费无遮挡视频| av.在线天堂| 少妇 在线观看| av免费观看日本| 久久久国产欧美日韩av| 国产片内射在线| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 国产黄色免费在线视频| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 男女床上黄色一级片免费看| av国产久精品久网站免费入址| 男女下面插进去视频免费观看| 丰满饥渴人妻一区二区三| 亚洲国产av影院在线观看| 亚洲国产看品久久| 观看美女的网站| 国产有黄有色有爽视频| 精品少妇一区二区三区视频日本电影 | 丰满乱子伦码专区| www.av在线官网国产| 不卡av一区二区三区| 一区二区三区精品91| 亚洲伊人色综图| 国产精品三级大全| 啦啦啦 在线观看视频| 不卡av一区二区三区| 国产黄频视频在线观看| 女人被躁到高潮嗷嗷叫费观| 在线观看免费午夜福利视频| 不卡av一区二区三区| 久久久久网色| 免费高清在线观看日韩| av国产精品久久久久影院| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 91成人精品电影| 日本午夜av视频| 欧美 日韩 精品 国产| 观看av在线不卡| 女人被躁到高潮嗷嗷叫费观| 看非洲黑人一级黄片| 久久久久久人妻| 国产精品秋霞免费鲁丝片| 男人舔女人的私密视频| 午夜老司机福利片| 伊人久久国产一区二区| 最近最新中文字幕免费大全7| 丝袜喷水一区| av又黄又爽大尺度在线免费看| 久久国产精品男人的天堂亚洲| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说| 夫妻午夜视频| 热99久久久久精品小说推荐| 精品第一国产精品| 中文字幕人妻丝袜一区二区 | 亚洲国产毛片av蜜桃av| 国产成人欧美在线观看 | 最近最新中文字幕大全免费视频 | 黄色视频不卡| 久久久久精品性色| 久久久久精品久久久久真实原创| 日韩欧美一区视频在线观看| 精品少妇内射三级| a级毛片在线看网站| 国产深夜福利视频在线观看| 一级毛片电影观看| 久久国产精品大桥未久av| 秋霞在线观看毛片| 最新在线观看一区二区三区 | 一级毛片黄色毛片免费观看视频| 国产亚洲一区二区精品| 可以免费在线观看a视频的电影网站 | 亚洲av成人精品一二三区| 午夜福利一区二区在线看| 精品卡一卡二卡四卡免费| 麻豆av在线久日| 97在线人人人人妻| 久久综合国产亚洲精品| 国产免费福利视频在线观看| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 久久国产精品大桥未久av| 青春草国产在线视频| 亚洲精品乱久久久久久| 十八禁网站网址无遮挡| a 毛片基地| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人国产一区在线观看 | 国产成人系列免费观看| av在线播放精品| 日韩人妻精品一区2区三区| 亚洲精品一区蜜桃| 国产精品女同一区二区软件| 久久99一区二区三区| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| 欧美激情高清一区二区三区 | 日韩中文字幕视频在线看片| 19禁男女啪啪无遮挡网站| 最近2019中文字幕mv第一页| 日日撸夜夜添| 一本一本久久a久久精品综合妖精| 一区二区三区乱码不卡18| 天天操日日干夜夜撸| 少妇 在线观看| 午夜av观看不卡| 在线免费观看不下载黄p国产| 男女免费视频国产| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 亚洲欧美一区二区三区国产| 又大又爽又粗| 悠悠久久av| 日本vs欧美在线观看视频| 国产成人系列免费观看| www.熟女人妻精品国产| 99国产精品免费福利视频| 亚洲国产欧美网| 男女下面插进去视频免费观看| 国产乱来视频区| 99热国产这里只有精品6| 无遮挡黄片免费观看| √禁漫天堂资源中文www| 精品少妇黑人巨大在线播放| 精品国产国语对白av| 永久免费av网站大全| 激情视频va一区二区三区| 亚洲国产av新网站| avwww免费| 校园人妻丝袜中文字幕| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 亚洲欧洲精品一区二区精品久久久 | 女性生殖器流出的白浆| 国产精品一二三区在线看| 欧美日韩亚洲国产一区二区在线观看 | 国产午夜精品一二区理论片| 一区二区三区乱码不卡18| 欧美日韩一级在线毛片|