劉小玉, 李旭東, 關(guān)坤萍
沉默對急性髓系白血病細胞阿糖胞苷敏感性的影響及作用機制研究*
劉小玉1, 李旭東2, 關(guān)坤萍3△
(1山西醫(yī)科大學基礎(chǔ)醫(yī)學院生物化學與分子生物學教研室,山西 太原 030001;2山西醫(yī)科大學第二臨床醫(yī)學院,山西 太原 030001;3山西醫(yī)科大學第二醫(yī)院檢驗科,山西 太原 030001)
探討敲減染色體分離1樣蛋白()對急性髓系白血病細胞株THP-1細胞生物學行為及阿糖胞苷(Ara-C)敏感性的影響,并分析相關(guān)作用機制。采用RT-qPCR法檢測CSE1L的 mRNA表達水平,流式細胞術(shù)檢測細胞周期及凋亡水平,LinkedOmics及DAVID數(shù)據(jù)庫進行基因本體論(gene ontology,GO)功能注釋和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析, Western blot法檢測細胞周期素D1(cyclin D1)、原癌基因-、促凋亡蛋白Bax和抗凋亡蛋白Bcl-2的相對表達水平。與對照組相比,空載(sh-NC)組及敲減(sh-CSE1L)組標記綠色熒光蛋白(GFP)的THP-1細胞占比均>90%。與空載組相比,敲減組CSE1L的mRNA相對表達量降低至40%,凋亡率顯著升高0.01。敲減組比空載組G0/G1期細胞占比升高(0.05),S期細胞占比降低(<0.05),而G2/M期無明顯差異。在1 μmol/L阿糖胞苷處理24 h后,敲減組細胞活力最低(<0.05),凋亡率最高(0.01)。此外,敲減可下調(diào)Bcl-2、cyclin D1和c-Myc蛋白表達水平,上調(diào)Bax蛋白表達水平(<0.05)。生物信息學分析顯示CSE1L主要參與細胞周期等通路。敲減可阻滯THP-1細胞周期,誘導細胞凋亡,提高細胞對阿糖胞苷的敏感性,其可能通過調(diào)控細胞周期相關(guān)分子發(fā)揮作用。
阿糖胞苷;急性髓系白血??;染色體分離1樣蛋白;細胞周期;細胞凋亡
急性髓系白血病(acute myeloid leukemia, AML)是一種骨髓髓系細胞分化受阻,正常血細胞生成受抑制而引發(fā)的嚴重血液學疾?。?]。以阿糖胞苷(cytarabine, Ara-C)為代表的化療藥物是一種抑制DNA復制的嘧啶類似物,是治療AML的主要藥物[2-3]。常規(guī)劑量的阿糖胞苷可使AML緩解率超過70%,然而超過60%的AML患者復發(fā)[4-5]。高劑量阿糖胞苷強化治療可提高AML患者的總體生存率、降低復發(fā)率,但增加了藥物的副作用[6]。染色體分離1樣蛋白(chromosome segregation 1-like, CSE1L),又稱為細胞凋亡易感基因(cellular apoptosis susceptible, CAS),位于人染色體20q13,分子量為110 kD[7]。CSE1L作為一種核轉(zhuǎn)運因子,參與多種細胞功能,包括細胞增殖、細胞周期、細胞凋亡、微囊形成及腫瘤轉(zhuǎn)移等[8-10]。據(jù)報道,CSE1L在多種實體瘤中高表達,包括肺癌、乳腺癌和胃癌等[11-14]。本課題組前期研究證實CSE1L在AML患者骨髓組織中高表達,且與患者的不良預后相關(guān)[15],但其與阿糖胞苷化療敏感性的關(guān)系及作用機制尚不明確。本研究以急性髓系白血病THP-1細胞為模型,進一步探討CSE1L對THP-1細胞周期和凋亡的影響,及其與阿糖胞苷敏感性的關(guān)系,為提高阿糖胞苷敏感性提供理論依據(jù)。
細胞周期及凋亡試劑盒購自北京索萊寶生物科技有限公司;阿糖胞苷購自阿拉丁生物公司;抗c-Myc、細胞周期素D1(cyclin D1)、Bcl-2及Bax抗體購自萬類生物科技有限公司;抗β-actin抗體購自北京中杉金橋生物技術(shù)有限公司;抗CSE1L抗體購自Abcam;RPMI-1640購自Gibco;特級胎牛血清(fetal bovine serum, FBS)購自武漢普諾賽生命科技有限公司;攜帶HBLV-h-CSE1L shRNA1-ZsGreen-Puro的sh-CSE1L慢病毒和攜帶HBLV-ZsGreen-Puro的無義表達sh-NC慢病毒由上海漢恒生物科技有限公司設(shè)計并合成。
2.1數(shù)據(jù)來源及生物信息學分析基于LinkedOmics(http://www.linkedomics.org/)數(shù)據(jù)庫在線分析CSE1L正相關(guān)的基因,并通過DAVID(https://david.ncifcrf.gov/home.jsp)在線網(wǎng)站進行相關(guān)基因分析,以<0.05、Statistic>0為閾值篩選,進行基因本體論(gene ontology, GO)功能注釋和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析。
2.2細胞培養(yǎng)及分組THP-1細胞株由山西醫(yī)科大學第二醫(yī)院血液中心實驗室贈送。THP-1細胞使用RPMI-1640培養(yǎng)基(含10% FBS及1%青霉素和鏈霉素),在37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng)。細胞分為5組:(1)對照(control)組:未經(jīng)任何處理的THP-1細胞;(2)空載(sh-NC)組:攜帶空載體的慢病毒感染THP-1細胞;(3)敲減(sh-CSE1L)組:攜帶CSE1L干擾基因的慢病毒感染THP-1細胞;(4)sh-NC+Ara-C組:經(jīng)1 μmol/L阿糖胞苷[16]處理24 h的sh-NC組THP-1 細胞;(5)sh-CSE1L+Ara-C組:經(jīng)1 μmol/L阿糖胞苷處理24 h的sh-CSE1L組THP-1 細胞。
2.3CCK-8法檢測細胞活力分別接種8 000個THP-1細胞到96孔細胞培養(yǎng)板,并將處理組加入1 μmol/L阿糖胞苷。24 h后,向每孔中加入10 μL CCK-8試劑。在孵箱孵育2 h后,用酶標儀在450 nm處測定各孔吸光度()值。計算細胞活力,細胞活力(%)=(加藥組-空白組)/(對照組-空白組)×100%。
2.4Western blot檢測蛋白表達水平收集一定數(shù)量THP-1細胞,使用RIPA強裂解液裂解細胞。30 min后,在4 ℃、12 000 r/min條件下離心15 min。收集上清液,使用BCA法測蛋白濃度,隨后100 ℃變性蛋白5 min。取30 μg總蛋白經(jīng)電泳分離后轉(zhuǎn)移到0.45 μm的PVDF膜上。使用5%脫脂奶粉溶液封閉1 h后,加入Ⅰ抗4 ℃孵育過夜。Ⅱ抗孵育1 h后,ECL曝光檢測相應(yīng)蛋白的表達信號。用ImageJ軟件進行蛋白條帶灰度值分析。
2.5RT-qPCR檢測mRNA表達水平收集一定數(shù)量THP-1細胞,用Trizol試劑提取各組細胞總RNA。測定總RNA濃度后,利用反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄為cDNA。以此cDNA為模板,設(shè)定RT-qPCR程序: 95 ℃ 30 s; 95 ℃ 5 s, 60 ℃ 34 s,40個循環(huán); 95 ℃ 15 s, 60 ℃ 1 min, 95 ℃ 15 s。CSE1L的上游引物序列為5'-ATTAAGCTTGTTCTGGATGCCTTTG-3',下游引物序列為5'-GAGGCATTTGCATGGGTA-3';內(nèi)參照β-actin的上游引物序列為5'-TGGCACCCAGCACAATGAA-3',下游引物序列為5'-CTAAGTCATAGTCCGCCTAGAAGCA-3'。采用2-ΔΔCt法進行數(shù)據(jù)分析。
2.6DNA含量法檢測細胞周期收集一定數(shù)量的THP-1細胞,預冷PBS洗滌2次后,加入70%預冷乙醇4 ℃固定過夜。預冷PBS洗去固定液,然后加入100 μL RNaseA溶液在37 ℃水浴,30 min后,加入400 μL PI溶液,4 ℃避光孵育30 min。最后在波長488 nm處上機檢測。
2.7Annexin V-PE/7-AAD雙染法檢測細胞凋亡收集一定數(shù)量的THP-1細胞,預冷PBS洗滌2次后,用去離子水按1∶3稀釋結(jié)合緩沖液重懸細胞。加入5 μL Annexin V/PE溶液,混勻后在室溫避光孵育5 min。然后加入10 μL 7-AAD溶液,并加400 μL PBS,立刻進行流式檢測。
用SPSS 26.0和GraphPad Prism 8進行統(tǒng)計分析及作圖。兩基因的相關(guān)性使用Pearson相關(guān)分析。計量資料以均數(shù)±標準差(mean±SD)表示。組間比較采用檢驗或檢驗。以0.05為差異有統(tǒng)計學意義。
前期,同課題組成員已通過免疫組化實驗證實CSE1L在急性髓系白血病中高表達[15]。本研究以急性髓系白血病THP-1細胞為模型進一步探討敲減對THP-1細胞周期、凋亡的影響及其與阿糖胞苷敏感性的關(guān)系。經(jīng)嘌呤霉素篩選的空載組及敲減組THP-1細胞綠色熒光蛋白(green fluorescent protein, GFP)表達水平均大于90%(圖1A),提示慢病毒感染效果較好。RT-qPCR結(jié)果顯示,與空載組相比,敲減組細胞CSE1L的mRNA水平降低到40%(圖1B),提示敲減效果較好。
Figure 1. Establishment of a stably transfected cell line of CSE1L knockdown THP-1 cells. A: flow cytometry was used to detect the expression of GFP; B: the knockdown efficiency of sh-CSE1L was verified by RT-qPCR.
流式細胞術(shù)結(jié)果顯示,與空載組相比,敲減組G0/G1期細胞占比升高(0.05),S期細胞占比降低(0.05),G2/M期無顯著差異(圖2A)。Western blot結(jié)果顯示,與空載組相比,敲減組cyclin D1和c-Myc蛋白表達水平均顯著降低(0.05或0.01),見圖2B。
Figure 2. Effect of CSE1L knockdown on THP-1 cell cycle. A: knockdown of CSE1L blocked the THP-1 cell cycle; B: effect of CSE1L knockdown on the protein expression levels of cyclin D1 and c-Myc in THP-1 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs sh-NC group.
流式細胞凋亡檢測結(jié)果顯示,與空載組相比,敲減組凋亡率顯著高于空載組(<0.01),見圖3A。Western blot結(jié)果顯示,與空載組相比,敲減組Bax蛋白相對表達水平顯著升高(<0.05),而Bcl-2蛋白顯著降低(<0.05),見圖3B。
Figure 3. Effect of CSE1L knockdown on apoptosis of THP-1 cells. A: knockdown of CSE1L induced apoptosis of THP-1 cells; B: effect of CSE1L knockdown on the expression levels of apoptosis-related proteins in THP-1 cells. Mean±SD. n=3. *P<0.05,**P<0.01 vs sh-NC group.
細胞活力結(jié)果顯示,經(jīng)阿糖胞苷處理的敲減組細胞活力最低(<0.05),見圖4A。流式細胞凋亡實驗結(jié)果顯示,經(jīng)阿糖胞苷處理的敲減組細胞,凋亡率顯著高于其他組(<0.01),見圖4B。
Figure 4. Changes in THP-1 cell viability (A) and apoptosis (B) in different Ara-C treatment groups. Mean±SD. n=3. *P<0.05 vs sh-CSE1L group; △P<0.05, △△P<0.01 vs sh-CSE1L+Ara-C group.
基于LinkedOmics數(shù)據(jù)庫,篩選出與CSE1L正相關(guān)的基因5 044個,選擇前50個作圖(圖5A)?;贒AVID數(shù)據(jù)庫,將CSE1L相關(guān)性最靠前的1 000個正相關(guān)基因做通路富集分析,以0.05,F(xiàn)DR<0.05為閾值篩選,選擇count值靠前的10個通路作圖(圖5B)。GO功能注釋結(jié)果顯示,這些正相關(guān)基因主要富集在細胞質(zhì),其次是細胞核;參與的生物過程主要是DNA修復,其次是細胞周期;發(fā)揮的生物學功能主要是蛋白質(zhì)結(jié)合,其次是RNA結(jié)合。KEGG通路富集結(jié)果顯示,CSE1L及其相關(guān)基因主要參與細胞周期、核質(zhì)運輸和FNA復制等信號通路。為進一步探究CSE1L正相關(guān)基因在細胞周期中的位置及作用,我們將細胞周期通路中的相關(guān)基因帶入KEGG網(wǎng)站,生成相應(yīng)的路線圖(圖5C),并將相關(guān)基因用紅色標志。可以看出,大部分正相關(guān)基因與細胞周期的S、G2/M期相關(guān)。
Figure 5. Positive correlation gene analysis for CSE1L. A: top 50 positive genes associated with CSE1L; B: enrichment analysis of GO and KEGG pathways; C: position relationship of CSE1L positive related genes during the cell cycle.
AML因其預后差、生存率低和容易復發(fā)等特點,嚴重威脅患者的健康[17]。阿糖胞苷通過抑制細胞DNA的合成干擾細胞增殖,是目前臨床上用于治療多種類型白血病的常用藥[18-19]。盡管阿糖胞苷等多種基因毒性藥物具有強殺傷力,但腫瘤細胞往往通過其固有的DNA修復能力來減輕藥物引起的DNA損傷,從而產(chǎn)生毒副作用,導致腫瘤患者的5年生存率不足30%[20-21]。近年來,已有研究者注意到將特異性小分子抑制劑與AML標準化療藥物聯(lián)合使用可能是一種理想的治療選擇[16]。因此,尋找新的特異性小分子抑制劑作用靶點以實現(xiàn)聯(lián)合治療迫在眉睫。
CSE1L最早發(fā)現(xiàn)于乳腺癌,其在維持細胞增殖與凋亡的平衡中扮演重要角色[22]。CSE1L已被發(fā)現(xiàn)在多種實體瘤中高表達。Luo等[23]研究表明,敲減可降低鼻咽癌細胞的增殖,增加腫瘤細胞的凋亡。Liu等[24]研究結(jié)果顯示,敲減可影響肺癌細胞增殖,誘導細胞凋亡。本課題組前期已證實CSE1L在AML骨髓組織中表達水平高[15],但CSE1L在AML細胞中的作用尚無相關(guān)研究。為了研究CSE1L在AML細胞中作用的具體機制,我們以急性髓系白血病THP-1細胞為例,構(gòu)建靶向敲減慢病毒,并感染THP-1細胞形成穩(wěn)定敲減的細胞株。細胞周期檢查點的破壞已被證實是腫瘤的一個標志[25]。本研究結(jié)果顯示,敲減可阻滯THP-1細胞周期由G0/G1期向S期轉(zhuǎn)變。此外,敲減引起周期相關(guān)蛋白cyclin D1和c-Myc表達水平降低。細胞凋亡是一種程序性細胞死亡,是參與腫瘤細胞死亡的代表性機制[26]。本研究結(jié)果顯示,敲減可誘導THP-1細胞凋亡。同時凋亡相關(guān)蛋白Bcl-2表達水平降低,Bax蛋白表達水平升高。在阿糖胞苷處理條件下,敲減的細胞活力降低,凋亡率增加,表明抑制CSE1L可改善THP-1細胞對阿糖胞苷的敏感性。
迄今為止,CSE1L在AML中的分子作用機制尚不明確。因此,我們基于LinkedOmics數(shù)據(jù)庫分析CSE1L在AML中正相關(guān)的基因。結(jié)果顯示CSE1L正相關(guān)基因、和等均參與了AML的發(fā)生發(fā)展。Thol等[27]研究表明,基因突變與AML的不良預后高度相關(guān)。Fobare等[28]研究證實,基因突變與AML患者較高的早期死亡率相關(guān)。Zikmund等[29]研究顯示,抑制可抑制AML細胞周期的進展,阻止細胞增殖。結(jié)果提示CSE1L在AML的發(fā)生發(fā)展中存在復雜的分子交互關(guān)系。基于DAVID數(shù)據(jù)庫對CSE1L及其正相關(guān)前1 000個基因進行GO功能注釋及KEGG通路富集分析,顯示這些基因主要富集在細胞周期、DNA修復和蛋白質(zhì)結(jié)合等過程??梢暬瘏⑴c細胞周期調(diào)控的相關(guān)基因,大部分與細胞周期的S和G2/M期相關(guān)。本研究提示CSE1L在AML中可能通過調(diào)控相關(guān)分子,影響生物合成,改變細胞周期等通路,進而調(diào)控AML的發(fā)生發(fā)展。
綜上所述,敲減可誘導THP-1細胞凋亡,降低細胞活力,阻滯細胞周期,提高該細胞對阿糖胞苷的敏感性。我們建議對CSE1L進行抑制,并與標準化療藥物阿糖胞苷聯(lián)合治療,可以作為一種治療CSE1L高表達的AML病例的新治療策略。在未來的研究中,我們將從體內(nèi)和體外繼續(xù)研究敲減CSE1L對AML多種化療藥物敏感性的影響及更詳細的分子機制。
[1] L?wenberg B, Rowe JM. Introduction to the review series on advances in acute myeloid leukemia (AML)[J]. Blood, 2016, 127(1):1.
[2] Watts JM, Bradley T. The Hi's and Lo's of cytarabine in acute myeloid leukemia[J]. Clin Cancer Res, 2020, 26(13):3073-3076.
[3] Momparler RL. Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia[J]. Exp Hematol Oncol, 2013, 2:20.
[4] Malani D, Murum?gi A, Yadav B, et al. Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML[J]. Leukemia, 2017, 31(5):1187-1195.
[5] Negoro E, Yamauchi T, Urasaki Y, et al. Characterization of cytarabine-resistant leukemic cell lines established from five different blood cell lineages using gene expression and proteomic analyses[J]. Int J Oncol, 2011, 38(4):911-919.
[6] Li Z, Guo JR, Chen QQ, et al. Exploring the antitumor mechanism of high-dose cytarabine through the metabolic perturbations of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia HL-60 cells[J]. Molecules, 2017, 22(3):499.
[7] Alnabulsi A, Agouni A, Mitra S, et al. Cellular apoptosis susceptibility (chromosome segregation 1-like,) gene is a key regulator of apoptosis, migration and invasion in colorectal cancer[J]. J Pathol, 2012, 228(4):471-481.
[8] Liu C, Wei J, Xu K, et al. CSE1L participates in regulating cell mitosis in human seminoma[J]. Cell Prolif, 2019, 52(2):e12549.
[9] Nagashima S, Maruyama J, Honda K, et al. CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells[J]. J Biol Chem, 2021, 297(1):100803.
[10] Lin HC, Li J, Cheng DD, et al. Nuclear export protein CSE1L interacts with P65 and promotes NSCLC growth via NF-κB/MAPK pathway[J]. Mol Ther Oncolytics, 2021, 21:23-36.
[11] Li Y, Yuan S, Liu J, et al. CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF[J]. J Cell Physiol, 2020, 235(3):2071-2079.
[12] Wang YS, Peng C, Guo Y, et al. CSE1L promotes proliferation and migration in oral cancer through positively regulating MITF[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10):5429-5435.
[13] Pimiento JM, Neill KG, Henderson-Jackson E, et al. Knockdown ofgene in colorectal cancer reduces tumorigenesis[J]. Am J Pathol, 2016, 186(10):2761-2768.
[14] Lorenzato A, Biolatti M, Delogu G, et al. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells[J]. Exp Cell Res, 2013, 319(17):2627-2636.
[15] 郭浩然. CAS在急性白血病中的表達及臨床相關(guān)性研究[D]. 太原: 山西醫(yī)科大學, 2021.
Guo HR. Expression and clinical correlation study of CAS in acute leukemia[D]. Taiyuan: Shanxi Medical University, 2021.
[16] Menendez-Gonzalez JB, Sinnadurai S, Gibbs A, et al. Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells[J]. Sci Rep, 2019, 9(1):12212.
[17] 張海鵬, 陳景, 陳秀云, 等. 和厚樸酚增強NK-92細胞對KG-1a細胞的殺傷作用及機制研究[J]. 中國病理生理雜志, 2021, 37(3):475-480.
Zhang HP, Chen J, Chen XY, et al. Honokiol enhances killing effect of NK-92 cells on KG-1a cells[J]. Chin J Pathophysiol, 2021, 37(3):475-480.
[18] Krauss AC, Gao X, Li L, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia[J]. Clin Cancer Res, 2019, 25(9):2685-2690.
[19] Murphy T, Yee KWL. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia[J]. Expert Opin Pharmacother, 2017, 18(16):1765-1780.
[20] Song Y, Park SY, Wu Z, et al. Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells[J]. J Enzyme Inhib Med Chem, 2020, 35(1):1069-1079.
[21] Heuser M, Ofran Y, Boissel N, et al. Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2020, 31(6):697-712.
[22] Behrens P, Brinkmann U, Wellmann A. CSE1L/CAS: its role in proliferation and apoptosis[J]. Apoptosis (London), 2003, 8(1):39-44.
[23] Luo Y, Qu X, Kan D, et al. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma[J]. Bioengineered, 2021, 12(1):6967-6980.
[24] Liu W, Zhou Z, Li Y, et al. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer[J]. Am J Cancer Res, 2021, 11(9):4380-4393.
[25] Barnaba N, LaRocque JR. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma[J]. Cell Cycle, 2021, 20(11):1041-1051.
[26] Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging (Albany NY), 2016, 8(4):603-619.
[27] Thol F, Bollin R, Gehlhaar M, et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications[J]. Blood, 2014, 123(6):914-920.
[28] Fobare S, Kohlschmidt J, Ozer HG, et al. Molecular, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia[J]. Blood Adv, 2022, 6(5):1371-1380.
[29] Zikmund T, Paszekova H, Kokavec J, et al. Loss of ISWI ATPase SMARCA5 (SNF2H) in acute myeloid leukemia cells inhibits proliferation and chromatid cohesion[J]. Int J Mol Sci, 2020, 21(6):2073.
Effect ofsilencing on cytarabine sensitivity of acute myeloid leukemia cells
LIU Xiaoyu1, LI Xudong2, GUAN Kunping3△
(1,,,030001,;2,030001,;3,,030001,)
To investigate the effect of chromosome segregation 1-like (CSE1L) on biological behavior and cytarabine (Ara-C) sensitivity of acute myeloid leukemia THP-1 cells, and to analyze its mechanism.The THP-1 cells were divided into control group, negavtive control (sh-NC) group, sh-CSE1L group, sh-NC+Ara-C group, and sh-CSE1L+Ara-C group. The mRNA expression of CSE1L was detected by RT-qPCR. Cell cycle and apoptosis were detected by flow cytometry. Gene ontology (GO) functional annotation and KEGG pathway enrichment analysis were performed by LinkedOmics and DAVID databases. The protein levels of cyclin D1, c-Myc, Bax and Bcl-2 were detected by Western blot.The expression of green fluorescent protein (GFP) was more than 90% in both the sh-NC and sh-CSE1L groups when compared with control group. Compared with sh-NC group, the mRNA expression level of CSE1L was reduced to 40% in sh-CSE1L group, and the apoptosis rate was significantly higher (<0.01). The cell cycle G0/G1phase was significantly higher (<0.05), and the S phase was significantly lower (<0.05) in sh-CSE1L group than in sh-NC group, while there was no significant difference in G2/M phase. Cell viability was the lowest (<0.05) and apoptosis was the highest (<0.01) in sh-CSE1L group after treated with Ara-C. In addition, silencing ofdown-regulated Bcl-2, cyclin D1 and c-Myc protein levels (<0.05), but up-regulated Bax protein level (<0.05). Bioinformatic analysis concluded that CSE1L is mainly involved in the cell cycle and other pathways.Knockdown ofblocks THP-1 cell cycle, induces apoptosis, and improves the sensitivity to Ara-C, which may act by regulating cell cycle-related molecules.
cytarabine; acute myeloid leukemia; chromosome segregation 1-like; cell cycle; apoptosis
R733.71; R363.2
A
10.3969/j.issn.1000-4718.2023.02.009
1000-4718(2023)02-0269-07
2022-09-06
2022-11-30
[基金項目]山西省重點研發(fā)計劃項目(No. 201903D321093)
Tel: 13700514558; E-mail: guankunping5135@126.com
(責任編輯:宋延君,李淑媛)