張創(chuàng), 余孝君, 唐波, 江威, 謝君
胱天蛋白酶11介導的Hippo信號通路在腦缺血再灌注小鼠血腦屏障破壞中的作用和機制*
張創(chuàng), 余孝君△, 唐波, 江威, 謝君
(長沙市第一醫(yī)院神經內科,湖南 長沙 410000)
探討胱天蛋白酶11(caspase-11)在腦缺血再灌注小鼠血腦屏障(blood-brain barrier, BBB)破壞中的作用和機制。將72只小鼠[包括36只(編碼caspase-11的基因)敲減(knockdown, KD)小鼠和36只野生型(wild-type, WT)小鼠]分為4組(每組18只):WT組、KD組、大腦中動脈閉塞/再灌注損傷(middle cerebral artery occlusion/reperfusion injury, MCAO/R)組和KD+MCAO/R組。其中,MCAO/R組和KD+MCAO/R組分別采用WT小鼠和KD小鼠建立MCAO/R模型,其他組在不干擾動脈的情況下進行了相同的外科手術。此外,將腦微血管內皮細胞系bEnd.3分為4組:正常對照(normal control, NC)組、KD組、氧糖剝奪/再灌注損傷(oxygen-glucose deprivation/reperfusion injury, OGD/R)組和KD+OGD/R組。其中,KD組和KD+OGD/R組bEnd.3細胞進行敲減轉染,OGD/R組和KD+OGD/R組細胞建立OGD/R模型。通過TTC、HE和尼氏染色分析腦損傷的程度。通過伊文思藍染料滲漏、緊密連接(tight junction, TJ)蛋白的表達和經內皮電阻(transendothelial electrical resistance, TEER)的測量來研究BBB的破壞情況。MCAO/R后,caspase-11在小鼠腦內皮細胞中表達上調(<0.05)。KD+MCAO/R組小鼠較MCAO/R組腦梗死體積減少,內皮屏障通透性降低,TJ蛋白ZO-1和occludin表達增加(<0.05)。在體外,OGD/R顯著增加了bEnd.3細胞caspase-11的蛋白水平(<0.05),并降低了TJ蛋白ZO-1和occludin的蛋白水平(<0.05)。敲減通過促進TJ蛋白表達和增加TEER來保護BBB完整性。敲減逆轉了MCAO/R和OGD/R誘導的腦內皮細胞中Hippo信號通路哺乳動物不育系20樣激酶1(mammalian sterile 20-like kinase 1, MST1)磷酸化水平的升高(<0.05)。此外,用p-MST1抑制劑XMU-MP-1治療可減輕caspase-11對BBB分解的影響(<0.05)。抑制caspase-11至少部分通過調節(jié)Hippo信號通路來保持腦缺血再灌注小鼠BBB的完整性。
胱天蛋白酶11;缺血性卒中;血腦屏障;Hippo信號通路;哺乳動物不育系20樣激酶1
缺血性卒中是一種危及生命的疾病,具有高死亡率、高殘疾率和高復發(fā)率。卒中急性期的能量和氧氣損失會導致神經元凋亡、炎癥、活性氧積累、興奮性毒性和血腦屏障(blood-brain barrier, BBB)損傷,從而進一步加劇神經功能缺損[1-2]。由于卒中治療窗口期很窄,大量患者錯過了最佳治療期。因此,尋找新的靶點和方法來治療卒中,特別是在急性期,是必要和關鍵的。胱天蛋白酶11(caspase-11)作為一種非經典炎癥小體,最初在腫瘤相關研究中被發(fā)現,據報道可促進多種類型的腫瘤進展[3-4]。caspase-11可招募凋亡斑點樣蛋白和caspase-1,形成多蛋白復合物,以支持白細胞介素(interleukin, IL)-1β和IL-18的成熟和分泌,從而誘導炎癥細胞中的炎癥反應[5]。最近的一項研究表明,caspase-11主要定位于腦卒中后認知障礙小鼠的內皮細胞[6]。此外,先前研究表明,caspase-11的選擇性抑制劑wedelolactone通過抑制星形膠質細胞中caspase-11的激活,防止甲基苯丙胺誘導的神經炎癥發(fā)生[7]。盡管如此,caspase-11在缺血性卒中損傷中的作用,尤其是在BBB破壞中的作用尚不清楚。在本研究中,我們通過建立大腦中動脈閉塞/再灌注(middle cerebral artery occlusion/reperfusion, MCAO/R)小鼠模型來研究caspase-11在急性期缺血性卒中中的作用。同時我們在腦微血管內皮細胞系bEnd.3中使用了氧糖剝奪/再灌注損傷(oxygen-glucose deprivation/reperfusion injury, OGD/R)模型以進一步驗證caspase-11的潛在機制。
使用CRISPR/Cas9技術制作的(編碼caspase-11的基因)敲減(knockdown, KD)小鼠36只,54只年齡匹配的C57BL/6J同窩小鼠用作野生型(wild-type, WT)對照,以上小鼠均為SPF級,購自南京大學模式動物研究所[生產許可證號:SCXK(蘇)2018-0008]。在平均體重為22~25 g的8周齡雄性小鼠上進行實驗。小鼠在12 h明暗循環(huán)中每籠飼養(yǎng)6只,并在適當的溫度(22±2) ℃和濕度55%±5%條件下獲得充足的食物和水供應。為了確定caspase-11在MCAO/R損傷后大腦中的表達情況,將18只WT小鼠分為6組,每組3只:假手術(sham)組、MACO 0.5 h組、MACO 1 h組、MCAO 1 h/R 1 h組、MCAO 1 h/R 6 h組和MCAO 1 h/R 24 h組。將72只小鼠(包括36只KD小鼠和36只WT小鼠)分為4組,每組18只:WT組、KD組、MCAO/R組和KD+MCAO/R組,其中MCAO/R組和KD+MCAO/R組分別采用WT小鼠和KD小鼠建立MCAO/R模型,其他組在不干擾動脈的情況下進行相同的外科手術。
2.1MCAO/R模型的建立參照文獻方法[8],使用基于腔內細絲的方法誘導MCAO/R。在構建模型之前用1.5%異氟醚麻醉小鼠。為了阻斷小鼠大腦同側半球的血液供應,通過將4-0尼龍單絲縫合線插入右側頸內動脈來阻斷右側大腦中動脈。動物接受MCAO相應時間,然后通過小心撤出細絲進行再灌注。假手術組小鼠,在不干擾動脈的情況下進行相同的外科手術。在整個過程中,小鼠放置在加熱毯上維持體溫。
2.22,3,5-三苯基氯化四唑(2,3,5-triphenyl tetrazolium chloride, TTC)染色再灌注后24 h迅速取出大腦,進行TTC染色以評估組織活力并測量梗死面積。在ImageJ軟件中測量梗死面積。梗死面積=對側正常腦組織半球面積-患側正常腦組織面積。梗死體積=每個切片上的梗死面積×切片厚度。梗死體積表示為每個同側半球梗死的百分比。
2.3神經功能缺損評估參照文獻方法[9],采用Longa測試對實驗動物的神經功能缺損按18分制進行分級。在再灌注后24 h對小鼠進行測試。Longa測試的指標包括:自發(fā)活動,運動對稱性,前肢對稱性,攀爬,對觸摸的反應,以及對觸須觸摸的反應。所有6項單項測試均以3、2、1或0分的四分制評分。通過將每個單項測試記錄的分數相加獲得最終分數,在健康動物中觀察到的最高分數為18。
2.4組織病理學評估MCAO/R后處死小鼠,用生理鹽水從心臟灌注至體循環(huán),直至肝臟呈白色,再灌注4 ℃的4%多聚甲醛溶液。將大腦取出,在4 ℃的4%甲醛溶液中浸泡過夜。之后,大腦通過分級乙醇和二甲苯進行處理。通過使用腦基質,前腦被冠狀切開成兩個等距的切片,并在分離后腦后嵌入石蠟塊中。將位于冠狀平面中前囟后面1.5 mm的腦切片用vibratome (Leica)切成5 μm切片并置于載玻片上。切片在二甲苯中脫蠟并在100%至70%梯度乙醇中再水化。最后進行蘇木精-伊紅染色(HE染色),切片用雙蒸水洗滌,乙醇脫水,二甲苯清洗,使用BX-51光學顯微鏡(Olympus)檢查。對于尼氏染色,將切除的腦組織用4%甲醛固定,切成薄片并用甲苯啶藍染色,光學顯微鏡用于圖像捕獲,神經元中圓形和輕微染色的細胞核被稱為存活細胞。
2.5伊文思藍(Evans blue, EB)分析通過尾靜脈注射EB染色劑滲漏到大腦中來評估BBB滲透性。在對動物實施安樂死前2 h,將含2% EB(Sigma Aldrich)的生理鹽水以劑量為0.01 mL/ g體重注射到每只動物中。再灌注后24 h處死小鼠,快速取出大腦。然后將小鼠用生理鹽水灌注。對于EB泄漏進行定量測量,取出同側半球并在1 mL三氯乙酸中均質化,然后以12 000×離心20 min。通過用分光光度計測量上清液在620 nm處的吸光度()來定量測定EB濃度。使用標準曲線將EB含量量化為每克組織的微克EB。
2.6免疫熒光染色在再灌注后24 h用PBS和4%多聚甲醛灌注3 min后,取出腦組織并置于4 ℃的4%多聚甲醛中。1 d后,腦組織用40%蔗糖脫水5 d,包埋在OTC中,-70 ℃冷凍。使用冷凍切片機(Leica)將腦組織切成10 μm厚的切片,然后放置在粘附顯微鏡載玻片上。將腦切片或培養(yǎng)細胞固定在4%多聚甲醛中,用0.3% Triton X-100滲透,5%正常驢血清封閉,并在4 ℃下用特異性Ⅰ抗(caspase-11,1∶200, Abcam;p-MST1,1∶200, CST;CD31、GFAP、Iba1和NeuN,1∶200, Santa Cruz)孵育過夜。然后,將切片與相應的Ⅱ抗在室溫下孵育。DAPI 用于染色細胞核。對于免疫染色分析,使用FV1000共聚焦顯微鏡(Olympus)或IX73熒光顯微鏡(Olympus)拍攝圖像以檢查染色的腦切片。
2.7細胞培養(yǎng)腦微血管內皮細胞系bEnd.3購自中國科學院上海細胞生物學研究所,接種在含有10%胎牛血清、1×105U/L青霉素和100 mg/L鏈霉素的DMEM培養(yǎng)基中37 ℃培養(yǎng)。培養(yǎng)環(huán)境為5% CO2和95%空氣。將細胞分為4組:正常對照(normal control,NC)組、KD組、OGD/R組和KD+OGD/R組。其中,KD組和KD+OGD/R組bEnd.3細胞進行敲減(shCASP11轉染24 h)。然后,OGD/R組和KD+OGD/R組細胞建立OGD/R模型。
2.8OGD/R模型建立參照文獻方法[8],在體外復制OGD/R。為了在體外通過OGD/R產生I/R樣條件,將bEnd.3細胞置于37 ℃厭氧室(0.2% O2、5% CO2、95% N2)中并在無葡萄糖培養(yǎng)液中培養(yǎng)6 h。在氧-葡萄糖剝奪后,將細胞置于含有10%胎牛血清和葡萄糖的DMEM中,然后在常氧條件下孵育24 h以模擬再灌注。對照組取自在正常條件下培養(yǎng)的細胞。根據先前的報道[10],選擇性哺乳動物不育系20樣激酶1(mammalian sterile 20-like kinase 1, MST1)抑制劑XMU-MP-1(上海藍木化工有限公司)的有效劑量為50 nmol/L,用于受損的內皮細胞。
2.9Western blot再灌注后24 h處死小鼠,快速取出大腦。在OGD/R后迅速收集細胞。將細胞或組織置于玻璃勻漿器中在1∶107 (/)冰冷的蛋白質提取緩沖液中勻漿。收集可溶性蛋白,4 ℃、12 000×離心10 min,取上清液檢測caspase-11、MST1、p-MST1、ZO-1、occludin和總蛋白質。采用BCA蛋白檢測試劑盒測定蛋白質濃度。每組等量的蛋白裂解物(50 μg)用8%和12% SDS-PAGE分離。隨后將凝膠上的蛋白質轉移到硝酸纖維素膜上(260 mA,2 h)。將膜用含5%脫脂牛奶的PBST室溫封閉2 h,然后分別與兔Ⅰ抗(caspase-11,1∶800, Abcam;MST1和p-MST1,1∶500, CST;ZO-1和occludin,1∶500,Abcam)4 ℃孵育過夜。然后洗滌膜并與Ⅱ抗(抗兔IgG,1∶3 000,Proteintech)室溫下孵育1.5 h??笹APDH抗體(1∶1 000,Proteintech)作為對照。用增強的化學發(fā)光試劑觀察蛋白質條帶,并使用蛋白質印跡檢測系統(tǒng)(Bio-Rad)量化信號密度。
2.10經內皮電阻(transendothelial electrical resistance, TEER)的測量使用上皮伏歐計(EVOM, World Precision Instruments)測量培養(yǎng)的單層bEnd.3細胞的TEER。實驗進行3次,記錄平均值。
所有計量數據均使用SPSS 18.0軟件進行分析,并表示為平均值±標準誤(mean±SEM)。通過Shapiro-Wilk 檢驗分析數據分布的正態(tài)性。為了比較兩組之間的差異,正態(tài)分布的連續(xù)變量通過Student's檢驗進行比較,而非正態(tài)分布的變量通過Mann-Whitney檢驗進行比較。對于3組或多組之間的多重比較,使用單因素方差分析,如果數據呈正態(tài)分布,則使用Bonferroni事后檢驗;如果數據非正態(tài)分布,則使用Kruskal-Wallis檢驗。以<0.05為差異有統(tǒng)計學意義。
為了確定caspase-11在缺血性卒中的具體作用,我們首先使用Western blot和免疫熒光分析測量了MCAO/R損傷后大腦中caspase-11的表達。結果顯示,與假手術組相比,MCAO 1 h/R 1 h組caspase-11表達顯著增加(<0.05),并且高表達一直保持到再灌注后24 h(圖1A)。細胞分布研究表明,caspase-11在MCAO 1 h/R 1 h后主要分布在腦微血管內皮細胞(brain microvascular endothelium cells, BMECs)中,在小膠質細胞、星形膠質細胞和神經元中分布較少(圖1B)。為了證實caspase-11在腦MCAO/R損傷早期主要在BMECs中表達,我們在體外OGD/R模型中評估了caspase-11在腦源性內皮細胞系bEnd.3細胞中的表達。在OGD 6 h/R 1 h后caspase-11表達逐漸增加(<0.05),見圖1C。免疫熒光分析顯示caspase-11的高表達發(fā)生在OGD 6 h/R 1 h (圖1D),這與體內研究的結果一致。
Figure 1. Expression of caspase-11 in cerebral microvascular endothelial cells with ischemia/reperfusion injury. A: time course of brain MCAO/R-induced total protein expression of caspase-11 in mice detected by Western blot; B: anti-caspase-11 (green), anti-CD31 (red, to label endothelial cells), anti-GFAP (red, to label astrocytes), anti-Iba1 (red, to label microglia), anti-NeuN (red, to label neurons) antibodies, and DAPI (blue) were combined to detect MCAO/R-induced total caspase-11 protein expression; C: bEnd.3 cells were exposed to 6 h of OGD, and 1 h, 3 h, 6 h and 18 h of reoxygenation, and time course of OGD/R-induced caspase-11 total protein expression in bEnd.3 cells was detected by Western blot; D: bEnd.3 cells underwent 6 h of OGD and 1 h of reoxygenation, and OGD/R-induced total protein expression of caspase-11 was detected (scale bar=20 μm). Mean±SEM. n=3. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs NC group.
根據Western blot結果,caspase-11在KD小鼠中的敲減效率約為50%~60%(圖2A)。在KD小鼠中構建MACO/R模型后,我們檢測了梗死體積。與WT組相比,MACO/R組小鼠腦梗死體積顯著增加(<0.05),KD+MACO/R組小鼠腦梗死體積顯著降低(<0.05),見圖2B。HE染色和和尼氏染色顯示,KD+MACO/R組小鼠腦組織中的空泡形成、死亡神經元數量較MACO/R組小鼠減少,神經功能缺損評分顯著增加(<0.05),見圖2C~E。
Figure 2. Effect of CASP11 knockdown on brain injury induced by MCAO/R in mouse brain. A: Western blot verification of CASP11 knockdown efficiency in KD group; B: representative photos of mouse brains stained with TTC [the tissue was stained red to indicate no infarction, and unstained (white) to indicate the infarct area], and quantitative analysis of infarct volume in different groups; C: morphological changes of MCAO/R mouse brains under light microscope (HE staining, scale bar=50 μm; normal tissue was purple-red, with round and full nuclei and dense texture; the damaged tissue was whitish, pyknosis, numerous holes, and signs of hemorrhage); D: Nissl staining showing neuronal death in the MCAO/R mouse brain (scale bar=50 μm); E: neurological deficit scores in different groups (the lower the score, the more serious the damage). Mean±SEM. n=5. ##P<0.01 vs WT group; *P<0.05, **P<0.01 vs MCAO/R group.
與MCAO/R組相比,KD+MACO/R組小鼠EB滲漏顯著減少(<0.05),腦組織中ZO-1和occludin表達顯著升高(<0.05),見圖3。
Figure 3. Effects of CASP11 knockdown on blood-brain barrier disruption induced by MCAO/R in mouse brain. A: representative gross appearance of Evans blue-stained brains in mice of different groups; B: representative Western blot pictures of ZO-1 and occludin expression in mouse brain tissues of different groups. Mean±SEM. n=5. ##P<0.01 vs WT group; *P<0.05, **P<0.01 vs MCAO/R group.
在體外用慢病毒在內皮細胞中沉默CASP11表達。通過Western blot評估shCASP11的轉染效率,顯示被成功敲減(圖4A)。TEER測定用于評估體外BBB完整性,如圖4B所示,與NC組相比,OGD/R組TEER顯著降低(<0.05),但OGD/R+KD組TEER顯著高于OGD/R組(<0.05)。此外,OGD/R組ZO-1和occludin表達較NC組顯著降低(<0.05),而OGD/R+KD組OGD/R組ZO-1和occludin表達顯著升高(<0.05),見圖4C。
Figure 4. The effect of CASP11 knockdown on OGD/R-induced blood-brain barrier decomposition. A: Western blot was used to verify the efficiency of CASP11 knockdown in endothelial cells of KD group; B: quantification of transendothelial permeability by TEER assay; C: Western blot analysis of ZO-1, occludin and GAPDH after OGD/R. Mean±SEM. n=3. ##P<0.01 vs NC group; *P<0.05, **P<0.01 vs OGD/R group.
與WT組相比,MCAO/R組腦組織中p-MST1水平顯著提高(<0.05),但MCAO/R+KD組p-MST1水平顯著低于MCAO/R組(<0.05),見圖5A。為了進一步研究內皮細胞中p-MST1的水平是否發(fā)生變化,我們在MCAO/R后小鼠大腦的完整和同側半影區(qū)進行了p-MST1和CD31雙重染色來標記。與WT組相比,MCAO/R組的p-MST1和CD31的共定位數量顯著增加(<0.05),但MCAO/R+KD組p-MST1和CD31的共定位數量顯著低于MCAO/R組(<0.05),見圖5B。此外,與體內觀察到的模式相似,OGD/R組p-MST1表達顯著提高(<0.05),而OGD/R+KD組則顯著降低(<0.05),見圖5C。與NC組相比,OGD/R組p-MST1和caspase-11水平顯著增加(<0.05)。然而,XMU-MP-1預處理逆轉了OGD/R后p-MST1表達的增加(<0.05),而不影響caspase-11的水平(圖5D)。此外,OGD/R+XMU-MP-1組的TEER顯著高于OGD/R組(<0.05),見圖5E。
Figure 5. The effect of CASP11 knockdown on Hippo signaling pathway in vivo and in vitro. A: representative Western blot pictures of MST1 and p-MST1 expression in mouse brain tissues of different groups (n=5); B: MCAO/R induced CD31+ p-MST1+ vessel length versus total CD31+ vessel length detected by immunofluorescence in mice using a combination of anti-p-MST1 (green), CD31 (red) and DAPI (blue) (n=5); C: Western blot analysis of MST1, p-MST1 and GAPDH after OGD/R (n=3); D: Western blot analysis of the effect of XMU-MP-1 on the expression of caspase-11, MST1, p-MST1 and GAPDH after OGD/R (n=3); E:the effect of XMU-MP-1 (p-MST1 inhibitor) on transendothelial permeability after OGD/R was determined by TEER analysis (n=3). Mean±SEM. ##P<0.01 vs WT group; *P<0.05 vs MCAO/R group; △△P<0.01 vs NC group; $P<0.05 vs OGD/R.
本研究旨在探討caspase-11對缺血性卒中后BBB完整性的影響,并在小鼠腦缺血再灌注損傷后觀察到caspase-11在腦微血管中的表達增加。的敲減改善了小鼠腦缺血再灌注損傷誘導的BBB功能障礙。研究證實,caspase-11參與調節(jié)腦缺血再灌注損傷中Hippo信號傳導,并通過促進緊密連接(tight junction, TJ)蛋白降解來破壞腦BBB完整性。因此,在小鼠腦缺血再灌注期間抑制caspase-11表達是促進缺血性卒中恢復的新策略。
BBB是一個復雜的多維網狀屏障,可阻止有害物質進入中樞神經系統(tǒng),腦缺血可破壞其結構和功能[11-12]。最近,越來越多的證據表明,炎癥小體參與許多疾病中的BBB損傷。caspase-11被證明是革蘭氏陰性細菌脂多糖(lipopolysaccharide, LPS)的直接傳感器,其通過和LPS的脂質A部分之間的相互作用形成LPS-caspase-11復合物,進而導致caspase-11非正常炎癥體的激活和隨后誘導的炎癥反應[13]。研究顯示,caspase-11非經典炎性體誘導的K+流出是NLRP3炎性體通過細胞膜損傷和細菌成孔毒素以及膜孔激活的必要步驟[14]。此外,caspase-11非經典炎癥小體的激活還誘導下游效應分子caspase-1的蛋白水解活化,導致caspase-1介導的蛋白水解成熟和促炎細胞因子IL-1β和IL-18通過膜孔[15]。然而到目前為止,缺血性卒中條件下caspase-11表達變化的時間過程、具體作用以及維持BBB完整性的調節(jié)機制仍不清楚。本研究顯示,在腦缺血再灌注損傷時,BMECs中caspase-11的表達變化最早,并在再灌注期間達到最高水平。此外,caspase-11在小膠質細胞、星形膠質細胞和神經元中分布較少,因此我們假設BMECs是caspase-11在缺血性卒中BBB損傷中的主要靶細胞。為了進一步探索caspase-11在腦缺血再灌注損傷誘導的BMECs中的功能,我們構建了敲減小鼠。在約50%至60%的敲減效率下,敲減減少了腦梗死體積和死亡神經元數量,改善了神經功能缺損。我們的結果表明敲減改善了MCAO/R誘導的小鼠腦損傷。
BBB內皮細胞通過TJ蛋白連接,在MCAO/R后TJ相關蛋白的mRNA和蛋白水平顯著降低[16]。許多增加TJ蛋白表達的藥物已被證明可以減少卒中后BBB滲漏[1-2]。相反,TJ的分解和重新分布導致BBB高滲透性,并誘導液體和小分子從血液外滲到中樞神經系統(tǒng),進一步破壞BBB并允許大分子最終滲漏[17]。本研究中,敲減可以降低伊文思藍滲漏,并增加TJ蛋白(ZO-1和occludin)的表達。此外,體外實驗也得到類似的結果,表明敲減可以通過促進TJ保存來維持內皮屏障的完整性。因此,caspase-11可能是維持MCAO/R小鼠BBB完整性的重要靶分子。
最近的研究證明,Hippo信號通路參與了腦缺血再灌注損傷誘導的BBB的破壞[11]。MST1是Hippo信號通路中的主要成員,其通過和Sav1激酶形成復合物,抑制了Hippo通路中的主要下游效應子YAP/TAZ[18]。許多研究表明,MST1參與炎癥、應激反應和細胞凋亡的進展[19]。在神經疾病方面,基因敲除通過調節(jié)抑郁樣小鼠的神經活動來防止工作記憶受損[20]。此外,MST1抑制通過逆轉相關的有絲分裂吞噬作用減輕非酒精性脂肪肝損傷[21]。研究顯示,MST1與腦缺血引起的神經炎癥有關,并且的基因敲減可減少神經元死亡并改善創(chuàng)傷性腦損傷的神經損傷[22]?;谶@些觀察,我們假設CASP11缺失通過影響MST1激活促進了BBB完整性,并通過體內、體外實驗證實了的敲減通過調節(jié)Hippo/MST1信號通路減輕MCAO/R、OGD/R誘導的BBB通透性增加。這些觀察豐富了我們對TJ信號傳導調控機制的認識,并為TJ在病理過程中的潛在作用提供了證據。然而,caspase-11影響MST1磷酸化的具體機制需要進一步研究。
綜上所述,抑制caspase-11表達在一定程度上有利于拮抗MCAO/R小鼠腦損傷誘導的內皮高通透性。作為一種非經典炎癥小體,敲減通過調節(jié)Hippo信號通路的啟動并維持MCAO/R小鼠腦內皮屏障的完整性。此外,我們的研究結果擴展了目前對TJ調控機制的理解,并為開發(fā)有效的預防和治療藥物提供了潛在的新靶點。
[1] Zhao B, Zhu J, Fei Y, et al. JLX001 attenuates blood-brain barrier dysfunction in MCAO/R rats via activating the Wnt/β-catenin signaling pathway[J]. Life Sci, 2020, 260:118221.
[2] Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood-brain barrier function in ischemia-reperfusion injury[J]. Mol Neurobiol, 2020, 57(3):1594-1606.
[3] Wu M, Shi J, He S, et al. cGAS promotes sepsis in radiotherapy of cancer by up-regulating caspase-11 signaling[J]. Biochem Biophys Res Commun, 2021, 551:86-92.
[4] Flood B, Manils J, Nulty C, et al. caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis[J]. Oncogene, 2019, 38(14):2658-2674.
[5] Wang J, Sahoo M, Lantier L, et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18[J]. PLoS Pathog, 2018, 14(5):e1007105.
[6] Liu C, Fu Q, Mu R, et al. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-caspase-11 pathway[J]. Brain Res, 2018, 1701:246-254.
[7] Du SH, Qiao DF, Chen CX, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes[J]. Front Mol Neurosc, 2017, 10:409.
[8] Qu XY, Zhang YM, Tao LN, et al. XingNaoJing injections protect against cerebral ischemia/reperfusion injury and alleviate blood-brain barrier disruption in rats, through an underlying mechanism of NLRP3 inflammasomes suppression[J]. Chin J Nat Med, 2019, 17(7):498-505.
[9] Wu KW, Lv LL, Lei Y, et al. Endothelial cells promote excitatory synaptogenesis and improve ischemia-induced motor deficits in neonatal mice[J]. Neurobiol Dis, 2019, 121:230-239.
[10] Zhang P, Wang T, Zhang D, et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway[J]. Transl Stroke Res, 2019, 10(6):729-743.
[11] Gong P, Zou Y, Zhang W, et al. The neuroprotective effects of insulin-like growth factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury[J]. Brain Res Bull, 2021, 177:373-387.
[12] 袁俊亮, 李卓然, 胡文立. 應加強生物學標志物在腦小血管病發(fā)病機制中的研究[J]. 中華醫(yī)學雜志, 2020, 100(43):3381-3384.
Yuan JL, Li ZR, Hu WL. Research on biological markers in the pathogenesis of cerebral small vessel disease should be strengthened [J]. Chin J Med Sci, 2020, 100(43):3381-3384.
[13] Finethy R, Dockterman J, Kutsch M, et al. Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock[J]. EMBO Rep, 2020, 21(11):e50830.
[14] Yi YS. Caspase-11 non-canonical inflammasome: emerging activator and regulator of infection-mediated inflammatory responses[J]. Int J Mol Sci, 2020, 21(8):2736.
[15] Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity, 2018, 49(4):740-753.e7.
[16] Zhao Y, Ma X, Zhou Y, et al. DDAH-1, via regulation of ADMA levels, protects against ischemia-induced blood-brain barrier leakage[J]. Lab Invest, 2021, 101(7):808-823.
[17] Yong YX, Yang H, Lian J, et al. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis[J]. Cell cycle, 2019, 18(16):1868-1881.
[18] Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4):211-226.
[19] Tian Y, Song H, Jin D, et al. MST1-Hippo pathway regulates inflammation response following myocardial infarction through inhibiting HO-1 signaling pathway[J]. J Recept Signal Transduct Res, 2020, 40(3):231-236.
[20] Chen B, Zhang Q, Yan Y, et al. MST1-knockdown protects against impairment of working memory via regulating neural activity in depression-like mice[J]. Genes Brain Behav, 2022, 21(2):e12782.
[21] Zhou T, Chang L, Luo Y, et al. MST1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy[J]. Redox Biol, 2019, 21:101120.
[22] Li D, Ni H, Rui Q, et al. Deletion of MST1 attenuates neuronal loss and improves neurological impairment in a rat model of traumatic brain injury[J]. Brain Res, 2018, 1688:15-21.
Role and mechanism of caspase-11-mediated Hippo signaling pathway in disruption of blood-brain barrier in mice with cerebral ischemia-reperfusion
ZHANG Chuang, YU Xiaojun△, TANG Bo, JIANG Wei, XIE Jun
(,,410000,)
To explore the role and mechanism of caspase-11 in the disruption of blood-brain barrier (BBB) in mice with cerebral ischemia-reperfusion.Seventy-two mice, including 36(caspase-11-encoding gene) knockdown (KD) mice and 36 wild-type (WT) mice, were divided into 4 groups: WT group, KD group, middle cerebral artery occlusion/reperfusion injury (MCAO/R) group and KD+MCAO/R group,with 18 mice in each group. The MCAO/R model was established in MCAO/R group and KD+MCAO/R group using WT mice and KD mice, respectively, while the mice in the other groups underwent the same surgical operation without disturbing the arteries. Brain microvascular endothelial cell line bEnd.3 was divided into 4 groups: normal control (NC) group, KD group, oxygen glucose deprivation/reperfusion injury (OGD/R) group and KD+OGD/R group. Thein bEnd.3 cells was knocked down in KD group and KD+OGD/R group, and the OGD/R model of the cells was established in OGD/R group and KD+OGD/R group. The degree of brain injury was analyzed using 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining and Nissl staining. The BBB breakdown was investigated with leakage of Evans blue dye, expression of tight junction (TJ) proteins, and measurement of transendothelial electrical resistance (TEER).Caspase-11 expression was up-regulated in endothelial cells after MCAO/R (<0.05). Reduced infarct volume and endothelial barrier permeability, and increased expression levels of TJ proteins ZO-1 and occludin after MCAO/R were observed in KD mice (<0.05)., OGD/R significantly increased the protein level of caspase-11 and decreased the protein levels of TJ proteins ZO-1 and occludin in bEnd.3 cells (<0.05).knockdown protected BBB integrity by promoting TJ protein expression and increasing TEER (<0.05).knockdown reversed MCAO/R and OGD/R-induced increases in mammalian sterile 20-like kinase 1 (MST1) phosphorylation of the Hippo signaling pathway in brain endothelial cells (<0.05). Furthermore, treatment with p-MST1 inhibitor XMU-MP-1 attenuated the effect of caspase-11 on BBB breakdown (<0.05).Inhibition of caspase-11 preserves the integrity of the BBB in cerebral ischemia-reperfusion mice at least in part by modulating the Hippo signaling pathway.
caspase-11; ischemic stroke; blood-brain barrier; Hippo signaling pathway; mammalian sterile line 20-like kinase 1
R743.31; R363.2
A
10.3969/j.issn.1000-4718.2023.02.007
1000-4718(2023)02-0250-09
2022-04-18
2022-09-27
[基金項目]湖南省創(chuàng)新型省份建設專項資助項目(No. S2021JJKWLH0160)
Tel: 15700761995; E-mail: sgyhy987@163.com
(責任編輯:李淑媛,余小慧)